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A simple multiscale analysis framework for heterogeneous solids based on a computational
homogenization technique is presented. The macroscopic strain is linked kinematically to the
boundary displacement of a circular or spherical representative volume which contains the
microscopic information of the material. The macroscopic stress is obtained from the energy
principle between the macroscopic scale and the microscopic scale. This new method is applied
to several standard examples to show its accuracy and consistency of the method proposed.

1. Introduction

In the computer modeling of heterogeneous materials, the length scale of interest of the
system should be taken into consideration. Though, taking the microstructure into account
will often introduce excessive computation cost. To avoid this, through homogenization
techniques, the multiscale models were invented to model the microscopic scale behavior
with reasonable accuracy and cost.

Multiscale methods can be categorized into hierarchical, semiconcurrent and concur-
rent methods [1], Figure 1. In hierarchical multiscale methods, information is passed from
the fine scale to the coarse scale but not vice versa. Computational homogenization [2] is a
classical upscaling technique. Hierarchical multiscale approaches are very efficient.
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The basic idea of semiconcurrent multiscale methods is illustrated in Figure 1(c). In
semiconcurrent multiscale methods, information is passed from the fine scale to the coarse
scale and vice versa. Semiconcurrent methods are of the same computational efficiency as
concurrent multiscale methods [3, 4]. Numerous concurrent multiscale methods [5, 6] have
been developed that can be classified into “Interface” coupling methods and “Handshake”
coupling methods. Interface coupling methods seem to be less effective for dynamic
applications as avoiding spurious wave reflections at the “artificial” interface seem to bemore
problematic.

Early studies [7–9] in this direction were focused on finding the effective material
properties and their bounds. Nevertheless, these models are restricted to limited class of
constitutive models and shapes of the constituents. Guedes and Kikuchi [10] were among
the first researchers to use the computational homogenization techniques which exploited the
flexibility of numerical methods. Application and the solution techniques to inelastic regime
and highly nonlinear cases were studied in [11].

A very interesting class of the semiconcurrent multiscale methods is referred to as FE2

[13, 14]. In this multilevel approach, a boundary value problem is solved at the microlevel
and this provides the response at the higher level. The low-level boundary value problem
is called a representative volume element (RVE) [2]; see Figure 2. Using this approach,
one can predict the mechanical behavior at the macrolevel without needing to analytically
identify the constitutive response a priori. Therefore, the overall material behavior including
nonlinearities arises from the RVE.

This method has proven to be effective in several areas such as structural stress and
damage analysis [15–20]. For nonlinear cases of RVE, in which the computational cost is
significant, Yuan and Fish [21] and Somer et al. [22] offered some solutions to improve the
computational efficiency. Some practical examples of exploiting this framework can be found
in [23–28]. The discretization of the representative volume can be made by the well-known
meshfree or finite element methods [29].

Recently, one of the hot areas of research is multiscale modeling of fracture where the
FE2 can be applied; see [30–35] for example. However it appears that there are some problems
with using the conventional rectangular cell as the RVE. The first problem is the questionable
ability of the rectangular RVE to model the edge effect as noted in [14]. This means the
methodwill not be accurate for cracks. Moreover, as it is extensively discussed in [30], to treat
the response of cracks and shear bands, neither the unit cell or the geometry can be assumed
to be periodic. In other words, when a crack touches a boundary, the displacement jump
violates the periodic boundary conditions (PBC) on that boundary. Furthermore, applying
PBC especially in three dimensions is too cumbersome. This is because when the nodes of the
opposite sides of the RVE are not aligned (and this is often the case in unstructured meshes),
one has to use projection methods to enforce the boundary conditions.

Therefore, in [30, 36, 37] a virtual unit cell was introduced to provide the energetic
consistency of the effective discontinuity. Therefore, in this paper, we propose to use a circular
(or spherical) RVE where the macroscopic scale strain is constrained to the displacement of
the circular boundary of the representative volume kinematically. This approach is similar
to the kinematically constrained microplane model. In that model, the strain tensor is
decomposed to the corresponding strain vector to obtain the corresponding stress vector [38–
41], and so forth. The constitutive relation is given between the strain vector and the stress
vector. The new RVE can be later used in crack multiscale propagation problems. However,
in this paper we only focus on the formulation of the new method and its applicability to
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Figure 1: Schematic of a (a) hierarchical, (b) concurrent, and (c) semiconcurrent multiscale methods
adopted from [12].
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Figure 2: Schematic diagram of modeling in multiple scales.

various problems other than the one-to-one comparison to the conventional rectangular RVE.
The latter will then be the subject of another paper.

