
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2012, Article ID 205727, 19 pages
doi:10.1155/2012/205727

Research Article
Observer-Based Finite-Time H∞ Control of
Singular Markovian Jump Systems

Yingqi Zhang,1 Wei Cheng,1 Xiaowu Mu,2 and Xiulan Guo1

1 College of Science, Henan University of Technology, Zhengzhou 450001, China
2 Department of Mathematics, Zhengzhou University, Zhengzhou 450001, China

Correspondence should be addressed to Yingqi Zhang, zyq2018@126.com

Received 9 November 2011; Revised 27 December 2011; Accepted 4 January 2012

Academic Editor: Reinaldo Martinez Palhares

Copyright q 2012 Yingqi Zhang et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

This paper addresses the problem of finite-time H∞ control via observer-based state feedback
for a family of singular Markovian jump systems (SMJSs) with time-varying norm-bounded
disturbance. Firstly, the concepts of singular stochastic finite-time boundedness and singular
stochastic finite-time H∞ stabilization via observer-based state feedback are given. Then an
observer-based state feedback controller is designed to ensure singular stochastic finite-time H∞
stabilization via observer-based state feedback of the resulting closed-loop error dynamic SMJS.
Sufficient criteria are presented for the solvability of the problem, which can be reduced to a
feasibility problem involving linear matrix inequalities with a fixed parameter. As an auxiliary
result, we also discuss the problem of finite-time stabilization via observer-based state feedback
of a class of SMJSs and give sufficient conditions of singular stochastic finite-time stabilization
via observer-based state feedback for the class of SMJSs. Finally, illustrative examples are given to
demonstrate the validity of the proposed techniques.

1. Introduction

In practice, there exist many concerned problems which described that system state does not
exceed some bound during some time interval, for instance, large values of the state are not
acceptable in the presence of saturations [1–3]. Therefore, we need to check the unacceptable
values to see whether the system states remain within the prescribed bound in a fixed finite-
time interval. Compared with classical Lyapunov asymptotical stability, in order to deal with
these transient performances of control dynamic systems, finite-time stability or short-time
stability was introduced in the literatures [4, 5]. Applying Lyapunov function approach, some
appealing results were obtained to ensure finite-time stability, finite-time boundedness, and
finite-time stabilization of various systems including linear systems, nonlinear systems, and
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stochastic systems. For instance, Amato et al. [6] investigated the output feedback finite-time
stabilization for continuous linear systems. Zhang and An [7] considered finite-time control
problems for linear stochastic systems. Recently, Meng and Shen [8] extended the definition
of H∞ control to finite-time H∞ control for linear continuous systems, and a state feedback
controller was designed to ensure finite-time boundedness of the resulting systems and the
effect of the disturbance input on the controlled output satisfying a prescribed level. For more
details of the literature related to finite-time stability, finite-time boundedness, and finite-time
H∞ control, the reader is referred to [9–20] and the references therein.

On the other hand, singular systems referred to as descriptor systems, differential-
algebraic systems, generalized state-space systems, or semistate systems have attracted many
researchers since the class of systems have been extensively applied to deal with mechanical
systems, electric circuits, chemical process, power systems, interconnected systems, and so
on; see more practical examples in [21, 22] and the references therein. A great number of
results based on the theory of regular systems or state-space systems have been extensively
generalized to singular systemswith or without time delay, such as stability [23], stabilization
[24],H∞ control [25–29], and other issues. Meanwhile, Markovian jump systems are referred
to as a special family of hybrid systems and stochastic systems, which are very appropriate
to model plants whose parameters are subject to random abrupt changes [30]. Thus, many
attracting results and a large variety of control problems have been studied, such as stochastic
Lyapunov stability [31–33], sliding mode control [34, 35], robust control [36–40],H∞ filtering
[41–45], dissipative control [46], passive control [47], guaranteed cost control [48], tracking
control [49], and other issues, the readers are refered to [31] and the references therein. It is
pointed out that the problem of state feedback stabilization, just as was mentioned above,
requires to assume the complete access to the state vector. Practically this assumption is
not realistic for many reasons like the nonexistence of the appropriate sensors to measure
some of the states or the limitation in the control strategies. Thus, the observer-based control
and output feedback control are probably well suited in such situation for feedback control,
such as stability [31], H∞ control [50–54], passive control [55], and finite-time control
[6, 20]. However, to date, the problems of observer-based finite-time stabilization of singular
stochastic systems have not been investigated. The problems are important and challenging
in many practice applications, which motivates the main purpose of our research.

In this paper, we consider the problem of finite-time H∞ control via observer-based
state feedback of singular Markovian jump systems (SMJSs) with time-varying norm-
bounded disturbance. The results of this paper are totally different from those previous
results, although some studies on finite-time control for singular stochastic systems have
been conduced, see [18, 56, 57]. The concepts of singular stochastic finite-time boundedness
(SSFTB) and singular stochastic finite-time H∞ stabilization via observer-based state
feedback of singular stochastic systems are given. The main contribution of the paper is to
design an observer-based state feedback controller which ensures singular stochastic finite-
time H∞ stabilization via observer-based state feedback of the resulting closed-loop error
dynamic SMJS. Sufficient criterions are presented for the solvability of the problem, which
can be reduced to a feasibility problem in terms of linear matrix inequalities with a fixed
parameter. As an auxiliary result, we also investigate the problem of observer-based finite-
time stabilization via state feedback of a class of SMJSs and give sufficient conditions of
singular stochastic finite-time stabilization via observer-based state feedback for the class of
SMJSs.

