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The notion of the homomorphism of approximation spaces is introduced. Some properties
of homomorphism are investigated, and some characterizations of homomorphism are given.
Furthermore, the notion of approximation subspace of approximation spaces is introduced. The
relations between approximation subspaces and homomorphisms are studied.

1. Introduction

The theory of rough sets [1], proposed by Pawlak, is an effective tool to conceptualize and
analyze various types of data. The theory and applications of rough sets have impressively
developed. There are many applications of rough set theory especially in data analysis, arti-
ficial intelligence, and cognitive sciences [2–4]. Some basic aspects of the research of rough
sets and several applications have been presented by Pawlak and Skowron [5–7].

In theory, in recent years scholars have put forward many extended rough set models
combining with other soft computing theories or relaxing the relation on the universe or
broadening the boundary, such as statistical rough set [8], fuzzy rough set [9–11], prob-
abilistic rough set [12], variable precision rough set [13, 14], Bayesian rough set [15] and grey
rough set [16]. It is worth noting that proposed in the early 90s, the decision-theoretic rough
set model (DTRS) aims to loosen restrictions of conventional rough approximations [17–20].
It is one of the most important probabilistic rough set models. DTRS has gained research at-
tention in recent years [21–27].

In a word, researchers have proposed many models based on rough set theory, but
there are a few researches focusing on comparison between approximation spaces corre-
sponding to rough set models. In fact, through the comparison between approximation spa-
ces, we can find the difference between them and give the classification of approximation
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spaces, which can help a decision maker to choose a suitable rough set model for data anal-
ysis. The comparison between approximation spaces, in mathematics, can be explained as
amapping between two approximation spaces. A homomorphismmay be viewed as a special
mapping between approximation spaces, which preserves or transfers properties from one
approximation space to another. In this paper, we define the concept of homomorphism be-
tween two approximation spaces based on binary relations and study some properties of
homomorphism. In addition, the notion of approximation subspace is introduced, and the
relationship between homomorphisms and approximation spaces is investigated.

The paper is organized as follows. The next section reviews some basic notions of
rough sets based on binary relations and some results to be used in the following sections. In
Section 3, the concept of homomorphism of approximation spaces is defined, and its main
properties are examined. In Section 4, we define the concept of approximation subspace
and investigate union, intersection, and complement of approximation spaces. In addition,
Theorem 4.14 shows that we can induce an isomorphism of approximation spaces by means
of a homomorphism.

2. Review of Relation Models and Their Properties

LetU be a finite and nonempty universe. A binary relation R over a universeU is a subset of
the Cartesian product U ×U. For two elements x, y ∈ U, if xRy, we say that y is R related to
x, x is a predecessor of y, and y is a successor of x. Given a binary relation, the successor
neighborhood of x is defined by xR = {y | xRy} and the predecessor neighborhood of y by
Ry = {x | xRy}.

Definition 2.1 (see [28]). LetU be a finite and nonempty universe and R ⊆ U ×U a binary re-
lation on the universe. The pair (U,R) is called an approximation space. For any subset X of
the universeU, a pair of lower and upper approximations,RX andRX, are defined as follows:

RX = {x ∈ U | xR ⊆ X}, RX = {x ∈ U | xR ∩X /= ∅}. (2.1)

Definition 2.2 (see [29, 30]). Let U be a finite and nonempty universe and R a binary relation
on U. The relation R is referred to as serial if, for all x ∈ U, there exists a y ∈ U such that
xRy. R is referred to as inverse serial if, for all x ∈ U, there exists a y ∈ U such that yRx.
R is referred to as reflexive if, for all x ∈ U the relationship xRx holds. R is referred to
as symmetric if, for all x, y ∈ U, xRy implies yRx. R is referred to as transitive if, for all
x, y, z ∈ U, xRy and yRz imply xRz. R is referred to as Euclidean if for all x, y, z ∈ U, xRy
and xRz imply yRz. Since the approximation operators are defined through the successor
neighborhood, it is more convenient to express equivalently the conditions on a binary
relation as follows:

Serial: for all x ∈ U, xR/= ∅,
Inverse serial: for all x ∈ U, there exists a y ∈ U such that x ∈ yR,

Reflexive: for all x ∈ U, x ∈ xR,

Symmetric: for all x, y ∈ U, if x ∈ yR, then y ∈ xR,

Transitive: for all x, y ∈ U, if y ∈ xR, then yR ⊆ xR,

Euclidean: for all x, y ∈ U, if y ∈ xR, then xR ⊆ yR.
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Theorem 2.3 (see [28]). Let U be a finite and nonempty universe and R ⊆ U ×U a binary relation
on the universe. The approximation operators satisfy the following properties: for subsets X,Y ⊆ U,

(L0) RX =∼ R ∼ X, (U0) RX =∼ R ∼ X,

(L1) RU = U, (U1) R∅ = ∅,
(L2) R(X ∩ Y ) = RX ∩ RY, (U2) R(X ∪ Y ) = RX ∪ RY,

(L3) R(X ∪ Y ) ⊇ RX ∪ RY, (U3) R(X ∩ Y ) ⊆ RX ∩ RY,

(L4) X ⊆ Y =⇒ RX ⊆ RY, (U4) X ⊆ Y =⇒ RX ⊆ RY.

(2.2)

With respect to certain special types, say, serial, inverse serial, reflexive, symmetric,
transitive, and Euclidean binary relations on the universe of discourse U, the approximation
operators have additional properties [28, 29, 31].

Theorem 2.4. Let U be a finite and nonempty universe and R ⊆ U × U a binary relation on the
universe, then the following assertions hold.

(1) R is serial ⇐⇒ (U0) RU = U.

(2) R is inverse serial ⇐⇒ R{x}/= ∅, for all x ∈ U.

(3) R is reflexive ⇐⇒ (U6) X ⊆ RX, for all X ∈ U.

(4) R is symmetric ⇐⇒ (U7) X ⊆ R RX, for all X ∈ U.

(5) R is transitive ⇐⇒ (L8) RX ⊆ R RX, for all X ∈ U.

(6) R is Euclidean ⇐⇒ (U9) RX ⊆ R RX, for all X ∈ U.

3. The Properties of Homomorphisms and Isomorphisms

In this section, we introduce the notion of the homomorphism of approximation spaces and
study on the properties of the homomorphisms.

We can study the relations between the approximation operators of one approximation
space and the approximation operators of the other approximation space by means of
mappings. For this purpose, in the following we present the concept of the homomorphism
of approximation spaces.

Definition 3.1. LetU1 andU2 be finite and nonempty universes, f : U1 → U2 a mapping from
U1 to U2, R1 a binary relation on U1, and R2 a binary relation on U2. f is called a lower
homomorphism from the approximation space (U1, R1) to the approximation space (U2, R2)
if, for all X ⊆ U1, f(R1X) ⊆ R2f(X). f is called an upper homomorphism from (U1, R1) to
(U2, R2) if, for all X ⊆ U1, f(R1X) ⊆ R2f(X). f is called a homomorphism from (U1, R1)
to (U2, R2) if, for all X ⊆ U1, f(R1X) ⊆ R2f(X) and f(R1X) ⊆ R2f(X). An injective
homomorphism from (U1, R1) to (U2, R2) is called a monomorphism, a surjective homomor-
phism an epimorphism, and a bijective homomorphism an isomorphism.

