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We propose an approach to enhance the performance of a diagonal variant of secant method for
solving large-scale systems of nonlinear equations. In this approach, we consider diagonal secant
method using data from two preceding steps rather than a single step derived using weak secant
equation to improve the updated approximate Jacobian in diagonal form. The numerical results
verify that the proposed approach is a clear enhancement in numerical performance.

1. Introduction

Solving systems of nonlinear equations is becoming more essential in the analysis of complex
problems in many research areas. The problem considered is to find the solution of nonlinear
equations:

F(x) = 0, (1.1)

where F =: Rn → Rn is continuously differentiable in an open neighborhood Φ ⊂ Rn

of a solution x∗ = (x∗
1, . . . , x

∗
n) of the system (1.1). We assume that there exists x∗ with

F(x∗) = 0 and F ′(x∗)/= 0, where F ′(xk) is the Jacobian of F at xk for which it is assumed
to be locally Lipschitz continuous at x∗. The prominent method for finding the solution to
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(1.1) is the Newton’s method which generates a sequence of iterates {xk} from a given initial
guess x0 via

xk+1 = xk −
(
F ′(xk)

)−1
F(xk), (1.2)

where k = 0, 1, 2 . . .. However, Newton’s method requires the computation of the matrix en-
tailing the first-order derivatives of the systems. In practice, computations of some functions
derivatives are quite costly, and sometimes they are not available or could not be done
precisely. In this case, Newton’s method cannot be used directly.

It is imperative to mention that some efforts have been already carried out in order to
eliminate the well-known shortcomings of Newton’s method for solving systems of nonlinear
equations, particularly large-scale systems. These so-called revised Newton-type methods
include Chord-Newton method, inexact Newton’s method, quasi-Newton’s method, and so
forth (e.g., see [1–4]). On the other hand, most of these variants of Newton’s method still
have some shortcomings as Newton’s counterpart. For example, Broyden’s method [5] and
Chord’s Newton’s method need to store an n × n matrix, and their floating points operations
are O(n2).

To deal with these disadvantages, a diagonally Newton’s method has been suggested
by Leong et al. [6] by approximating the Jacobian matrix into nonsingular diagonal matrix
and updated in every iteration. Incorporating this updating strategy, Leong et al. [6], based
upon the weak secant equation of Denis and Wolkonicz [7], showed that their algorithm is
appreciably cheaper than Newton’s method and some of its variants. It is worth to report
that, they employ a standard one-step two-point approach in Jacobian approximation, which
is commonly used by most Newton-like methods. In contrast, this paper presents a new
diagonal-updating Newton’s method by extending the procedure of [6] and employs a two-
step multipoint scheme to increase the accuracy of the approximation of the Jacobian. We
organize the rest of this paper as follows. In the next section, we present the details of our
method. Some numerical results are reported in Section 3. Finally, conclusions are made in
Section 4.

2. Two-Step Diagonal Approximation

Here, we define our new diagonal variant of Newton’s method which generates a sequence
of points {xk} via

xk+1 = xk −Q−1
k F(xk), (2.1)

where Qk is a diagonal approximation of the Jacobian matrix updated in each iteration.
Our plan is to build a matrix Qk through diagonal updating scheme such that Qk is a
good approximation of the Jacobian in some senses. For this purpose, we make use of an
interpolating curve in the variable space to develop a weak secant equation which is derived
initially by Dennis andWolkowicz [7]. This is made possible by considering some of the most
successful two-step methods (see [8–11] for more detail). Through integrating this two-step
information, we can present an improved weak secant equation as follows:

(sk − αksk−1)TQk+1(sk − αksk−1) = (sk − αksk−1)T
(
yk − αkyk−1

)
. (2.2)
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By letting ρk = sk − αksk−1 and μk = yk − αkyk−1 in (2.2), we have

ρTkQkρk = ρTkμk. (2.3)

Since we used information from the last two steps instead of one previous step in (2.2) and
(2.3), consequently we require to build an interpolating quadratic curves x(ν) and y(ν),
where x(ν) interpolates the last two preceding iterates xk−1 and xk, and y(ν) interpolates
the last two preceding function evaluation Fk−1 and Fk (which are assumed to be available).