The rest of this paper is organized as follows. In Section 2, the problem formulation
and some preliminaries are introduced. The results of singular stochastic finite-time H∞
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stabilization via observer-based state feedback are given for a class of SMJSs in Section 3.
Section 4 presents numerical examples to show the validity of the proposed methodology.
Some conclusions are drawn in Section 5.

Notations. Throughout the paper, R
n and R

n×m denote the sets of n component real vectors
and n × m real matrices, respectively. The superscript T stands for matrix transposition or
vector. E{·} denotes the expectation operator respective to some probability measure P. In
addition, the symbol ∗ denotes the transposed elements in the symmetric positions of a
matrix, and diag{· · · } stands for a block-diagonal matrix. λmin(P) and λmax(P) denote the
smallest and the largest eigenvalues of matrix P , respectively. Notations sup and inf denote
the supremum and infimum, respectively. Matrices, if their dimensions are not explicitly
stated, are assumed to be compatible for algebraic operations.

2. Problem Formulation

Let us consider the following continuous-time singular Markovian jump system (SMJS):

E(rt)ẋ(t) = A(rt)x(t) + B(rt)u(t) +G(rt)w(t), (2.1a)

z(t) = C(rt)x(t) +D1(rt)u(t) +D2(rt)w(t), (2.1b)

y(t) = Cy(rt)x(t), (2.1c)

where x(t) ∈ R
n is the state variable, z(t) ∈ R

l is the controlled output, y(t) ∈ R
q is the

measured output,w(t) ∈ R
p is the controlled input, z(t) ∈ R

p is the controlled output, E(rt) is
a singular matrix with rank(E(rt)) = rrt < n, {rt, t ≥ 0} is continuous-time Markov stochastic
process taking values in a finite space M := {1, 2, . . . ,N} with transition matrix Γ = (πij)N×N ,
and the transition probabilities are described as follows:

Pr
(
rt+Δt = j | rt = i

)
=

⎧
⎨

⎩

πijΔt + o(Δt) if i /= j,

1 + πiiΔt + o(Δt) if i = j,
(2.2)

where limΔ→ 0o(Δt)/Δt = 0, πij satisfies πij ≥ 0 (i /= j), and πii = −∑N
j=1,j /= i πij for all i, j ∈ M.

Moreover, the disturbance w(t) ∈ R
p satisfies the following constraint condition:

∫T

0
wT(t)w(t)dt ≤ d2, d ≥ 0, (2.3)

and the matrices A(rt), B(rt), G(rt), C(rt), D1(rt), and D2(rt) are coefficient matrices and of
appropriate dimension for all rt ∈ M.

For notational simplicity, in the sequel, for each possible rt = i, i ∈ M, a matrix K(rt)
will be denoted by Ki; for instance, A(rt) will be denoted by Ai, B(rt) by Bi, and so on.
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In this paper, we construct the following state observer and feedback controller:

Ei
˙̃x(t) = Aix̃(t) + Biu(t) +Hi

(
y(t) − ỹ(t)

)
, (2.4a)

ỹ(t) = Cyix̃(t), (2.4b)

u(t) = Kix̃(t), (2.4c)

where x̃(t) and ỹ(t) are the estimated state and output, x̃(0) is an estimated initial state, Ki

is to be a designed state feedback gain, and Hi is an observer gain to be designed. Define the
state estimated error e(t) = x(t) − x̃(t) and x(t) = [xT (t) eT(t)]T . Then the resulting closed-
loop error dynamic SMJS can be written in the form as follows:

Ei
˙̃x(t) = Aix(t) +Giw(t), (2.5a)

z(t) = Cix(t) +D2iw(t), (2.5b)

where

Ei =

[
Ei 0

∗ Ei

]

, Ai =

[
Ai + BiKi −BiKi

0 Ai −HiCyi

]

,

Gi =

[
Gi

Gi

]

, Ci =
[
Ci +D1iKi −D1iKi

]
.

(2.6)

Definition 2.1 (regular and impulse-free, see [21, 22]). The SMJS (2.1a)with u(t) = 0 is said to
be regular in time interval [0, T] if the characteristic polynomial det(sEi−Ai) is not identically
zero for all t ∈ [0, T]. The SMJS (2.1a) with u(t) = 0 is said to be impulse-free in time interval
[0, T] if deg(det(sEi −Ai)) = rank(Ei) for all t ∈ [0, T].