Remark 3.2. In the above definition, it is easy to show that f is a homomorphism from (U1, R1)
to (U2, R2) if and only if f is a lower homomorphism from (U1, R1) to (U2, R2) and f is an
upper homomorphism from (U1, R1) to (U2, R2).
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For better understanding of the definition we illustrate it by the following examples.

Example 3.3. Let (U1, R1) and (U2, R2) be two approximation spaces, where U1 = {x1, x2},
U2 = {y1, y2, y3, y4}, R1 = {(x1, x1), (x2, x2), (x1, x2), (x2, x1)}, and R2 = {(y1, y1), (y2, y3),
(y4, y3)}. f is a mapping from U1 to U2 and f(x1) = y1, f(x2) = y1. It is easy to check that
for all X ⊆ U1, if X /=U1, then R1X = ∅. Hence, for all X ⊂ U1, f(R1X) = ∅ ⊆ R2f(X). If
X = U1, then R1X = U1. Therefore, f(R1X) = {y1} ⊆ {y1} = R2f(X) when X = U1. We have
shown that for all X ⊆ U1, f(R1X) ⊆ R2f(X). It follows from Definition 3.1 that f is a lower
homomorphism from (U1, R1) to (U2, R2).

Example 3.4. Let (U1, R1) and (U2, R2) be two approximation spaces, where R2 = U2 ×U2. f
is a mapping fromU1 toU2. It is easy to check that for all X ⊆ U1, if X /= ∅ then R2f(X) = U2.
Hence for all X ⊆ U and X /= ∅, f(R1X) ⊆ U2 = R2f(X). If X = ∅, then by the part (U1) of
Theorem 2.3 we have that R1X = ∅. Therefore, if X = ∅, then f(R1X) = ∅ ⊆ R2f(X). We have
shown that for all X ⊆ U1, f(R1X) ⊆ R2f(X). It follows from Definition 3.1 that f is an
upper homomorphism from (U1, R1) to (U2, R2).

Notation 1. LetU denote a finite and nonempty set and R ⊆ U ×U an equivalence relation on
U. Then let U/R denote the quotient set consisting of equivalence classes of R.

Example 3.5. Let (U1, R1) and (U2, R2) be two approximation spaces, where U1 = {x1, x2, x3},
U2 = {y1, y2},U1/R1 = {{x1, x2}, {x3}}, andU2/R2 = {{y1}, {y2}}. f is a mapping fromU1 to
U2 and f(x1) = f(x2) = y1, f(x3) = y2. We first show that f is a lower homomorphism from
(U1, R1) to (U2, R2). By

R1∅ = R1{x1} = R1{x2} = ∅, (3.1)

we can get that f(R1∅) ⊆ R2f(∅), f(R1{x1}) ⊆ R2f({x1}), and f(R1{x2}) ⊆ R2f({x2}). By

R1{x1, x3} = R1{x2, x3} = R1{x3} = {x3}, R2
{
y1, y2

}
=
{
y1, y2

}
, R2

{
y2
}
=
{
y2
}
,

(3.2)

we can get that

f
(
R1{x1, x3}

)
=
{
y2
} ⊆ {y1, y2

}
= R2f({x1, x3}),

f
(
R1{x2, x3}

)
=
{
y2
} ⊆ {y1, y2

}
= R2f({x2, x3}),

f
(
R1{x3}

)
=
{
y2
} ⊆ {y2

}
= R2f({x3}).

(3.3)

In addition, by

R1{x1, x2} = {x1, x2}, R1U1 = U1, R2
{
y1
}
=
{
y1
}
, R2U2 = U2, (3.4)

we get that f(R1{x1, x2}) = {y1} ⊆ {y1} = R2f({x1, x2}), f(R1U1) = U2 ⊆ U2 = R2f(U1). We
have shown that for all X ⊆ U1, f(R1X) ⊆ R2f(X). It follows from Definition 3.1 that f is a
lower homomorphism from (U1, R1) to (U2, R2).
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In the following, we will prove that f is also an upper homomorphism from (U1, R1)
to (U2, R2). By R1∅ = ∅, we get that f(R1∅) ⊆ R2f(∅). By R1{x3} = {x3} and R2{y2} = {y2}, we
can get that f(R1{x3}) = {y2} ⊆ {y2} = R2f({x3}). By

R1{x1} = R1{x2} = R1{x1, x2} = {x1, x2}, R2
{
y1
}
=
{
y1
}
, (3.5)

we can get that

f
(
R1{x1}

)
=
{
y1
} ⊆ {y1

}
= R2f({x1}),

f
(
R1{x2}

)
=
{
y1
} ⊆ {y1

}
= R2f({x2}),

f
(
R1{x1, x2}

)
=
{
y1
} ⊆ {y1

}
= R2f({x1, x2}).

(3.6)

By

R1{x1, x3} = R1{x2, x3} = R1U1 = U1, R2U2 = U2, (3.7)

we can get that

f
(
R1{x1, x3}

)
= U2 ⊆ U2 = R2f({x1, x3}),

f
(
R1{x2, x3}

)
= U2 ⊆ U2 = R2f({x2, x3}),

f
(
R1U1

)
= U2 ⊆ U2 = R2f(U1).

(3.8)

We have proved that for all X ⊆ U1, f(R1X) ⊆ R2f(X). It follows from Definition 3.1 that f is
an upper homomorphism from (U1, R1) to (U2, R2).

In summary, by Remark 3.2, f is a homomorphism from (U1, R1) to (U2, R2).

Example 3.6. Let A1 = (U1, R1) and A2 = (U2, R2) be approximation spaces, where U1 =
{x1, x2, x3}, U2 = {y1, y2, y3}, U1/R1 = {{x1, x2}, {x3}}, and U2/R2 = {{y1, y2}, {y3}}. f is a
mapping from U1 to U2 and f(x1) = y1, f(x2) = y2, and f(x3) = y3. By Definition 3.1, it is
easy to show that f is an isomorphism from (U1, R1) to (U2, R2).

For better understanding of the upper homomorphismwe give the following theorem.
In fact, we present a criterion for judging an upper homomorphism.

Theorem 3.7. Let U1 and U2 be finite and nonempty universes, f : U1 → U2 a mapping, R1

a binary relation on U1 and R2 a binary relation on U2, then f is an upper homomorphism from
(U1, R1) to (U2, R2) if and only if, for all x ∈ U1, f(R1{x}) ⊆ R2f({x}).

Proof. The necessity follows directly from Definition 3.1.
Conversely, for all X ⊆ U, by the part (U2) of Theorem 2.3, we have that

f
(
R1X

)
= f

(
⋃

x∈X
R1{x}

)

=
⋃

x∈X
f
(
R1{x}

)
,

R2f(X) = R2f

(
⋃

x∈X
{x}
)

= R2

(
⋃

x∈X
f({x})

)

=
⋃

x∈X
R2f({x}).