Using the approach introduced in [8], we can determine the value of αk in (2.2) by
computing the values of ν0, ν1, and ν2. If ν2 = 0, {νj}2j=0 can be computed as follows:

−ν1 = ν2 − ν1

= ‖x(ν2) − x(ν1)‖Qk

= ‖xk+1 − xk‖Qk

= ‖sk‖Qk

=
(
sTkQksk

)1/2
,

(2.4)

−ν0 = ν2 − ν0

= ‖x(ν2) − x(ν0)‖Qk

= ‖xk+1 − xk−1‖Qk

= ‖sk + sk−1‖Qk

=
(
(sk + sk−1)TQk(sk + sk−1)

)1/2
.

(2.5)

Let us define β by

β =
ν2 − ν0
ν1 − ν0

, (2.6)

then ρk and μk are give as

ρk = sk −
β2

1 + 2β
sk−1, (2.7)

μk = yk −
β2

1 + 2β
yk−1, (2.8)

that is, α in (2.4) is given by α = β2/(1 + 2β).
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Assume that Qk is a nonsingular diagonal matrix, the updated version of Qk, that is,
Qk+1 is then defined by

Qk+1 = Qk + Λk, (2.9)

where Λk is the deviation between Qk and Qk+1 which is also a diagonal matrix. To preserve
accurate Jacobian approximation, we updateQk+1 in such a way that the following condition
is satisfied:

ρTk (Qk+1)ρk = ρTkμk. (2.10)

We proceed by controlling the growth error of Λk through minimizing its size under the
Frobenius norm, such that (2.10) holds. Consequently we consider the following problem:

min
Λ(i)∈R

1
2

n∑

i=1

(
Λ(i)

k

)2

s.t
n∑

i=1

Λ(i)
k

(
ρ
(i)
k

)2
= ρTkμk − ρTkQkρk,

(2.11)

where Λ(i)
k
; i = 1, 2, . . . , n are the diagonal elements of Λk and ρ

(i)
k
; i = 1, 2, . . . , n are the

components of vector ρk.
In view of the fact that, the objective function in (2.11) is convex, and the feasible

set is also convex, then (2.11) has an unique solution. Hence its Lagrangian function can be
expressed as follows:

L(Λk, λ) =
1
2

n∑

i=1

(
Λ(i)

k

)2
+ λ

(
n∑

i=1

Λ(i)
k

(
ρ
(i)
k

)2 − ρTkμk + ρTkQkρk

)

, (2.12)

where λ is the Lagrangian multiplier associated with the constraint.
Taking the partial derivative of (2.12) with respect to each component of Λk then set

them equal to zero, multiply the relation by (ρ(i)
k
)2 and sum them all together, yields

Λ(i)
k

= −λ
(
ρ
(i)
k

)2
, (2.13)

n∑

i=1

Λ(i)
k

(
ρ
(i)
k

)2
= −λ

n∑

i=1

(
ρ
(i)
k

)4
, for each i = 1, 2, . . . , n. (2.14)

Using (2.14) and the constraint, we obtain after some simplifications

λ = −ρ
T
kμk − ρTkQkρk
∑n

i=1

(
ρ
(i)
k

)4 . (2.15)
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Next, by substituting (2.15) into (2.13) and performing some little algebra, we obtain

Λ(i)
k =

ρTkμk − ρTkQkρk
∑n

i=1

(
ρ
(i)
k

)4

(
ρ
(i)
k

)2
, ∀i = 1, 2, . . . , n. (2.16)

Letting Hk = diag((ρ(1)
k
)2, (ρ(2)

k
)2, . . . , (ρ(n)

k
)2) and

∑n
i=1(ρ

(i)
k
)4 = Tr(H2

k
), where Tr is the trace

operation, we can finally present the updating formula for Q as follows.

Qk+1 = Qk +

(
ρT
k
μk − ρT

k
Qkρk

)

Tr
(
H2

k

) Hk, (2.17)

‖ · ‖ denotes the Euclidean norm of a vector.
To safeguard on the possibly of generating undefined Qk+1, we propose to use our

updating scheme for Qk+1:

Qk+1 =

⎧
⎪⎨

⎪⎩

Qk +

(
ρTkμk − ρTkQkρk

)

Tr
(
H2

k

) Hk;
∥∥ρk
∥∥ > 10−4,

Qk; otherwise.
(2.18)

Now, we can describe the algorithm for our proposed method as follows:

Algorithm 2.1 (2-MFDN).