Definition 2.2 (singular stochastic finite-time stability (SSFTS)). The SMJS (2.1a)withw(t) = 0
is said to be SSFTSwith respect to (c1, c2, T, Ri), with c1 < c2 andRi > 0, if the stochastic system
is regular and impulse-free in time interval [0, T] and satisfies

E

{
xT (0)ET

i RiEix(0)
}
≤ c21 =⇒ E

{
xT (t)ET

i RiEix(t)
}
< c22, ∀t ∈ [0, T]. (2.7)

Definition 2.3 (singular stochastic finite-time boundedness (SSFTB)). The SMJS (2.1a) which
satisfies (2.3) is said to be SSFTB with respect to (c1, c2, T, Ri, d), with c1 < c2 and Ri > 0, if
the stochastic system is regular and impulse-free in time interval [0, T], and condition (2.7)
holds.

Remark 2.4. The definition of SSFTB is the generalization of finite-time boundedness [1].
SSFTB implies that the whole mode of the singular stochastic system is finite-time bounded
since the static mode is regular and impulse-free.

Definition 2.5 (singular stochastic finite-time stabilization via observer-based state feedback).
The error dynamic SMJS (2.5a) and (2.5b) is said to be singular stochastic finite-time
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stabilization via observer-based state feedback with respect to (c1, c2, T, Ri, d), with c1 < c2
and Ri > 0, if there exists a state feedback control law and a state observer in the form (2.4a)–
(2.4c), such that the error dynamic SMJS (2.5a) and (2.5b) is regular and impulse-free in time
interval [0, T] and satisfies the following constraint relation:

E

{
xT (0)E

T

i RiEix(0)
}
≤ c21 =⇒ E

{
xT (t)E

T

i RiEix(t)
}
< c22, ∀t ∈ [0, T]. (2.8)

Definition 2.6 (see [30, 33]). Let V (x(t), rt = i, t ≥ 0) be the stochastic function, and define its
weak infinitesimal operator J of stochastic process {(x(t), rt = i), t ≥ 0} by

JV (x(t), rt = i, t) = lim
Δt→ 0

1
Δt

{E{V (x(t + Δt), rt+Δt, t + Δt) | x(t) = x, rt = i} − V (x(t), i, t)}

= V t(x(t), i, t) + Vx(x(t), i, t)ẋ(t, i) +
N∑

j=1

πijV
(
x(t), j, t

)
.

(2.9)

Definition 2.7 (singular stochastic finite-time H∞ stabilization via observer-based state
feedback). The closed-loop error dynamic SMJS (2.5a) and (2.5b) is said to be singular
stochastic finite-time H∞ stabilization via observer-based state feedback with respect to
(c1, c2, T, Ri, γ, d), with c1 < c2 and Ri > 0, if there exists a state observer and feedback
controller in the form (2.4a)–(2.4c), such that the error dynamic SMJS (2.5a) and (2.5b) is
SSFTB with respect to (c1, c2, T , Ri, d), and under the zero-initial condition, the controlled
output z satisfies

E

{∫T

0
zT (t)z(t)dt

}

< γ2E

{∫T

0
wT(t)w(t)dt

}

, (2.10)

for any nonzero w(t)which satisfies (2.3), where γ is a prescribed positive scalar.
Themain objective of this paper being to concentrate on designing a state observer and

feedback controller of the form (2.4a)–(2.4c) that ensures singular stochastic finite-time H∞
stabilization via observer-based state feedback of the error dynamic SMJS (2.5a) and (2.5b),
we require the following lemmas.

Lemma 2.8 (Schur complement lemma, see [57, 58]). The linear matrix inequality S =
[
S11 S12
∗ S22

]
<

0 is equivalent to S22 < 0 and S11 − S12S
−1
22S

T
12 < 0 with S11 = ST

11 and S22 = ST
22.

Lemma 2.9 (see [57]). The following items are true.
(i) Assume that rank(E) = r, then there exist two orthogonal matrices U and V such that E

has the decomposition as

E = U

[
Σr 0

∗ 0

]

V T = U

[
Ir 0

∗ 0

]

VT , (2.11)

where Σr = diag{δ1, δ1, . . . , δr} with δk > 0 for all k = 1, 2, . . . , r. Partition U = [U1 U2], V =
[V1 V2], and V = [V1Σr V2] with EV2 = 0 and UT

2E = 0.
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(ii) If P satisfies

EPT = PET ≥ 0, (2.12)

then P̃ = UTPV withU and V satisfying (2.11) if and only if

P̃ =

[
P11 P12

0 P22

]

, (2.13)

with P11 ≥ 0 ∈ R
r×r . In addition, when P is nonsingular, one has P11 > 0 and det(P22)/= 0.

Furthermore, P satisfying (2.12) can be parameterized as

P = EV−TXV−1 +UZVT
2 , (2.14)

where X = diag{P11,Ψ}, Z = [PT
12 PT

22]
T , and Ψ ∈ R

(n−r)×(n−r) is an arbitrary parameter matrix.
(iii) If P is a nonsingular matrix, R andΨ are two symmetric positive definite matrices, P and

E satisfy (2.12), X is a diagonal matrix from (2.14), and the following equality holds:

P−1E = ETR1/2SR1/2E. (2.15)

Then the symmetric positive definite matrix S = R−1/2UX−1UTR−1/2 is a solution of (2.15).