(3.9)
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Applying the condition for all x ∈ U1, f(R1{x}) ⊆ R2f({x}), we conclude that

⋃

x∈X
f
(
R1{x}

)
⊆
⋃

x∈X
R2f({x}). (3.10)

Hence,

f
(
R1X

)
⊆ R2f(X). (3.11)

We have proved that for all X ⊆ U, f(R1X) ⊆ R2f(X). It follows from Definition 3.1 that f is
an upper homomorphism from (U1, R1) to (U2, R2).

In the following, when f : U1 → U2 is a bijective from U1 to U2, some characteriza-
tions of homomorphisms are given.

Theorem 3.8. Let U1 and U2 be finite and nonempty universes, f : U1 → U2 a bijective from U1

toU2, R1 a binary relation onU1, and R2 a binary relation onU2, then the following assertions hold:

(1) f is an upper homomorphism from (U1, R1) to (U2, R2) if and only if for all X ⊆ U1,
f(R1X) ⊇ R2f(X),

(2) f is a lower homomorphism from (U1, R1) to (U2, R2) if and only if for all X ⊆ U1,
f(R1X) ⊇ R2f(X),

(3) f is a homomorphism from (U1, R1) to (U2, R2) if and only if for all X ⊆ U1, f(R1X) ⊇
R2f(X) and f(R1X) ⊇ R2f(X),

Proof. (1) Since f is a bijective, it follows that for all X ⊆ U1, f (∼X) = ∼ f (X). Hence, f is an
upper homomorphism from (U1, R1) to (U2, R2) ⇔ for all X ⊆ U1, f(R1X) ⊆ R2f(X)

⇔ for all X ⊆ U1, f(R1(∼ X)) ⊆ R2f(∼ X),

⇔ for all X ⊆ U1, f(∼ R1(X)) ⊆ R2(∼ f(X)),

⇔ for all X ⊆ U1, ∼ f(R1(X)) ⊆∼ R2(f(X)),

⇔ for all X ⊆ U1, f(R1(X)) ⊇ R2(f(X)).

This finishes the proof.
(2) It is similar to the proof of (1).
(3) By (1), (2), and Remark 3.2, (3) holds.

As natural consequences of the above theorem we can obtain the following conclu-
sions.

Theorem 3.9. Let U1 and U2 be finite and nonempty universes, f : U1 → U2 a bijective, R1 a
binary relation on U1, and R2 a binary relation on U2, then the following assertions are equivalent:

(1) f is an isomorphism from (U1, R1) to (U2, R2),

(2) for all X ⊆ U1, f(R1X) = R2f(X),

(3) for all X ⊆ U1, f(R1X) = R2f(X),

Proof. The proof follows directly from Definition 3.1, Theorems 2.4, and 3.8.
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The following example shows that if the abovemapping f is surjective and satisfies the
condition for all X ⊆ U1, f(R1X) = R2f(X), then f is not necessarily an isomorphism.

Example 3.10. Let (U1, R1) and (U2, R2) be two approximation spaces, where U1 = {x1, x2},
U2 = {y1}, U1/R1 = {{x1}, {x2}}, and U2/R2 = {{y1}}. f is a mapping from U1 to U2 and
f(x1) = f(x2) = y1, then R1∅ = ∅, R1{x1} = {x1}, R1{x2} = {x2}, R1U1 = U1 and R2∅ = ∅,
R2U2 = U2. Hence,

f
(
R1∅
)
= ∅ = R2f(∅),

f
(
R1{x1}

)
= U2 = R2f({x1}),

f
(
R1{x2}

)
= U2 = R2f({x2}),

f
(
R1U1

)
= U2 = R2f(U1).

(3.12)

We have shown that for all X ⊆ U1, f(R1X) = R2f(X).
In the following, we shall prove that for all X ⊆ U1, f(R1X) = R2f(X). It is easy to

check that R∅ = ∅, R{x1} = {x1}, R{x2} = {x2}, RU1 = U1 and R2∅ = ∅, R2U2 = U2. Hence,

f
(
R1∅
)
= ∅ = R2f(∅),

f
(
R1{x1}

)
= U2 = R2f({x1}),

f
(
R1{x2}

)
= U2 = R2f({x2}),

f
(
R1U1

)
= U2 = R2f(U1).

(3.13)

We have shown that for all X ⊆ U1, f(R1X) = R2f(X).
Thus, by Definition 3.1, f is a homomorphism from (U1, R1) to (U2, R2), but f is not

an isomorphism.

Corollary 3.11. Let U1 and U2 be finite and nonempty universes, f : U1 → U2 a bijective, R1 a
binary relation on U1, and R2 a binary relation on U2, then f is an isomorphism from (U1, R1) to
(U2, R2) if and only if f−1 is an isomorphism from (U2, R2) to (U1, R1).

Proof. Since f is a bijective, it follows that f−1 is a bijective from U2 to U1. For all Y ⊆ U2, by
Theorem 3.9, we have that f(R1f

−1(Y )) = R2f(f−1(Y ))) = R2Y . Hence, R1f
−1(Y ) = f−1(R2Y ).

We have proved that for all Y ⊆ U2, f−1(R2Y ) = R1f
−1(Y ). It follows from Theorem 3.9 that

f−1 is an isomorphism from (U2, R2) to (U1, R1). The proof of the sufficiency is similar to the
proof of the necessity.

Notation 2. The symbolism (U1, R1) ∼= (U2, R2) signifies that there is at least one isomorphism
from approximation space (U1, R1) to approximation space (U2, R2). By Corollary 3.11, we
conclude that (U1, R1) ∼= (U2, R2) ⇔ (U2, R2) ∼= (U1, R1).

In the following, some properties of homomorphisms are given. These properties
reveal the difference and relationship between two approximation spaces.
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Theorem 3.12. LetU1 andU2 be finite and nonempty universes, f : U1 → U2 a surjective fromU1

to U2, R1 a binary relation on U1, and R2 a binary relation on U2. If f is an upper homomorphism
from (U1, R1) to (U2, R2), then the following assertions hold:

(1) If R1 is serial, then R2 is serial,

(2) If R1 is inverse serial, then R2 is inverse serial,

(3) If R1 is reflexive, then R2 is reflexive.

Proof. (1) Since R1 is serial, it follows from part (1) of Theorem 2.4 that R1U1 = U1. By the
condition, f is an upper homomorphism from (U1, R1) to (U2, R2), hence we conclude that
f(U1) = f(R1U1) ⊆ R2f(U1). In addition, since f is a surjective, it follows that f(U1) = U2.
Thus U2 ⊆ R2f(U1) = R2U2. On the other hand, clearly, U2 ⊇ R2U2. Hence, R2U2 = U2 and
so by part (1) of Theorem 2.4, R2 is serial.

(2) By part (2) of Theorem 2.4, we need to prove only that for all y ∈ U2, R2{y}/= ∅. Let
y ∈ U2. Since f is a surjective, it follows that there exists x ∈ U1 such that f(x) = y. By the
condition,R1 is inverse serial, therefore by part (2) of Theorem 2.4, we have thatR1{x}/= ∅ and
so f(R1{x})/= ∅. Since f is an upper homomorphism from (U1, R1) to (U2, R2), it follows from
Definition 3.1 that ∅/= f(R1{x}) ⊆ R2f({x}) = R2{f(x)} = R2{y}. Thus, R2{y}/= ∅. This fini-
shes the proof of (2).