The paper is arranged as follows: the governing equations are given in Section 2. The
scale transition scheme of the method proposed in this paper is given in Section 3. Some
numerical examples are discussed in Section 4. Finally, we draw conclusions of this paper in
Section 5.

2. Governing Equations

The class of multiscale solid mechanics problems of concern in this paper is characterized
by the well-known equilibrium boundary value problem at the macroscopic scale where the
constitutive relation at each point is defined by the response of a representative volume as
shown in Figure 2. The representative volume itself is modeled as a conventional continuum
with a simple constitutive law which can be defined by the response of the lower scales if
more scales are needed for the accuracy of the solution. When the microscopic structural
length scale is comparable with the macroscopic length scale, second-order homogenization
may be used, for example, [42].

Consider a bounded domain Ω ∈ Rd, where d is the dimension of the physical space
and here in this paper d = 2 unless it is stated otherwise. The extension of the proposed
method to three dimensions is straightforward. We assume that the material is heterogeneous
in the macroscopic scale and its microstructure includes inclusions and voids (Figure 2). The
structure is subjected to a set of displacement and traction boundary conditions on the disjoint
complementary parts of the boundary, that is, Γu ∩ Γt = ∅. Here we are looking for a solution
to the boundary value problem at the macroscopic and microscopic scales given by

σij,j + bi = 0, ∀x ∈ Ω,

ui = ui , ∀x ∈ Γu,

σij , nj = ti, ∀x ∈ Γt,

(2.1)

where σij , bi, ui, nj , and ti are the Cauchy stress, the body force, the displacement, the unit
normal, and the traction measured at point x, respectively, and the superimposed bar denotes
the imposed boundary conditions.
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Equivalent to the strong form of the governing equations, the equilibrium condition can be
written as the following variational form: Find ui ∈ �i, for all δui ∈ �0 such that

∫
Ω
σijδεij dΩ −

∫
Ω
biδui dΩ −

∫
Γt
tiδui dΓ = 0, (2.2)

with

�i =
{
ui | ui ∈ H1(Ω),ui = ui on Γu

}
,

δ�i =
{
δui | δui ∈ H1(Ω), δui = 0 on Γu

}
,

(2.3)

in which δεij is the variation of the strain tensor associated with the test function δui.

3. Scale Transition Using Circular Substructure

3.1. The Calculation Procedure for the Macroscopic Stress
from the Macroscopic Strain

In the context of multilevel finite element analysis, we extract the macroscopic stresses
directly by solving a local finite element problem for the circular substructure Ωs shown
in Figure 2. In the following, the script s denotes the corresponding components in the
microscopic level. The strain tensor measured at the macroscopic scale is transferred to the
displacement of the boundary Γs of the circular substructure Ωs. The displacement us

i at a
point on Γs is given by

us
i (θ) =

∫ r

0
εijnj dr ≈ rεijnj , (3.1)

where r is the radius of the substructure and εij is the strain tensor at the macroscopic scale
as shown in Figure 2. Please note that nj in (3.1) is a function of θ. The macroscopic scale and
the subscale are then kinematically constrained to each other.

The stress tensor at the macroscopic scale is constructed from the response of the
subscale. The simplest choice would be a weighted average of the stress at the subscale, that
is,

σij =
∫
Ωs

w σs
ij dΩ, (3.2)

where σij is the stress tensor at the macroscopic scale, w is a suitably chosen weight function
such that

∫
Γs
w dΓ = 1, and σs

ij is the subscale stress tensor.
Here, we propose another method based on the energy principle. According to the

principle of virtual work, the virtual work done by the stress tensor in the representative
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volume should be equal to the sum of the virtual work done by the traction on the boundary
of the substructure structure:

Vσijδεij =
∫
Γs
tsi δu

s
i dΓ. (3.3)

Here, V is the volume of the substructure, tsi is the traction on Γs and ui is the displacement
on Γs. Since the displacement is given by (3.1), that is, δus

i = rnjδεij , the macroscopic stress
tensor can be expressed as

σij =
r

V

∫
Γs
tsin

s
j dΓ. (3.4)

The boundary of the substructure may be approximated by using a shape function. If the
shape function satisfies partition of unity, the integrand of (3.4) can be rewritten as follows:

σij =
r

V

∫
Γs

∑
I

ΨIt
s
in

s
j dΓ, (3.5)

=
r

V

∑
I

∫
ΓsI

ΨIt
s
in

s
j dΓ. (3.6)

Here,
∑

I ΨI = 1 and ΓsI is a part of the boundary of the substructure associated with
node I.