3. Main Results

In this section, LMI conditions are established to design a state observer and feedback
controller that guarantees the error dynamic SMJS of the class we are considering is singular
stochastic finite-timeH∞ stabilization via observer-based state feedback.

Theorem 3.1. The error dynamic SMJS (2.5a) and (2.5b) is singular stochastic finite-time
stabilization via observer-based state feedback with respect to (c1, c2, T, Ri, d) if there exist positive
scalars α, c2, a set of mode-dependent nonsingular matrices {Pi, i ∈ M}, and sets of mode-dependent
symmetric positive-definite matrices {Si, i ∈ M}, {Θi, i ∈ M}, and for all i ∈ M, such that the
following inequalities hold:

PiE
T

i = EiP
T

i ≥ 0, (3.1a)

⎡

⎢
⎣
AiP

T

i + PiA
T

i +
N∑

j=1

πijP iP
−1
j EjP

T

i − αEiP
T

i Gi

∗ −Θi

⎤

⎥
⎦ < 0, (3.1b)

P
−1
i Ei = E

T

i R
1/2
i SiR

1/2
i Ei, (3.1c)

λ1c
2
1 + λ2d

2 < c22λ1e
−αT , (3.1d)
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where λ1 = supi∈M{λmax(Si)}, λ1 = infi∈M{λmin(Si)}, and λ2 = supi∈M
{λmax(Θi)}.

Proof. Firstly, we prove that the error dynamic SMJS (2.5a) and (2.5b) is regular and impulse-
free in time interval [0, T]. Applying Lemma 2.8, condition (3.1b) implies

AiP
T

i + PiA
T

i + (πii − α)EiP
T

i < −
N∑

j=1,j /= i

πijP iP
−1
j EjP

T

i ≤ 0. (3.2)

Now, there exist two orthogonal matrices Ui and V i such that Ei has the decomposition as

Ei = Ui

[
Σri 0

∗ 0

]

V
T

i = Ui

[
Iri 0

∗ 0

]

VT

i , (3.3)

where Σri = diag{δi1, δi2, . . . , δiri
} with δk > 0 for all k = 1, 2, . . . , ri. Partition Ui = [Ui1 Ui2],

V i = [V i1 V i2], and Vi = [V i1Σr V i2] with EiV i2 = 0 and U
T

i2Ei = 0. Denote

U
T

i AiV
−T
i =

⎡

⎣
A11i A12i

A21i A22i

⎤

⎦, U
T

i P iVi =

⎡

⎣
P 11i P 12i

P 21i P 22i

⎤

⎦. (3.4)

Noting that condition (3.1a) and Pi is a nonsingular matrix, by Lemma 2.9, we have P 21i = 0

and det(P 22i)/= 0. Before and after multiplying (3.2) byU
T

i andUi, respectively, this results in
that the following matrix inequality holds:

⎡

⎣
� �

� A22iP
T

22i + P 22iA
T

22i

⎤

⎦ < 0, (3.5)

where the star� will not be used in the following discussion. By Lemma 2.8, we haveA22iP
T

22i+

P 22iA
T

22i < 0. Therefore, A22i is nonsingular, which implies that the error dynamic SMJS (2.5a)
and (2.5b) is regular and impulse-free in time interval [0, T].

For the given mode-dependent nonsingular matrix Pi, let us consider the following
quadratic function as:

V (x(t), i) = xT (t)P
−1
i Eix(t). (3.6)

Computing the weak infinitesimal operator J emanating from the point (x, i) at time t along
the solution of error dynamic SMJS (2.5a) and (2.5b) and noting the condition (3.1a), we
obtain

JV (x(t), i) = ξT (t)

⎡

⎢
⎣
P
−1
i Ai +A

T

i P
−T
i +

N∑

j=1

πijP
−1
j Ej P

−1
i Gi

∗ 0

⎤

⎥
⎦ξ(t), (3.7)
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where ξ(t) = [xT (t), wT (t)]T . Before and after multiplying (3.1b) by diag{P−1
i , I} and

diag{P−T
i , I}, respectively, this results in the following matrix inequality

⎡

⎢
⎣
P
−1
i Ai +A

T

i P
−T
i +

N∑

j=1

πijP
−1
j Ej − αP

−1
i Ei P

−1
i Gi

∗ −Θi

⎤

⎥
⎦ < 0. (3.8)

From (3.7) and (3.8), we can obtain

JV (x(t), i) < αV (x(t), i) +wT (t)Θiw(t). (3.9)

Further, (3.9) can be rewritten as

E
{
J
[
e−αtV (x(t), i)

]}
< E

{
e−αtwT (t)Θiw(t)

}
. (3.10)

Integrating (3.10) from 0 to t, with t ∈ [0, T], we obtain

e−αtE{V (x(t), i)} < E{V (x(0), i = r0)} +
∫ t

0
E

{
e−ατwT (τ)Θiw(τ)

}
dτ. (3.11)

Noting α ≥ 0, t ∈ [0, T], and condition (3.1c), we have

E

{
xT (t)P

−1
i Eix(t)

}
= E{V (x(t), i)}

< eαt
{

E{V (x(0), i = r0)} +
∫ t

0
E

{
e−ατwT (τ)Θiw(τ)

}
dτ

}

≤ eαt
(
λ1c

2
1 + λ2d

2
)
.