(3) By the part (3) of Theorem 2.4, we need to prove only that for all Y ⊆ U2, Y ⊆ R2Y .
Let Y ⊆ U2. Since f is a surjective, it follows that there exists X ⊆ U1 such that f(X) = Y . By
the condition, R1 is reflexive, therefore by the part (3) of Theorem 2.4, we have that X ⊆ R1X

and so Y = f(X) ⊆ f(R1X). Since f is an upper homomorphism from (U1, R1) to (U2, R2), it
follows from Definition 3.1 that Y ⊆ f(R1X) ⊆ R2f(X) = R2Y . Thus, for all Y ⊆ U2, Y ⊆ R2Y .
This finishes the proof of (3).

Theorem 3.13. Let U1 and U2 be finite and nonempty universes, f : U1 → U2 a mapping from U1

toU2, R1 a binary relation onU1 and R2 a binary relation onU2. f is an epimorphism from (U1, R1)
to (U2, R2). If R1 is symmetric, then R2 is symmetric.

Proof. By the part (4) of Theorem 2.4, we need to prove only that for all Y ⊆ U2, Y ⊆ R2R2Y .
Let Y ⊆ U2. Since f is a surjective, it follows that there exists X ⊆ U1 such that f(X) = Y . By
the condition, R1 is symmetric, therefore by part (4) of Theorem 2.4, we have thatX ⊆ R1 R1X

and so Y = f(X) ⊆ f(R1 R1X). Since f is a homomorphism from (U1, R1) to (U2, R2), it fol-

lows fromDefinition 3.1 that f(R1R1X) ⊆ R2 f(R1X) and f(R1X) ⊆ R2f(X).Thus, by the part
(4) of Theorem 2.3, we have that Y ⊆ f(R1 R1X) ⊆ R2f(R1X) ⊆ R2 R2f(X) = R2 R2Y . Hence

for all Y ⊆ U2, Y ⊆ R2 R2Y . This finishes the proof of theorem.

The following theorem gives main properties of isomorphisms on approximation spa-
ces.

Theorem 3.14. Let U1 and U2 be finite and nonempty universes, R1 a binary relation on U1 and R2

a binary relation onU2. If (U1, R1) ∼= (U2, R2), then the following assertions hold:

(1) R1 is serial if and only if R2 is serial,

(2) R1 is inverse serial if and only if R2 is inverse serial,

(3) R1 is reflexive if and only if R2 is reflexive,



Journal of Applied Mathematics 9

(4) R1 is transitive if and only if R2 is transitive,

(5) R1 is symmetric if and only if R2 is symmetric,

(6) R1 is Euclidean if and only if R2 is Euclidean.

Proof. By Theorem 3.12 and Notation 2, (1), (2) and (3) hold.
(4) We first prove the necessity. By part (5) of Theorem 2.4, we need only prove that

for all Y ⊆ U2, R2Y ⊆ R2 R2Y . By the condition (U1, R1) ∼= (U2, R2), we may assume that f
is an isomorphism from (U1, R1) to (U2, R2). Let Y ⊆ U2. Since f is a surjective, it follows
that there exists X ⊆ U1 such that f(X) = Y . By the condition, R1 is transitive, therefore by
part (5) of Theorem 2.4, we have that R1X ⊆ R1 R1X and so f(R1X) ⊆ f(R1R1X). Since f an
isomorphism from (U1, R1) to (U2, R2), it follows from Theorem 3.9 that f(R1X) = R2f(X)
and f(R1 R1X) = R2f(R1X). Thus, R2Y = R2f(X) = f(R1X) ⊆ f(R1 R1X) = R2f(R1X) =
R2 R2f(X) = R2 R2Y . Hence for all Y ⊆ U2, R2Y ⊆ R2R2Y . So R2 is transitive. By Notation 2,
the proof of the sufficiency is similar to the proof of the necessity.

(5) By theorem 3.13 and Notation 2, (5) holds.
(6)We first prove the necessity. By part (6) of Theorem 2.4, we need only prove that for

all Y ⊆ U2, R2Y ⊆ R2 R2Y . By the condition (U1, R1) ∼= (U2, R2), we may assume that f is an
isomorphism from (U1, R1) to (U2, R2). Let Y ⊆ U2. Since f is a surjective, it follows that there
exists X ⊆ U1 such that f(X) = Y . By the condition, R1 is Euclidean, therefore by the part (6)
of Theorem 2.4, we have that R1X ⊆ R1R1X and so f(R1X) ⊆ f(R1 R1X). Since f an iso-

morphism from (U1, R1) to (U2, R2), it follows from Theorem 3.9 that f(R1X) = R2f(X) and
f(R1 R1X) = R2f(R1X). Thus, R2Y = R2f(X) = f(R1X) ⊆ f(R1 R1X) = R2f(R1X) =
R2 R2f(X) = R2 R2Y . Hence, for all Y ⊆ U2, R2Y ⊆ R2R2Y . So R2 is Euclidean. By Notation 2,
the proof of the sufficiency is similar to the proof of the necessity.

4. Approximation Subspaces and Homomorphisms

Inmathematics, subspaces are similar to original space and independent of the original space,
such as, linear subspaces of linear space subspaces of topological space and. According to
ideas, the notion of approximation subspace of approximation space is introduced in this
section. For this purpose, we first introduce the following notation.

Notation 3. Let U be a finite and nonempty universe, R ⊆ U ×U a binary relation on U, and
S ⊆ U. Then let R|S denote the set R∩ (S×S), that is, R|S = R∩ (S×S). Clearly, R|S is a binary
relation on S.

Definition 4.1. Let U be a finite and nonempty universe, R a binary relation on U and S ⊆ U.
Then the pair (S,R|S) is called an approximation subspace of the approximation space (U,R)
if for all X ⊆ S, R|SX = RX and R|SX = RX.

Remark 4.2. Let U be a finite and nonempty universe, R ⊆ U ×U a binary relation on U, and
S ⊆ U. i is a mapping from S to U and for all x ∈ S, i(x) = x. If (S,R|S) is an approximation
subspace of (U,R), then byDefinitions 3.1 and 4.1, it is easy to check that i is a homomorphism
from (S,R|S) to (U,R).

Lemma 4.3. Let U be a finite and nonempty universe and R ⊆ U ×U a binary relation on U. If R is
an equivalence relation on U, then R|S is an equivalence relation on S.
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Proof. (1) Since R is an equivalence relation on U, it follows that for all x ∈ S, (x, x) ∈ R.
Hence, (x, x) ∈ R ∩ (S × S) = R|S and so R|S is reflexive.

(2) Let (x, y) ∈ R|S, then (x, y) ∈ S × S and (x, y) ∈ R. Clearly, (y, x) ∈ S × S. Since R
is an equivalence relation on U, it follows that (y, x) ∈ R. Hence (y, x) ∈ R ∩ (S × S) = R|S.
Therefore R|S is symmetric.

(3) Let (x, y), (y, z) ∈ R|S, then (x, y), (y, z) ∈ S × S and (x, y), (y, z) ∈ R. Clearly
(x, z) ∈ S × S. Since R is an equivalence relation on U, it follows that (x, z) ∈ R. Hence,
(x, z) ∈ R ∩ (S × S) = R|S. Therefore, R|S is transitive.