Step 1. Choose an initial guess x0 and Q0 = I, let k := 0.

Step 2 (Compute F(xk)). If ‖F(xk)‖ ≤ ε1 stop, where ε1 = 10−4.

Step 3. If k := 0 define x1 = x0 −Q−1
0 F(x0). Else if k := 1 set ρk = sk and μk = yk and go to 5.

Step 4. If k ≥ 2 compute ν1, ν0, and β via (2.4)–(2.6), respectively and find ρk and μk using
(2.7) and (2.8), respectively. If ρTkμk ≤ 10−4‖ρk‖2‖μk‖2 set ρk = sk and μk = yk.

Step 5. Let xk+1 = xk −Q−1
k
F(xk) and update Qk+1 as defined by (2.17).

Step 6. Check if ‖ρk‖2 ≥ ε1, if yes retainQk+1, that is, computed by Step 5. Else set,Qk+1 = Qk.

Step 7. Set k := k + 1 and go to 2.

3. Numerical Results

In this section, we analyze the performance of 2-MFDN method compared to four Newton-
Like methods. The codes are written in MATLAB 7.0 with a double-precision computer, the
stopping criterion used is

∥∥ρk
∥∥ + ‖F(xk)‖ ≤ 10−4. (3.1)
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The methods that we considered are

(i) Newton’s method (NM).

(ii) Chord (fixed) Newton-method (FN).

(iii) The Broyden method (BM).

(iv) MFDN stands for the method proposed by Leong et al. [6].

The identity matrix has been chosen as an initial approximate Jacobian. Six (2.4) different
dimensions are performed on the benchmark problems, that is, 25, 50, 100, 500, 1000, and
250000.

The symbol “−” is used to indicate a failure due to:

(i) the number of iteration is at least 500 but no point of xk that satisfies (3.1) is
obtained;

(ii) CPU time in second reaches 500;

(iii) insufficient memory to initiate the run.

In the following, we illustrate some details on the benchmarks test problems.

Problem 1. Trigonometric system of Shin et al. [12]:

fi(x) = cos(xi) − 1, i = 1, 2, . . . , n, x0 = (0.87, 0.87, . . . , 0.87). (3.2)

Problem 2. Artificial function:

fi(x) = ln(xi) cos

((

1−
(
1+
(
xTx
)2)−1))

exp

((

1−
(
1+
(
xTx
)2)−1))

, i = 1, 2, . . . , n,

x0 = (2.5, 2.5, . . . , 2.5).
(3.3)

Problem 3. Artificial function:

f1(x) = cosx1 − 9 + 3x1 + 8 expx2,

fi(x) = cosxi − 9 + 3xi + 8 expxi−1, i = 2, . . . , n,

(5, 5, . . . , 5).

(3.4)

Problem 4. Trigonometric function of Spedicato [13]:

fi(x) = n −
n∑

j=1

cosxj + i(1 − cosxi) − sinxi, i = 1, . . . , n, x0 =
(
1
n
,
1
n
, . . . ,

1
n

)
. (3.5)

Problem 5. Spares system of Shin et al. [12]:

fi(x) = xixi+1 − 1, fn(x) = xnx1 − 1, i = 1, 2, . . . , n − 1,

x0 = (0.5, 0.5, . . . , .5).
(3.6)
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Table 1: Numerical results of NM, FN, BM, MFDN, and 2-MFDN methods.