(3.12)

Taking into account that

E

{
xT (t)P

−1
i Eix(t)

}
= E

{
xT (t)E

T

i R
1/2
i SiR

1/2
i Eix(t)

}

≥ λ1E
{
xT (t)E

T

i RiEix(t)
}
,

(3.13)

we obtain

E

{
xT (t)E

T

i RiEix(t)
}
< eαT

λ1c
2
1 + λ2d

2

λ1
. (3.14)

Therefore, it follows that condition (3.1d) implies E{xT (t)E
T

i RiEix(t)} < c22 for all t ∈ [0, T].
This completes the proof of the theorem.
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Theorem 3.2. The error dynamic SMJS (2.5a) and (2.5b) is singular stochastic finite-time H∞
stabilization via observer-based state feedback with respect to (c1, c2, T, Ri, γ, d) if there exist positive
scalars α, c2, γ , a set of mode-dependent nonsingular matrices {Pi, i ∈ M}, and a set of mode-
dependent symmetric positive-definite matrices {Si, i ∈ M}, and for all i ∈ M, such that (3.1a),
(3.1c), and the following inequalities:

⎡

⎣Ξi + PiC
T

i CiP
T

i P iC
T

i D2i +Gi

∗ −γ2e−αTI +DT
2iD2i

⎤

⎦ < 0, (3.15a)

λ1c
2
1e

αT + γ2d2 < c22λ1 (3.15b)

hold, where Ξi = AiP
T

i + PiA
T

i +
∑N

j=1 πijP iP
−1
j EjP

T

i − αEiP
T

i .

Proof. Note that

⎡

⎣PiC
T

i CiP
T

i P iC
T

i D2i

∗ DT
2iD2i

⎤

⎦ =

⎡

⎣PiC
T

i

DT
2i

⎤

⎦
[
CiP

T

i D2i

]
≥ 0. (3.16)

Thus, condition (3.15a) implies that

⎡

⎢
⎣
AiP

T

i + PiA
T

i +
N∑

j=1

πijP iP
−1
j EjP

T

i − αEiP
T

i Gi

∗ −γ2e−αTI

⎤

⎥
⎦ < 0. (3.17)

Let Θi = −γ2e−αTI for all i ∈ M, by Theorem 3.1, conditions (3.1a), (3.1c), (3.15b), and (3.17)
can guarantee that the error dynamic SMJS (2.5a) and (2.5b) is singular stochastic finite-time
stabilization via observer-based state feedback with respect to (c1, c2, T, Ri, d). Therefore, we
only need to prove that the constraint relation (2.10) holds. Let us choose the Lyapunov-
Krasovskii function V (x(t), i) in the form (3.6) in Theorem 3.1 and noting (3.7) and (3.15a),
we obtain

JV (x(t), i) < αV (x(t), i) + γ2e−αTwT (t)w(t) − zT (t)z(t). (3.18)

Further, (3.18) can be represented as

J
[
e−αtV (x(t), i)

]
< e−αt

[
γ2e−αTwT (t)w(t) − zT (t)z(t)

]
. (3.19)

Integrating (3.19) from 0 to T and noting that under-zero initial condition, we have

∫T

0
e−αt

[
zT (t)z(t) − γ2e−αTwT (t)w(t)

]
dt < −

∫T

0
J
[
e−αtV (x(t), i)

]
dt ≤ V (x(0), r0) = 0. (3.20)
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Using the Dynkin formula, it results that

E

{∫T

0
e−αt

[
zT (t)z(t) − γ2e−αTwT (t)w(t)

]
wt

}

< 0. (3.21)

Thus, for all t ∈ [0, T] and under-zero initial condition, we have

E

{∫T

0
zT (t)z(t)dt

}

≤ eαTE

{∫T

0
e−αtzT (t)z(t)dt

}

< eαTE

{∫T

0
γ2e−α(t+T)wT(t)w(t)dt

}

≤ γ2E

{∫T

0
wT (t)w(t)dt

}

.

(3.22)

This completes the proof of the theorem.

Let Pi = diag{Pi, Pi}, Si = diag{Si, Si}, and Ri = diag{Ri, Ri}, then the following
theorem gives LMI conditions to ensure singular stochastic finite-time H∞ stabilization via
observer-based state feedback of the error dynamic SMJS (2.5a) and (2.5b).