∫
Γs
ΨIt

s
i is equal to the nodal force fs

Ii at node I. If the normal ns
j in (3.6) is further

approximated by the normal measured at nodes, the macroscopic stress tensor is given by

σij =
r

V

∑
I

fs
Ii n

s
Ij . (3.7)

The normal, the nodal force, and the nodal displacement of the substructure are shown in
Figure 3.

In the case of a linear elasticity, the nodal force fs
Ii is given in terms of the stiffness

matrix and the nodal displacements:

fIi =
∑
P

KIiPpuPp =
∑
P

KIiPprεpqnPq, (3.8)

in which KIiPp is the stiffness matrix of the boundary of the substructure, uPp is the nodal
displacement at node P , and nPq is the normal at node P . It is trivial to mention that
stiffnessmatrixKIiPp in (3.8) can easily be obtained by using the standard static condensation.
However, there is still a computational cost regarding the inversion of the reduced stiffness
matrix during the static condensation process.

From (3.7) and (3.8), the macroscopic stress tensor is simply given by

σij =
r2

V

∑
I

∑
P

Ks
IiPpn

s
Ijn

s
Pqεpq. (3.9)
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Figure 3: The normal, the nodal displacement, and the nodal force on the boundary of the subscale model.

By comparing (3.9) to the general elastic constitutive relation, the macroscopic modulus
tensor is given by

Cijpq =
r2

V

∑
I

∑
P

Ks
IiPpn

s
Ijn

s
Pq. (3.10)

Equation (3.9) can be extended to the case of nonlinear elasticmaterials. To do so,Ks
IiPp needs

to be interpreted as the tangential (or algorithmic) stiffness matrix:

Δσij =
r2

V

∑
I

∑
P

Ks
IiPpn

s
Ijn

s
PqΔεpq. (3.11)

3.2. The Relation of this Method with the Microplane Model

It is instructive to discuss the similarity of this method to the microplane constitutive models
developed for concretes and rocks [38, 39], and so forth. Figure 4 shows a sketch for the
concept of the microplane model. The interaction between aggregates in a representative
volume of concrete (Figure 4(a)) is modeled separately on a plane as shown in Figure 4(b).
Strain tensor εij is decomposed to the normal and tangential components on a plane defined
by normal ni:

εN = εijnjni,
εT = εijnj ti,

(3.12)

where εN and εT are the normal and tangential components and ti is the unit normal in
a tangential direction on the plane. Such a projection is made on all the planes for the
Gauss points on a unit sphere as shown in Figure 4(c). The stress vectors calculated on
the individual planes are gathered to obtain the corresponding macroscopic stress tensor
according to the principle of virtual work. Here a numerical integration on the sphere is
necessary in the process.

Although it is beneficial to work with strain and stress vectors to develop the
constitutive relation, taking into account the characteristics of the material, the constitutive
relation becomes semiphenomenological because it is not easy to consider interactions
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Figure 4: (a) The representative volume of concrete, (b) projection of strain tensor, and (c) three-
dimensional polygon for the stress integration in the microplane constitutive model.

Figure 5: An elastic plate with many pores subjected to uniaxial tension.

between different microplanes in many cases. Also, the accuracy of the constitutive behavior
depends on the order of the Gauss quadrature. So, the behavior of a microplane model is
sometimes hinged on the numerical quadrature taken for the model although it is converging
as the order of the quadrature increases [43].

The model proposed in this paper adopts the idea of the microplane model. However,
we do not need to develop a constitutive model on each microplane. Instead, the behavior
of the circular substructure to a given boundary displacement is directly calculated. The
macroscopic stress tensor is constructed without a numerical integration by using the
partition of unity of the finite element mesh as in (3.9) and (3.11).

4. Numerical Results

4.1. Plate Made of a Porous Material

Here we considered an elastic mediumwith many circular voids subjected to uniaxial tension
as shown in Figure 5. It is assumed that the constitutive relation of each material point is
completely described by Hooke’s law.

We considered two different length scales. The first length scale was the dimension
of the specimen shown in Figure 5. The width and the height were 100mm and 100mm,
respectively.
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(a) 5% porosity (b) 20% porosity

Figure 6: The von-Mises stress distribution in the circular substructure with two different porosities.