Prob Dim NM FN BM MFDN 2-MFDN
NI CPU NI CPU NI CPU NI CPU NI CPU

1

25 7 0.062 236 0.047 12 0.005 22 0.008 25 0.006
50 7 0.094 282 0.140 12 0.015 23 0.009 27 0.008
100 7 0.872 356 0.168 12 0.018 24 0.016 27 0.013
500 7 16.988 — — 13 4.092 26 0.048 29 0.031
1000 7 101.471 — — 14 7.167 26 0.064 31 0.048

250000 — — — — — — 32 13.949 38 9.982

2

25 5 0.062 — — 7 0.016 8 0.016 5 0.016
50 6 0.109 — — 7 0.031 8 0.019 5 0.018
100 6 0.593 — — 7 0.312 8 0.033 5 0.031
500 6 16.1305 — — 7 2.168 8 0.038 5 0.033
1000 6 107.8747 — — 7 8.736 8 0.068 5 0.047

250000 — — — — — — 9 4.919 6 3.666

3

25 — — — — — — 24 0.031 14 0.018
50 — — — — — — 24 0.031 14 0.022
100 — — — — — — 24 0.047 14 0.031
500 — — — — — — 24 0.068 14 0.035
1000 — — — — — — 24 0.125 14 0.062

250000 — — — — — — 25 12.612 15 8.284

4

25 6 0.031 68 0.062 11 0.016 12 0.009 12 0.009
50 7 0.187 114 0.125 12 0.032 13 0.028 13 0.028
100 7 0.842 181 0.718 13 0.312 14 0.036 12 0.026
500 7 18.985 415 26.801 14 6.099 15 0.047 11 0.032
1000 7 131.743 — — 19 28.205 15 0.062 14 0.039

250000 — — — — — — 15 9.001 31 16.115

5

25 5 0.015 — — 5 0.003 6 0.002 4 0.001
50 — — — — 5 0.021 6 0.016 4 0.011
100 — — — — 5 0.025 6 0.019 4 0.015
500 — — — — 5 1.567 6 0.029 4 0.019
1000 — — — — 5 6.115 6 0.032 5 0.024

250000 — — — — — — 7 2.464 5 2.371

6

25 13 0.190 — — — — 22 0.018 23 0.016
50 13 0.328 — — — — 23 0.038 24 0.031
100 14 1.232 — — — — 24 0.064 27 0.041
500 15 39.578 — — — — 27 0.187 30 0.109
1000 17 280.830 — — — — 29 0.216 31 0.160

250000 — — — — — — 38 39.104 45 30.451

7

25 5 0.032 21 0.016 5 0.015 6 0.005 4 0.005
50 5 0.047 36 0.031 5 0.018 6 0.010 4 0.009
100 5 0.390 62 0.203 5 0.047 6 0.019 4 0.015
500 5 12.948 127 7.379 5 1.373 6 0.056 4 0.032
1000 5 89.357 134 30.997 5 6.536 6 0.061 4 0.032

250000 — — — — — — 6 3.524 4 2.777
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Problem 6. Artificial function:

fi(x) = n(xi − 3)2 +
cos(xi − 3)

2
− xi − 2
exp(xi − 3) + log

(
x2
i + 1

) , i = 1, 2, . . . , n,

x0 = (−3,−3,−3, . . . ,−3).
(3.7)

Problem 7 (see [14]).

f1(x) = x1,

fi(x) = cosxi+1 + xi − 1, i = 2, 3, . . . , n, x0 = (0.5, 0.5, . . . , .5).
(3.8)

From Table 1, it is noticeably that using the 2-step approach in building the diagonal
updating scheme has significantly improved the performance of the one-step diagonal
variant of Newton’s method (MFDN). This observation is most significant when one
considers CPU time and number of iterations, particularly as the systems dimensions
increase. In addition, it is worth mentioning that, the result of 2-MFDN method in solving
Problem 3 shows that the method could be a good solver even when the Jacobian is nearly
singular.

The numerical results presented in this paper shows that 2-MFDN method is a good
alternative to MFDN method especially for extremely large systems.

4. Conclusions

In this paper, a new variant of secant method for solving large-scale system of nonlinear
equations has been developed (2-MFDN). Themethod employs a two-step, 3-point scheme to
update the Jacobian approximation into a nonsingular diagonal matrix, unlike the single-step
method. The anticipation behind this approach is enhanced by the Jacobian approximation.
Our method requires very less computational cost and number of iterations as compared
to the MFDN method of Leong et al. [6]. This is more noticeable as the dimension of the
system increases. Therefore, from the numerical results presented, we can wind up that, our
method (2-MFDN ) is a superior algorithm compared to NM, FN, BM, and MFDN methods
in handling large-scale systems of nonlinear equations.
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