By (1), (2), and (3), we conclude that R|S is an equivalence relation on S.

Note 1. Let R ⊆ U × U be an equivalence relation on U, that is, R is reflexive, symmetric,
and transitive. The pair (U,R) is called an approximation space. The equivalence relation
R partitions the universe U into disjoint subsets called equivalence classes. Elements in the
same equivalence class are said to be indistinguishable. Equivalent classes of R are called
elementary sets. A union of elementary sets is called an R-definable (composed) set [32]. The
empty set is considered to be a R-definable set [33]. Let X ⊆ U, then it is easy to check that
X is an R-definable (composed) set if and only if RX = X = RX. Clearly, if X,Y ⊆ U are
R-definable sets, then X ∪ Y , X ∩ Y and∼ X are R-definable sets.

Lemma 4.4. Let U be a finite and nonempty universe, R ⊆ U ×U an equivalence relation on U and
S ⊆ U, then S is an R-definable set if and only if, for all x ∈ S, [x]R|S = [x]R.

Proof. We first prove the necessity. Let x ∈ S. Since S is an R-definable set, it follows that RS=
S = RS and so [x]R ⊆ S. Hence, for all y ∈ [x]R, we get that (x, y) ∈ S × S and (x, y) ∈ R,
which implies (x, y) ∈ R ∩ (S × S) = R|S and so y ∈ [x]R|S . Thus [x]R ⊆ [x]|R|S . On the other
hand, by R|S = R ∩ (S × S), it is clear that [x]R ⊇ [x]R|S . So [x]R|S = [x]R.

Conversely, suppose that S is not an R-definable set, then RS/=RS. Hence, there exists
y ∈ U such that [y]R/⊆ S and [y]R ∩ S/= ∅. Choosing x ∈ [y]R ∩ S, namely, x ∈ [y]R and x ∈ S.
Since R is an equivalence relation onU, it follows that [x]R = [y]R. Hence, [x]R/⊆S and x ∈ S.
By Lemma 4.3, we have that R|S is an equivalence relation on S. Thus, [x]R|S ⊆ S and so
[x]R|S /= [x]R. We have proved that supposing that S is not crisp (exact with respect to R),
then there exists x ∈ S such that [x]R|S /= [x]R. This is a contradiction with the condition for
all x ∈ S, [x]R|S = [x]R. It follows that S is an R-definable set.

When R is an equivalence relation in the approximation space (U,R), some charac-
terizations of approximation subspace are given in the following theorem.

Theorem 4.5. LetU be a finite and nonempty universe, R ⊆ U×U an equivalence relation onU and
S ⊆ U, then the following assertions are equivalent:

(1) S is a R-definable set,

(2) for all X ⊆ S, R|SX = RX,

(3) (S,R|S) is an approximation subspace of the approximation space (U,R),

(4) for all X ⊆ S, R|SX = RX.

Proof. (1) ⇒ (2) Let X ⊆ S, then by part (U4) of Theorem 2.3, we have that RX ⊆ RS. Since R
is an equivalence relation on U and S is an R−definable set, it follows that RS = S. Hence,
RX ⊆ RS = S and so for all x ∈ RX, we have that x ∈ S and [x]R ∩ X/= ∅. In addition,
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by Lemma 4.4, we have that [x]R|S = [x]R. Hence, [x]R|S ∩ X /= ∅ and so x ∈ R|SX. Thus

R|SX ⊇ RX. On the other hand, for all x ∈ R|SX, clearly x ∈ S and [x]R|S∩X/= ∅. By Lemma 4.4,

we have that [x]R|S = [x]R. Thus, [x]R∩X /= ∅, which implies x ∈ RX. Hence R|SX ⊆ RX. Con-

sequently, R|SX = RX.
(2) ⇒ (1) Suppose that S is not an R-definable set, then by Lemma 4.4, there exists

x ∈ S, such that [x]R|S /= [x]R. By Lemma 4.3,R|S is an equivalence relation on S, thusR|S{x} =

[x]R|S . On the other hand,R{x} = [x]R. Hence,R|S{x}/=R{x}. We have proved that supposing

that S is not aR-definable set, then there existsX = {x} ⊆ S such thatR|SX /=RX. This is a con-
tradiction with the condition for all X ⊆ S, R|SX = RX. It follows that S is an R-definable set.

(2) ⇒ (3) By Definition 4.1, we need to prove only that for all X ⊆ S, R|SX = RX. Since
(1) ⇔ (2), it follows that S is an R-definable set. By Lemma 4.4, we can get that for all x ∈ S,
[x]R|S = [x]R. For all x ∈ R|SX, clearly x ∈ S. Hence, x ∈ R|SX ⇒ [x]R|S ⊆ X ⇒ [x]R ⊆ X ⇒
x ∈ RX. Thus, R|SX ⊆ RX. On the other hand, since R is an equivalence relation on U, it
follows that RX ⊆ X ⊆ S. Hence, x ∈ RX implies x ∈ S. Thus, x ∈ RX ⇒ [x]R ⊆ X ⇒ [x]R|S ⊆
X ⇒ x ∈ R|SX. Therefore R|SX ⊇ RX. It follows that R|SX = RX. This completes the proof.

(3) ⇒ (4) By Definition 4.1, the proof is obvious.
(4) ⇒ (1) Suppose that S is not an R-definable set, then by Lemma 4.4, there exists

x ∈ S such that [x]R|S /= [x]R. By R|S = R ∩ (S × S), it is easy to check that [x]R|S ⊆ [x]R.
Hence, [x]R|S ⊂ [x]R and so R[x]R|S = ∅. On the other hand, by Lemma 4.3, we have that R|S
is an equivalent relation on S. Thus, R|S[x]R|S = [x]R|S . Hence, R|S[x]R|S /=R[x]R|S . We have
proved that supposing that S is not an R-definable set, then there exists X = [x]R|S ⊆ S such
that R|SX /=RX. This is a contradiction with the condition for all X ⊆ S, R|SX = RX. This
completes the proof.

Notation 4. Let (U,R) be an approximation space. Let SP(A) denote the set of all approxi-
mation subspaces of (U,R).

Now we consider the union, intersection, and complement of approximation sub-
spaces.