The stress at this scale was calculated from the second length scale. The second length
scale was the dimension of the circular substructure radius which is 25mm maximum. Note
that the radius of the substructure is dependent on the porosity percentage and number of
pores. The linear elastic material was used at this scale. The elastic modulus and Poisson’s
ratio were 210GPa and 0.3, respectively.

While the same elastic properties were used, various levels of the porosity from 5% to
20% were considered. The distribution of the linear elastic stress in the circular substructure
is shown in Figure 6.

The overall properties may be obtained from the classical homogenization based on
the rule of mixture. We solved this problem with the classical homogenization and the
multiscale approach proposed in this paper. In computational homogenization, the macro-
to-microtransition is achieved by enforcing the following condition:

〈F〉 =
1

VΩs

∫
Ωs

F dV. (4.1)

Here 〈F〉 can be the any homogenized macroscopic system variable such as stress σij and
F is the corresponding microscopic variable. In other words, (4.1) essentially imposes a
volumetric averaging of the system variables.
In order to analyze the convergence of the problem the normalized error in displacement and
energy are computed by:

eL2 =

∥∥uex(x) − uh(x)
∥∥
L2

‖uex(x)‖L2

=

√√√√
∫
Ω

(
uex(x) − uh(x)

)2
dΩ∫

Ω (uex(x))2dΩ
,

een =

∥∥uex(x) − uh(x)
∥∥
en

‖uex(x)‖en
=

√√√√
∫
Ω E

(
εex(x) − εh(x)

)2
dΩ∫

Ω E(εex(x))2dΩ
.

(4.2)
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Figure 7: The error in the energy and displacement norm as a response to increasing number of pores.

Figure 7 shows the normalized error of the response of the system with respect to the
reference model which is the detailed microstructure model. For a given porosity, as the
number of pores was increasing the results became almost independent of the number of
pores. Other factors such as size and geometry of the pores should not influence the result
of the numerical homogenization scheme proposed here. Therefore we also investigated the
effects of the number and size of the pores as well as the geometry of them and obtained only
marginal changes in the results.

4.2. Cantilever Beam

The next example is an elastic cantilever beam as shown in Figure 8. The length of the beam
is 48m and the height is 12m. The problem is in the plane stress condition. The beam is
loaded with a parabolic traction at the end as shown in the figure. It was assumed that
the constitutive relation of the problem should be obtained from a multiscale approach. The
representative volume element of this example is assumed as a circular cell with a hole in the
center was considered as shown in Figure 8. The substructure is not shown in Figure 8. The
radius of the cell was 1mm. The cell included a 0.5mm radius of a hole in its center. The finite
element mesh of the circular cell is shown in Figure 8. The elastic modulus and Poisson’s ratio
of the material at the microscopic scale were 210GPa and 0.3, respectively.

Here we would like to check the convergence rate of the homogenization model. This
is necessary to certify that our model does not demand extremely finemeshes to give accurate
solution with reasonable computation cost. Therefore with keeping the mesh of the circular
cell unchanged, we increase the refinement of the mesh at the macroscopic scale. The error in
the L2 norm and energy norm decreased as the mesh refinement increased; see Figure 9. The
proposed multiscale method worked more successfully than the classical homogenization
method.
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Figure 8: An elastic cantilever beam and the microscopic cell with a hole in it.
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Figure 9: Performance of the proposed multiscale method in terms of error in the energy and displacement
norm for a cantilever problem.

4.3. Cracked Plate Made of a Bimaterial

The last problem is a mode I crack problem shown in Figure 10(a). Due to symmetry, only
a quarter of the problem was modeled and the rectangle is 40m by 40m and the length of
the crack is 10mm. It was considered that the material consisted of two different materials
(labeled as 1 and 2, resp. in Figure 10(b)) and the microscopic structure could be modeled
as a cell with an inclusion. The elastic properties for the microscopic cell are E1 = 60GPa,
ν1 = 0.2, E2 = 26GPa, and ν2 = 0.2. Figure 11 shows that the energy norm and the stress
intensity factor were quickly converging to the reference value as the mesh refinement was
increasing. Here, the mesh of the cell at the microscopic scale was kept unchanged. Figure 12
shows the deformed mesh of this problem.