Theorem 3.3. There exist a state feedback controller u(t) = Kix̃(t) with Ki = YiP
−T
i and a state

observerHi = −PiC
T
yi such that the error dynamic SMJS (2.5a) and (2.5b) is singular stochastic finite-

timeH∞ stabilization via observer-based state feedback with respect to (c1, c2, T, Ri, γ, d) if there exist
positive scalars α, c2, γ, σ1, and sets of mode-dependent symmetric positive-definite matrices {Xi, i ∈
M}, {Φi, i ∈ M}, sets of mode-dependent matrices {Yi, i ∈ M}, {Zi, i ∈ M}, and for all rt = i ∈ M,
such that the following inequalities hold:

0 ≤ PiE
T
i = EiP

T
i = EiV−T

i XiV−1
i ET

i ≤ Φi, (3.23a)
[
Π11i Π12i

∗ Π22i

]

< 0, (3.23b)

σ1R
−1
i < UiXiU

T
i < R−1

i , (3.23c)
[
e−αT

(−c22 + γ2d2) c1

∗ −σ1

]

< 0, (3.23d)
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where

Π11i =

⎡

⎢
⎢
⎣

L1(Pi, Yi) −BiYi Gi

∗ L2(Pi, Yi) Gi

∗ ∗ −γ2e−αTI

⎤

⎥
⎥
⎦,

Π12i =

⎡

⎢
⎢
⎣

PiC
T
i + YT

i D
T
1i 0 Υi 0

−YT
i D

T
1i PiC

T
yi 0 Υi

DT
2i 0 0 0

⎤

⎥
⎥
⎦,

Π22i = −diag
{
I,
I

2
,Wi,Wi

}
,

L1(Pi, Yi) = PiA
T
i +AiP

T
i + BiYi + YT

i B
T
i + (πii − α)EiP

T
i ,

L2(Pi, Yi) = PiA
T
i +AiP

T
i + (πii − α)EiP

T
i ,

Υi =
[√

πi1Pi, . . . ,
√
πi(i−1)Pi,

√
πi(i+1)Pi, . . . ,

√
πiNPi

]
,

Wi = diag
{
PT
1 + P1 −Φ1, . . . , P

T
i−1 + Pi−1 −Φi−1, PT

i+1 + Pi+1 −Φi+1, . . . , P
T
N + PN −ΦN

}
.

(3.24)

In addition, the form of Pi = EiV−T
i XiV−1

i +UiZiV
T
i2 is from (3.36).

Proof. We firstly prove that condition (3.23b) implies condition (3.15a). Let Pi = diag{Pi, Pi},
Si = diag{Si, Si}, and Ri = diag{Ri, Ri}, then conditions (3.1a), (3.1c), and (3.1d) are
equivalent to

PiE
T
i = EiP

T
i ≥ 0, (3.25a)

P−1
i Ei = ET

i R
1/2
i SiR

1/2
i Ei, (3.25b)

κ1c
2
1e

αT + γ2d2 < c22κ1, (3.25c)

where κ1 = supi∈M{λmax(Si)} and κ1 = infi∈M{λmin(Si)}. By condition (3.23a), we have

P−1
j Ej ≤ P−1

j ΦjP
−T
j , ∀j ∈ M. (3.26)

Thus, the inequality

N∑

j=1,j /= i

πijPiP
−1
j EjP

T
i ≤

N∑

j=1,j /= i

πijPiP
−1
j ΦjP

−T
j PT

i

≤ ΥiV
−1
i ΥT

i

(3.27)
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holds, where

Υi = [
√
πi,1Pi, . . . ,

√
πi,i−1Pi,

√
πi,i+1Pi, . . . ,

√
πi,NPi],

Vi = diag
{
PT
1 Φ

−1
1 P1, . . . , P

T
i−1Φ

−1
i−1Pi−1, PT

i+1Φ
−1
i+1Pi+1, . . . , P

T
NΦ−1

NPN

}
.

(3.28)

Noting that the inequality

PT
j Φ

−1
j Pj ≥ PT

j + Pj −Φj (3.29)

holds for each j ∈ M, thus,

N∑

j=1,j /= i

πijPiP
−1
j EjP

T
i ≤ ΥiW

−1
i ΥT

i , (3.30)

whereWi = diag{PT
1 + P1 −Φ1, . . . , P

T
i−1 + Pi−1 −Φi−1, PT

i+1 + Pi+1 −Φi+1, . . . , P
T
N + PN −ΦN}. Let

Υi = diag{Υi,Υi} and Wi = diag{Wi,Wi}, then a sufficient condition for (3.15a) to guarantee
is that

⎡

⎣Θi + ΥiW
−1
i Υ

T

i + PiC
T

i CiP
T

i P iC
T

i D2i +Gi

∗ −γ2e−αTI +DT
2iD2i

⎤

⎦ < 0, (3.31)

where Θi = AiP
T

i + PiA
T

i + (πii − α)EiP
T

i . Noting the forms of Ai, Bi, Ci, and Gi, then the
inequality (3.31) is equivalent to the following:

⎡

⎢⎢⎢⎢⎢
⎣

Λ11i −BiKiP
T
i Gi PiC

T
i + PiK

T
i D

T
1i

∗ Λ22i Gi −PiK
T
i D

T
1i

∗ ∗ −γ2e−αTI DT
2i

∗ ∗ ∗ −I

⎤

⎥⎥⎥⎥⎥
⎦

< 0, (3.32)

where

Λ11i = PiA
T
i +AiP

T
i + BiKiP

T
i + PiK

T
i B

T
i + ΥiW

−1
i ΥT

i + (πii − α)EiP
T
i ,

Λ22i = PiA
T
i +AiP

T
i −HiCyiP

T
i − PiC

T
yiH

T
i + ΥiW

−1
i ΥT

i + (πii − α)EiP
T
i .