Definition 4.6. Let (U,R) be an approximation space, where U is a finite and nonempty uni-
verse,R is an equivalence relation on U, and S,H ⊆ U. If (S,R|S), (H,R|H) ∈ SP(A), then
the union, intersection and complement of approximation subspaces are correspondingly de-
fined as follows:

(S,R|S) ∪ (H,R|H) = (S ∪H,R|S ∪ R|H),

(S,R|S) ∩ (H,R|H) = (S ∩H,R|S ∩ R|H),

∼ (S,R|S) = (∼ S,R|∼S).
(4.1)

Lemma 4.7. Let (U,R) be an approximation space, where U is a finite and nonempty universe and
R is an equivalence relation on U, and let (S,R|S), (H,R|H) ∈ SP(A), then the following assertions
hold:

(1) R|S ∪ R|H = R|S∪H ,

(2) R|S ∩ R|H = R|S∩H .
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Proof. (1) For all (x, y) ∈ R|S∪H , clearly, y ∈ [x]R|S∪H and (x, y) ∈ (S ∪ H) × (S ∪ H). In ad-
dition, by Theorem 4.5, we have that S andH are crisp (exact with respect to R), hence S∪H
is crisp (exact with respect to R), and so by Lemma 4.4, we have that [x]R|S∪H = [x]R. (x, y) ∈
(S ∪ H) × (S ∪ H) implies x ∈ S ∪ H, namely, x ∈ S or x ∈ H. We may assume that x ∈ S,
then by Lemma 4.4, we have [x]R|S = [x]R. Hence, [x]R|S∪H = [x]R|S and so y ∈ [x]R|S∪H implies
y ∈ [x]R|S . Thus, (x, y) ∈ R|S. Hence, R|S ∪ R|H ⊇ R|S∪H . On the other hand, clearly R|S = R ∩
(S×S) ⊆ R∩((S∪H)×(S∪H)) = R|S∪H andR|H = R∩(H×H) ⊆ R∩((S∪H)×(S∪H)) = R|S∪H .
Hence, R|S ∪ R|H ⊆ R|S∪H . It follows that R|S ∪ R|H = R|S∪H .

(2) For all (x, y) ∈ R|S ∩ R|H , clearly, (x, y) ∈ R|S = R ∩ (S × S) and (x, y) ∈ R|H =
R ∩ (H × H). Hence, (x, y) ∈ R, x, y ∈ S and x, y ∈ H, which implies (x, y) ∈ R and
x, y ∈ S ∩ H. Therefore (x, y) ∈ R ∩ ((S ∩ H) × (S ∩ H)) = R|S∩H . Thus R|S ∩ R|H ⊆ R|S∩H .
On the other hand, clearly, R|S = R ∩ (S × S) ⊇ R ∩ ((S ∩ H) × (S ∩ H)) = R|S∩H and
R|H = R∩ (H ×H) ⊇ R∩ ((S∩H)× (S∩H)) = R|S∩H . Hence, R|S ∩R|H ⊇ R|S∩H . It follows that
R|S ∩ R|H = R|S∩H .

It is meaningful to notice that the union, intersection and complement of approxima-
tion subspaces still are approximation subspaces.

Theorem 4.8. Let (U,R) be an approximation space, whereU is a finite and nonempty universe and
R an equivalence relation on U, and S,H ⊆ U. If (S,R|S), (H,R|H) ∈ SP(A), then (S,R|S) ∪
(H,R|H) ∈ SP(A), (S,R|S) ∩ (H,R|H) ∈ SP(A), and ∼ (S,R|S) ∈ SP(A).

Proof. By Lemma 4.7 and Definition 4.6, we have that (S,RS) ∪ (H,RH) = (S ∪H,RS ∪ RH) =
(S ∪H,RS∪H), (S,RS) ∩ (H,RH) = (S ∩H,RS ∩ RH) = (S ∩H,RS∩H). It follows from Note 1
and Theorem 4.5 that (S,RS) ∪ (H,RH) ∈ SP(A), (S,RS) ∩ (H,RH) ∈ SP(A). In addition, by
Note 1 and Theorem 4.5, we can get that ∼ (S,RS) ∈ SP(A).

When the binary relations are equivalence relations in approximation spaces, the im-
portant properties of homomorphism are given in the following theorem.

Theorem 4.9. LetU1 andU2 be finite and nonempty universes, f : U1 → U2 a mapping fromU1 to
U2, R1 an equivalence relation on U1, and R2 an equivalence relation on U2. f is a homomorphism
from (U1, R1) to (U2, R2) and X ⊆ U1. If X is an R1-definable set, then f(X) is a R2-definable set.

Proof. Since X is an R1-definable set, it follows that R1X = R1X and so f(R1X) = f(R1X). In
addition, since f is a homomorphism from (U1, R1) to (U2, R2), it follows from Definition 3.1
and Theorem 3.9 that f(R1X) = R2f(X) and f(R1X) = R2f(X). Thus, R2f(X) = R2f(X).
Hence, f(X) is an R2-definable set.

As natural consequence of the above theorem, we can obtain the following conclusion.

Corollary 4.10. LetU1 andU2 be finite and nonempty universes, f : U1 → U2 a mapping fromU1

toU2, R1 an equivalence relation onU1, and R2 an equivalence relation onU2. f is a homomorphism
from (U1, R1) to (U2, R2) and X ⊆ U1. If (X,R|X) is an approximation subspace of (U1, R1), then
(f(X), R|f(X)) is an approximation subspace of (U2, R2).

Proof. The proof follows directly from Theorems 4.5 and 4.9.

Notation 5. Let U1 and U2 be finite and nonempty universes and f : U1 → U2 a mapping
from U1 to U2. Then let Kf denote the binary relation on U1 and x, y ∈ U1, xKfy ⇔ f(x) =
f(y). Clearly, Kf is an equivalence relation on U1. U1/Kf denotes the set of all equivalence
classes of Kf , that is, U1/Kf = {[x]Kf

| x ∈ U1}.
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Lemma 4.11. LetU1 andU2 be finite and nonempty universes, f : U1 → U2 a mapping,R1 an equi-
valence relation on U1, and R2 an equivalence relation on U2. One writes

R1/Kf =
{(

[x]Kf
,
[
y
]
Kf

)
| [x]Kf

,
[
y
]
Kf

∈ U1/Kf , ∃u ∈ [x]Kf
, ∃v ∈ [y]Kf

, s.t. uR1v
}
. (4.2)

Then R1/Kf is a reflexive and symmetric relation on U1/Kf .

Proof. By the definition of R1/Kf , it is easy to show that if ([x1]Kf
, [y1]Kf

) = ([x]Kf
, [y]Kf

),
then ([x]Kf

, [y]Kf
) ∈ R1/Kf ⇔ ([x1]Kf

, [y1]Kf
) ∈ R1/Kf . Hence, R1/Kf is a binary relation

on U1/Kf . In the following, we shall prove that R1/Kf is reflexive and symmetric.

(i) Let [x]Kf
∈ U1/Kf , clearly, x ∈ U1. Since R1 is an equivalence relation on U1, it

follows that xR1x. Hence, by the definition of R1/Kf , we have that ([x]Kf
, [x]Kf

) ∈
R1/Kf . Thus, R1/Kf is reflexive.

(ii) Let ([x]Kf
, [y]Kf

) ∈ R1/Kf , then by the definition of R1/Kf , there exist u ∈ [x]Kf

and v ∈ [y]Kf
such that uR1v. Since R1 is an equivalence relation on U1, it follows

that vR1u. Hence, there exist v ∈ [y]Kf
and u ∈ [x]Kf

such that vR1u and so by the
definition of R1/Kf , ([y]Kf

, [x]Kf
) ∈ R1/Kf . Thus, R1/Kf is symmetric.

Lemma 4.12. Let U1 and U2 be finite and nonempty universes, f : U1 → U2 a mapping, R1 an
equivalence relation onU1, andR2 an equivalence relation onU2. f is a homomorphism from (U1, R1)
to (U2, R2). For all [x]Kf

∈ U1/Kf , one defines h([x]Kf
) = f(x), then h is a mapping from U1/Kf

toU2 and for all Y ⊆ U1/Kf , h(Y ) = f(
⋃

[y]Kf
∈Y [y]Kf

).