5. Conclusion

A new method for multiscale analysis was presented. This new method uses a circular
cell in two dimensions (or a sphere in three dimensions) as a substructure at lower scales.
The macroscopic strain tensor is projected to the boundary displacement of the cell by
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Figure 10: (a) A plate with mode I crack and (b) a circulate cell with an inclusion.
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Figure 11: The change of the stress intensity factor and the error in the energy for different element sizes
(h) at the macroscopic scale.

a kinematical constraint. This method is a generalization of the microplane model developed
for the constitutive models of concrete. The stress on the macroscopic scale is obtained from
the principal of virtual work applied between the traction and the stress of the circular
substructure. Unlike the microplane model, the numerical integration on the boundary of
the substructure is not needed. This new method is applied to several problems to show its
performance. Because of the simple nature of this method, this method can be applied to
many multiscale problems.
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Figure 12: The deformed mesh of the cracked plate, for which the displacement is exaggerated.

Acknowledgments

This project is also supported by a Korea University Grant. The financial support provided
by German research foundation (DFG), under Grants CMS-0310596, 0303902, 0408359, Rolls-
Royce Contract 0518502, Automotive Composite Consortium Contract 606-03-063L, and
AFRL/MNAC MNK-BAA-04-0001 Contract, is gratefully acknowledged, too.

References

[1] R. Gracie and T. Belytschko, “Concurrently coupled atomistic and XFEMmodels for dislocations and
cracks,” International Journal for Numerical Methods in Engineering, vol. 78, no. 3, pp. 354–378, 2009.

[2] V. Kouznetsova, Computational homogenization for the multi-scale analysis of multi-phase materials, Ph.D.
thesis, Netherlands Institute for Metals Research, Delft, The Netherlands, 2002.

[3] J. Fish, “Bridging the scales in nano engineering and science,” Journal of Nanoparticle Research, vol. 8,
no. 5, pp. 577–594, 2006.

[4] H. Talebi, C. Samaniego, E. Samaniego, and T. Rabczuk, “On the numerical stability and mass-
lumping schemes for explicit enriched meshfree methods,” International Journal for Numerical Methods
in Engineering, vol. 89, no. 8, pp. 1009–1027, 2012.

[5] R. E. Miller and E. B. Tadmor, “The Quasicontinuum Method: overview, applications and current
directions,” Journal of Computer-Aided Materials Design, vol. 9, no. 3, pp. 203–239, 2002.

[6] H. B. Dhia, “The arlequin method: a partition of models for concurrent multiscale analyses,” in
Proceedings of the Challenges in Computational Mechanics Workshop, vol. 10, p. 12, 2006.

[7] J. Qu and M. Cherkaoui, Fundamentals of Micromechanics of Solids, John Wiley & Sons, Hoboken, NJ,
USA, 2006.

[8] S. Nemat-Nasser and M. Hori, Micromechanics: Overall Properties of Heterogeneous Materials, Elsevier,
Amsterdam, The Netherland, 2nd edition, 1999.

[9] P. M. Suquet, “Local and global aspects in the mathematical theory of plasticity,” in Plasticity Today:
Modeling, Methods and Applications, A. Swaczuk and G. Bianchi, Eds., pp. 279–310, Elsevier Applied
Science Publishers, 1985.

[10] J. M. Guedes and N. Kikuchi, “Preprocessing and postprocessing for materials based on the
homogenization method with adaptive finite element methods,” Computer Methods in Applied
Mechanics and Engineering, vol. 83, no. 2, pp. 143–198, 1990.

[11] J. Fish, Q. Yu, and K. Shek, “Computational damage mechanics for composite materials based on
mathematical homogenization,” International Journal for Numerical Methods in Engineering, vol. 45, no.
11, pp. 1657–1679, 1999.



14 Journal of Applied Mathematics

[12] T. Belytschko and J. H. Song, “Coarse-graining of multiscale crack propagation,” International Journal
for Numerical Methods in Engineering, vol. 81, no. 5, pp. 537–563, 2010.

[13] K. Terada and N. Kikuchi, “Nonlinear homogenization method for practical applications,” in
Proceedings of ASME International Mechanical Engineering Congress and Exposition: Computational
Methods in Micromechanics, S. Ghosh and M. Ostoja-Starzewski, Eds., vol. AMD-212/MD-22, pp. 1–
16, 1995.

[14] F. Feyel, “A multilevel finite element method (FE2) to describe the response of highly non-linear
structures using generalized continua,” Computer Methods in Applied Mechanics and Engineering, vol.
192, no. 28–30, pp. 3233–3244, 2003.
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