(3.33)

Let Hi = −PiC
T
yi, we obtain

Λ22i = PiA
T
i +AiP

T
i + 2PiC

T
yiCyiP

T
i + ΥiW

−1
i ΥT

i + (πii − α)EiP
T
i . (3.34)

Letting Yi = KiP
T
i and applying Lemma 2.8, it follows that (3.32) is equivalent to (3.23b).
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Noting that Pi is nonsingular matrix, by Lemma 2.9, there exist two orthogonal
matrices Ui and Vi, such that Ei has the decomposition as

Ei = Ui

[
Σri 0

∗ 0

]

V T
i = Ui

[
Iri 0

∗ 0

]

VT
i , (3.35)

where Σri = diag{δi1, δi1, . . . , δiri} with δik > 0 for all k = 1, 2, . . . , ri. Partition Ui = [Ui1 Ui2],
Vi = [Vi1 Vi2], and Vi = [Vi1Σri Vi2] with EiVi2 = 0 and UT

i2Ei = 0. Let P̃i = UT
i PiVi, from

(3.23a), P̃i is of the following form
[
P11i P12i
0 P22i

]
, and Pi can be expressed as

Pi = EiV−T
i XiV−1

i +UiZiV
T
i2 , (3.36)

where Zi = [PT
12i PT

22i]
T and Xi = diag{P11i,Ψi} with a parameter matrix Ψi. If we choose Ψi

as a symmetric positive definite matrix, then Xi is a symmetric positive definite matrix. Thus,
Si = R−1/2

i UiX
−1
i UT

i R
−1/2
i is a solution of (3.25b), and Pi satisfies PiE

T
i = EiP

T
i = EiV−T

i XiV−1
i ET

i .
Let I < Si < σ−1

1 I, then it is easy to check that conditions (3.23c) and (3.23d) can
guarantee that conditions (3.25c) hold. This completes the proof of the theorem.

Corollary 3.4. There exist a state feedback controller u(t) = Kix̃(t) with Ki = YiP
−T
i and a state

observer Hi = −PiC
T
yi such that the error dynamic SMJS (2.5a) is singular stochastic finite-time

stabilization via observer-based state feedback with respect to (c1, c2, T, Ri, d) if there exist positive
scalars α, c2, σ1, σ2, and sets of mode-dependent symmetric positive-definite matrices {Xi, i ∈ M},
{Φi, i ∈ M}, {Θi, i ∈ M}, sets of mode-dependent matrices {Yi, i ∈ M}, {Zi, i ∈ M}, and for all
rt = i ∈ M, such that the following inequalities hold:

0 ≤ PiE
T
i = EiP

T
i = EiV−T

i XiV−1
i ET

i ≤ Φi, (3.37a)
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

L1(Pi, Yi) −BiYi Gi 0 Υi 0

∗ L2(Pi, Yi) Gi PiC
T
yi 0 Υi

∗ ∗ −Θi 0 0 0

∗ ∗ ∗ − I
2

0 0

∗ ∗ ∗ ∗ −Wi 0

∗ ∗ ∗ ∗ ∗ −Wi

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0, (3.37b)

σ1R
−1
i < UiXiU

T
i < R−1

i , 0 < Θi < σ2I, (3.37c)
[−e−αTc22 + σ2d

2 c1

∗ −σ1

]

< 0, (3.37d)

where L1(Pi, Yi), L2(Pi, Yi),Υi,Wi, and Pi are the same as Theorem 3.3.
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Remark 3.5. The feasibility of conditions stated in Theorem 3.3 and Corollary 3.4 can be
turned into the following LMIs-based feasibility problem with a parameter α, respectively:

min
(
β + ρ

)

Xi, Yi, Zi,Φi, σ1

s.t. (3.23a)–(3.23d) with β = c22, ρ = γ2,

(3.38)

min β

Xi, Yi, Zi,Φi,Θi, σ1, σ2

s.t. (3.37a)–(3.37d) with β = c22.

(3.39)

Furthermore, we can also find the parameter α by an unconstrained nonlinear optimization
approach, in which a locally convergent solution can be obtained by using the program
fminsearch in the optimization toolbox of Matlab.

Remark 3.6. If we can find feasible solution with parameter α = 0, by the above discussion,
we can obtain the designed state observer, and state feedback controller cannot only ensure
SSFTB and stochastic stabilization of the error dynamic SMJS (2.5a) and (2.5b) but also the
effect of the disturbance input of the disturbance input on the controlled output satisfying
‖Twz‖ < γ for the error dynamic SMJS.

4. Numerical Examples

In this section, we present numerical examples to illustrate the proposed methods.