Proof. Let [x]Kf
, [y]Kf

∈ U1/Kf . If [x]Kf
= [y]Kf

, then by Notation 5, we have that f(x) =
f(y). Hence, by the definition of h, we can get that h([x]Kf

) = f(x) = f(y) = h([y]Kf
). We

have proved that for all [x]Kf
, [y]Kf

∈ U1/Kf , if [x]Kf
= [y]Kf

, then h([x]Kf
) = h([y]Kf

).
Therefore, h is a mapping fromU1/Kf toU2.

We shall prove that for all Y ⊆ U1/Kf , h(Y ) = f(
⋃

[y]Kf
∈Y [y]Kf

). By Notation 5,

it is easy to verify that for all [x]Kf
∈ U1/Kf , f([x]Kf

) = {f(x)}. Hence, h(Y )
= h(

⋃
[y]Kf

∈Y{[y]Kf
}) =

⋃
[y]Kf

∈Y{h([y]Kf
)} =

⋃
[y]Kf

∈Y{f(y)} =
⋃

[y]Kf
∈Y f([y]Kf

) =

f(
⋃

[y]Kf
∈Y [y]Kf

). It follows that for all Y ⊆ U1/Kf , h(Y ) = f(
⋃

[y]Kf
∈Y [y]Kf

).

Lemma 4.13. LetU1 andU2 be finite and nonempty universes, f : U1 → U2 a mapping,R1 an equi-
valence relation on U1, and R2 an equivalence relation on U2, then

∀Y ⊆ U1/Kf , R1/KfY =
⋃

[y]Kf
∈Y

[[
y
]
Kf

]

R1/Kf

. (4.3)

Proof. Let [y]Kf
∈ Y . We first show that for all [u]Kf

∈ [[y]Kf
]R1/Kf

, [u]Kf
∈ R1/KfY . By

Lemma 4.11, R1/Kf is symmetric, hence [y]Kf
∈ [[u]Kf

]R1/Kf
. Thus, [y]Kf

∈ [[u]Kf
]R1/Kf

∩
Y /= ∅. This implies [u]Kf

∈ R1/KfY . Therefore, [[y]Kf
]R1/Kf

⊆ R1/KfY . It follows that
⋃

[y]Kf
∈Y [[y]Kf

]R1/Kf
⊆ R1/KfY .
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On the other hand, for all [u]Kf
∈ R1/KfY , then [[u]Kf

]R1/Kf
∩Y /= ∅. Hence, there exists

[y]Kf
∈ [[u]Kf

]R1/Kf
∩ Y /= ∅ such that [y]Kf

∈ [[u]Kf
]R1/Kf

and [y]Kf
∈ Y . By Lemma 4.11,

R1/Kf is symmetric, hence [u]Kf
∈ [[y]Kf

]R1/Kf
. Therefore, [u]Kf

∈ ⋃[y]Kf
∈Y [[y]Kf

]R1/Kf
. It

follows that R1/KfY ⊆ ⋃[y]Kf
∈Y [[y]Kf

]R1/Kf
.

Thus, R1/KfY =
⋃

[y]Kf
∈Y [[y]Kf

]R1/Kf
.

An interesting problem is to discuss the isomorphisms of approximation spaces induc-
ed by the homomorphisms of approximation spaces. The next theorem shows the very in-
timate relation between homomorphisms and isomorphisms. The theorem is similar to first
isomorphism theorem in group theory.

Theorem 4.14. Let U1 and U2 be finite and nonempty universes, f : U1 → U2 a mapping from U1

toU2, R1 an equivalence relation onU1 and R2 an equivalence relation onU2. If f is an epimorphism
from (U1, R1) to (U2, R2), then (U1/Kf , R1/Kf) ∼= (U2, R2).

Proof. For all [x]Kf
∈ U1/Kf , we define h([x]Kf

) = f(x), then by Lemma 4.12, we have that
h is a mapping from U1/Kf to U2. Let [x]Kf

, [y]Kf
∈ U1/Kf . If [x]Kf /= [y]Kf

, then by
Notation 5, we get that f(x)/= f(y). Hence, h([x]Kf

) = f(x)/= f(y) = h([y]Kf
). We have prov-

ed that h is injective. In addition, for all z ∈ U2, since f is surjective, it follows that there
exists x ∈ U1 such that f(x) = z. Thus for all z ∈ U2, there exists [x]Kf

∈ U1/Kf such that
h([x]Kf

) = f(x) = z. Therefore, h is surjective. It follows that h is a bijective mapping from
U1/Kf to U2. By Lemma 4.11, we conclude that R1/Kf is a binary relation on U1/Kf , hence
(U1/Kf , R1/Kf) is an approximation space. Since h is a bijective mapping from U1/Kf to
U2, it follows from Definition 3.1 and Notation 2 that in order to have (U1/Kf , R1/Kf) ∼=
(U2, R2), we need to prove only that h is a homomorphism from (U1/Kf , R1/Kf) to (U2, R2).

Let Y ⊆ U1/Kf . We shall show that h(R1/KfY ) ⊆ R2h(Y ) and h(R1/KfY ) ⊆ R2h(Y ).
For simplicity, we write

⋃

[y]Kf
∈Y

[
y
]
Kf

= X, (4.4)

clearly, X ⊆ U1, and by Lemma 4.12, we have that h(Y ) = f(X).
(i)We shall prove that for all [z]Kf

∈ R1/KfY , [z]Kf
⊆ R1X. We need to prove only that

for all u ∈ [z]Kf
, then u ∈ R1X. By Notation 5, u ∈ [z]Kf

implies [u]Kf
= [z]Kf

. Let t ∈ [u]R1
,

then by the definition of R1/Kf , we have that ([u]Kf
, [t]Kf

) ∈ R1/Kf . Hence, ([z]Kf
, [t]Kf

) =
([u]Kf

, [t]Kf
) ∈ R1/Kf , that is, ([z]Kf

, [t]Kf
) ∈ R1/Kf and so [t]Kf

∈ [[z]Kf
]R1/Kf

. We have
proved that for all t ∈ [u]R1

, [t]Kf
∈ [[z]Kf

]R1/Kf
. Thus,

⋃
t∈[u]R1

{[t]Kf
} ⊆ [[z]Kf

]R1/Kf
. In

addition, since [z]Kf
∈ R1/KfY , it follows that [[z]Kf

]R1/Kf
⊆ Y . Hence,

⋃
t∈[u]R1

{[t]Kf
} ⊆ Y

and so
⋃

t∈[u]R1
[t]Kf

⊆ ⋃[y]Kf
∈Y [y]Kf

= X. This implies [u]R1
⊆ ⋃t∈[u]R1

[t]Kf
⊆ X, that is,

[u]R1
⊆ X. Thus u ∈ R1X. It follows that [z]Kf

⊆ R1X.
(ii) We shall prove that h(R1/KfY ) ⊆ R2h(Y ). By (i), we have that for all [z]Kf

∈
R1/KfY , [z]Kf

⊆ R1X and so for all [z]Kf
∈ R1/KfY , f([z]Kf

) ⊆ f(R1X). Therefore, by
Lemma 4.12, we have that

h
(
R1/KfY

)
=f

⎛

⎜
⎝

⋃

[z]Kf
∈R1/KfY

[z]Kf

⎞

⎟
⎠=

⋃

[z]Kf
∈R1/KfY

f
(
[z]Kf

)
⊆

⋃

[z]Kf
∈R1/KfY

f
(
R1X

)
=f
(
R1X

)
,

(4.5)
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that is, h(R1/KfY ) ⊆ f(R1X). In addition, since f is a homomorphism from (U1, R1) to (U2,
R2), it follows that f(R1X) ⊆ R2f(X). Thus,

h
(
R1/KfY

)
⊆ f
(
R1X

)
⊆ R2f(X) = R2h(Y ). (4.6)

We have proved that h(R1/KfY ) ⊆ R2h(Y ).

(iii) Let [y]Kf
∈ Y . We shall prove that for all [u]Kf

∈ [[y]Kf
]R1/Kf

, f([u]Kf
) ⊆ f(R1X).

By the definition of R1/Kf , there exist s ∈ [y]Kf
and t ∈ [u]Kf

such that sR1t. Hence, s ∈
[t]R1

∩[y]Kf /= ∅. Since [y]Kf
∈ Y , it follows that [t]R1

∩(⋃[y]Kf
∈Y [y]Kf

)/= ∅, namely, [t]R1
∩X /= ∅.

This implies t ∈ R1X and so f(t) ∈ f(R1X). In addition, since t ∈ [u]Kf
, it follows from

Notation 5 that f([u]Kf
) = {f(t)}. Thus, f([u]Kf

) ⊆ f(R1X).

(iv)We shall prove that h(R1/KfY ) ⊆ R2h(Y ). By Lemma 4.13, we get that

h
(
R1/KfY

)
= h

⎛

⎜
⎝

⋃

[y]Kf
∈Y

[[
y
]
Kf

]

R1/Kf

⎞

⎟
⎠ =

⋃

[y]Kf
∈Y
h

([[
y
]
Kf

]

R1/Kf

)
. (4.7)

By Lemma 4.12, we have that

h

([[
y
]
Kf

]

R1/Kf

)
= f

⎛

⎜⎜
⎝

⋃

[u]Kf
∈[[y]Kf

]
R1/Kf

[u]Kf

⎞

⎟⎟
⎠ =

⋃

[u]Kf
∈[[y]Kf

]
R1/Kf

f
(
[u]Kf

)
. (4.8)

Thus, h(R1/KfY ) =
⋃

[y]Kf
∈Y h([[y]Kf

]R1/Kf
) =

⋃
[y]Kf

∈Y
⋃

[u]Kf
∈[[y]Kf

]R1/Kf
f([u]Kf

), that is,

h(R1/KfY ) =
⋃

[y]Kf
∈Y
⋃

[u]Kf
∈[[y]Kf

]R1/Kf
f([u]Kf

). By (iii), we have that for all [y]Kf
∈ Y and

all [u]Kf
∈ [[y]Kf

]R1/Kf
, f([u]Kf

) ⊆ f(R1X). Hence,

h
(
R1/KfY

)
=

⋃

[y]Kf
∈Y

⋃

[u]Kf
∈[[y]Kf

]
R1/Kf

f
(
[u]Kf

)
⊆

⋃

[y]Kf
∈Y

⋃

[u]Kf
∈[[y]Kf

]
R1/Kf

f
(
R1X

)
= f
(
R1X

)
,

(4.9)

that is, h(R1/KfY ) ⊆ f(R1X). In addition, since f is a homomorphism from (U1, R1)
to (U2, R2), it follows from Definition 3.1 that f(R1X) ⊆ R2f(X) = R2h(Y ). Therefore
h(R1/KfY ) ⊆ f(R1X) ⊆ R2h(Y ), that is, h(R1/KfY ) ⊆ R2h(Y ).

(v) By (ii), (iv), and Definition 3.1, we conclude that h is a homomorphism
(U1/Kf , R1/Kf) to (U2, R2). Since h is bijective, it follows from Definition 3.1 that h is
an isomorphism from (U1/Kf , R1/Kf) to (U2, R2). Thus, by Notation 2, we conclude that
(U1/Kf , R1/Kf) ∼= (U2, R2). This completes the proof.
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In the following, we extend Theorem 4.14 to more general cases.

Corollary 4.15. Let U1 and U2 be finite and nonempty universes, f : U1 → U2 a mapping, R1

an equivalence relation on U1, and R2 an equivalence relation on U2. If f is a homomorphism from
(U1, R1) to (U2, R2), then (U1/Kf , R1/Kf) ∼= (f(U1), R2|f(U1)).

Proof. For all X ⊆ U1, since f is a homomorphism from (U1, R1) to (U2, R2), it follows from
Definition 3.1 that f(R1X) ⊆ R2f(X) and f(R1X) ⊆ R2f(X). In addition, By Corollary 4.10,
we have that (f(U1), R2|f(U1)) is an approximation subspace of (U2, R2). Since f(X) ⊆ f(U1),

it follows from Definition 4.1 that R2f(X) = R2|f(U1)f(X) and R2f(X) = R2|f(U1)f(X). Thus

f(R1X) ⊆ R2|f(U1)f(X) and f(R1X) ⊆ R2|f(U1)f(X). We have proved that for all X ⊆ U1,

f(R1X) ⊆ R2|f(U1)f(X) and f(R1X) ⊆ R2|f(U1)f(X). Hence, by Definition 3.1, we have that f

is a homomorphism from (U1, R1) to (f(U1), R2|f(U1)). Clearly, f is a surjective mapping from
U1 to f(U1); therefore, f is an epimorphism from (U1, R1) to (f(U1), R2|f(U1)). It follows from
Theorem 4.14 that (U1/Kf , R1/Kf) ∼= (f(U1), R2|f(U1)).

Corollary 4.16. Let U1 and U2 be finite and nonempty universes, f : U1 → U2 a mapping, R1 an
equivalence relation on U1, and R2 an equivalence relation on U2. If f is a homomorphism from
(U1, R1) to (U2, R2), then R1/Kf is an equivalence relation on U1/Kf .

Proof. By Corollary 4.15, we have that (U1/Kf , R1/Kf) ∼= (f(U1), R2|f(U1)). by Lemma 4.3,
we have that R2|f(U1) is an equivalence relation on f(U1). It follows from Theorem 3.14 that
R1/Kf is an equivalence relation onU1/Kf .

In fact, R1/Kf may not be an equivalence relation on U1/Kf when f is not a ho-
momorphism from (U1, R1) to (U2, R2). The above results show that R1/Kf is an equivalence
relation on U1/Kf when f is a homomorphism from (U1, R1) to (U2, R2).

5. Conclusions
In this paper, we present the notion of the homomorphism of approximation spaces. A
homomorphism may be viewed as a special mapping between two approximation spaces.
By means of this concept, we establish the relationships between two universes. In this
way, one can make inference in one universe, based on information about another universe.
In addition, we give the notion of approximation subspaces of approximation spaces, and
investigate the properties of approximation subspaces by means of homomorphism. In the
future, we will introduce a similar notion of homomorphism into covering-based rough set
model in order to deepen understanding of this model.
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