Example 4.1. To show the results of singular stochastic finite-time H∞ stabilization via
observer-based state feedback of the error dynamic SMJS (2.5a) and (2.5b), consider a two-
mode SMJS (2.1a)–(2.1c)with parameters as follows:

(i)mode no. 1:

E1 =

[
1 0

0 0

]

, A1 =

[−1 1.5

2.2 −3

]

, B1 =

[−1 0.2

0.5 −0.1

]

, G1 =

[
0.1

0.1

]

,

C1 =
[
1 −0.3], D11 =

[
0.5 −0.6], D21 =

[−0.3], Cy1 =
[
0.6 −0.6],

(4.1)

mode no. 2:

E2 =

[
1 0

0 0

]

, A2 =

[−0.5 1.2

1.6 −1.5

]

, B2 =

[−1 2

0.5 −1

]

, G2 =

[
0.2

−0.1

]

,

C2 =
[
1 −0.2], D12 =

[−0.8 0.6
]
, D22 =

[−0.4], Cy2 =
[
0.2 0.4

]
.

(4.2)

In addition, the transition rate matrix is described by Γ =
[ −0.5 0.5

0.6 −0.6
]
.
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Then, we choose R1 = R2 = I2, T = 2, d = 2, c1 = 1, and α = 2, and Theorem 3.3
yields γ = 3.0073, c2 = 10.7667, and

X1 =

[
0.9982 0.0000

0.0000 0.8569

]

, Y1 =

[
0.2129 −0.1927
0.6038 −0.2995

]

, Z1 =

[
0.9166

1.0377

]

,

X2 =

[
0.6857 −0.0000
−0.0000 0.8569

]

, Y2 =

[
0.5051 0.0344

0.1119 0.2116

]

, Z2 =

[−0.1895
0.8802

]

,

Φ1 =

[
1.0041 −0.0333
−0.0333 0.2897

]

, Φ2 =

[
0.8400 −0.2934
−0.2934 0.6147

]

, σ1 = 0.6852.

(4.3)

This also gives the following gains:

K1 =

[
0.3838 −0.1857
0.8700 −0.2886

]

, H1 =

[−0.0490
0.6226

]

,

K2 =

[
0.7366 0.0401

0.1632 0.2470

]

, H2 =

[−0.5663
−0.4151

]

.

(4.4)

Moreover, by Theorem 3.3, the optimal bound with minimum value of c22 + γ2 relies
on parameter α. Let R1 = R2 = I2, T = 2, d = 2, and c1 = 1, then we can find feasible
solution when 1.27 ≤ α ≤ 10.11. Figure 1 shows the optimal value with a different value
of α. Furthermore, by using the program fminsearch in the optimization toolbox of Matlab
starting at α = 2, the locally convergent solution can be derived as

K1 =

[
0.3251 −0.1199
0.5985 −0.1072

]

, H1 =

[−0.1564
0.4356

]

,

K2 =

[
1.1810 −0.1137
0.6294 −0.0173

]

, H2 =

[−0.4956
−0.2904

]

,

(4.5)

with α = 1.7043 and the optimal values γ = 2.5572 and c2 = 9.7515.

Remark 4.2. To show the results of singular stochastic finite-time stabilization via observer-
based state feedback of the error dynamic SMJS (2.5a), consider a two-mode SMJS (2.1a) and
(2.1c) with parameters that the matrical variables and the transition rate matrix are the same
as the above example. Let R(1) = R(2) = I2, T = 2, d = 2, and c1 = 1, by Corollary 3.4,
the optimal bound with minimum value of c22 relies on the parameter α. We can find feasible
solution when 1.26 ≤ α ≤ 10.35. Figure 2 shows the optimal value with different value of α.
Then using the program fminsearch in the optimization toolbox of Matlab starting at α = 2,
we can obtain the locally convergent solution c2 = 9.7037 with α = 1.7001.
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Figure 1: The local optimal bound of γ and c2.
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Figure 2: The local optimal bound of c2.

Example 4.3. To show SSFTB and stochastic stabilization of the error dynamic SMJS (2.5a)
and (2.5b) and the effect of the disturbance input of the disturbance input on the controlled
output satisfying ‖Twz‖ < γ for the error dynamic SMJS, let

A1 =

[ −4 1.45

−2.5 −3.2

]

, A2 =

[−2.2 −1.45
−1 −1.5

]

, (4.6)

and other matrical variables and the transition rate matrix are the same as Example 4.1.
Then, let R1 = R2 = I2, d = 2, and c1 = 1. By Theorem 3.3, we can find the feasible

solution when α = 0. Noting that when α = 0, Theorem 3.3 yields the optimal value γ = 0.4001
and c2 = 1.2817. Thus, the above error dynamic SMJS is stochastically stabilizable, and the
effect of the disturbance input of the disturbance input on the controlled output satisfies
‖Twz‖ < 0.4001.
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5. Conclusions

This paper investigates the problem of finite-time H∞ control via observer-based state
feedback for a family of SMJSs with time-varying norm-bounded disturbance. An observer-
based state feedback controller is designed which ensures singular stochastic finite-time H∞
stabilization via observer-based state feedback of the resulting closed-loop error dynamic
SMJS. Sufficient criterions are presented for the solvability of the problem, which can be
reduced to a feasibility problem in the form of linear matrix inequalities with a fixed pa-
rameter. In addition, we also give the problem of finite-time stabilization via observer-based
state feedback of a class of SMJSs and present sufficient conditions of singular stochastic
finite-time stabilization via observer-based state feedback for the class of SMJSs. Numerical
examples are also given to show the validity of the proposed methodology.
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