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We put a direct new method to construct the rational Jacobi elliptic solutions for nonlinear
differential difference equations which may be called the rational Jacobi elliptic functions method.
We use the rational Jacobi elliptic function method to construct many new exact solutions for some
nonlinear differential difference equations in mathematical physics via the lattice equation and
the discrete nonlinear Schrodinger equation with a saturable nonlinearity. The proposed method
is more effective and powerful to obtain the exact solutions for nonlinear differential difference
equations.

1. Introduction

It is well known that the investigation of differential difference equations (DDEs) which
describe many important phenomena and dynamical processes in many different fields, such
as particle vibrations in lattices, currents in electrical networks, pulses in biological chains,
and many others, has played an important role in the study of modern physics. Unlike
difference equations which are fully discredited, DDEs are semidiscredited with some (or
all) of their special variables discredited, while time is usually kept continuous. DDEs also
play an important role in numerical simulations of nonlinear partial differential equations
(NLPDEs), queuing problems, and discretization in solid state and quantum physics.

Since the work of Fermi et al. in the 1960s [1], DDEs have been the focus of many
nonlinear studies. On the other hand, a considerable number of well-known analytic methods
are successfully extended to nonlinear DDEs by researchers [2–17]. However, no method
obeys the strength and the flexibility for finding all solutions to all types of nonlinear DDEs.
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Zhang et al. [18] and Aslan [19] used the (G′/G)-expansion method in some physically
important nonlinear DDEs. Xu and Li [12] constructed the Jacobi elliptic solutions for
nonlinear DDEs. Recently, S. Zhang and H.-Q. Zhang [20] and Gepreel [21] have used the
Jacobi elliptic function method for constructing new andmore general Jacobi elliptic function
solutions of the integral discrete nonlinear Schrödinger equation. The main objective of this
paper is to put a direct new method to construct the rational Jacobi elliptic solutions for
nonlinear DDEs. We use this method to calculate the exact wave solutions for some nonlinear
DDEs in mathematical physics via the lattice equation and the discrete nonlinear Schrodinger
equation with a saturable nonlinearity.

2. Description of the Rational Jacobi Elliptic Functions Method

In this section, we would like to outline an algorithm for using the rational Jacobi elliptic
functions method to solve nonlinear DDEs. For a given nonlinear DDEs
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(2.1)

where Δ = (Δ1, . . . ,Δg), x = (x1, x2, . . . , xm), n = (n1, . . . , nQ), and g,m,Q, p1, . . . , pk are
integers, u(r)i , v(r)

i denotes the set of all rth order derivatives of ui, vi with respect to x.
The main steps of the algorithm for the rational Jacobi elliptic functions method to

solve nonlinear DDEs are outlined as follows.

Step 1. We seek the traveling wave solutions of the following form:

un(x) = U(ξn), vn(x) = V (ξn), . . . , (2.2)

where

ξn =
Q∑
i=1

dini +
m∑
j=1

cjxj + ξ0, (2.3)

di (i = 1, . . . , Q), cj , (j = 1, . . . , m), and the phase ξ0 are constants to be determined later. The
transformations in (2.2) are reduced (2.1) to the following ordinary differential difference
equations

Ω
(
U
(
ξn+p1

)
, . . . , U

(
ξn+pk

)
, U′(ξn+p1

)
, . . . , U′(ξn+pk

)
, . . . , U(r)(ξn+p1

)
, . . . , U(r)(ξn+pk

)
,

V
(
ξn+p1

)
, . . . , V

(
ξn+pk

)
, V ′(ξn+p1

)
, . . . , V ′(ξn+pk

)
, . . . , V

(r)
n+p1

(
ξn+p1

)
, . . . , V

(r)
n+pk

(
ξn+pk

)
, . . .

)
=0,

(2.4)

where Ω = (Ω1, . . . ,Ωg). The transformations in (2.2) help in the calculation of the iteration
relations between un(x), un−1(x), and un+1(x). For example, Langmuir chains equation
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dun(t)/dt = un(t)(un+1(t) − un−1(t)) under the wave transformation un(t) = U(ξn), ξn =
dn + ct + ξ0 takes the form cU′(ξn) = U(ξn)(U(ξn + d) −U(ξn − d)).

Step 2. We suppose the rational series expansion solutions of (2.4) in the following form:

U(ξn) =
K∑
i=0

αi

(
F ′(ξn)
F(ξn)

)i

, V (ξn) =
L∑
i=0

βi

(
F ′(ξn)
F(ξn)

)i

, . . . , (2.5)

where αi (i = 0, 1, . . . , K), and βi (i = 0, 1, . . . , L) are constants to be determined later, and
F(ξn) satisfies a discrete Jacobi elliptic differential equation

F ′2(ξn) = e0 + e1F2(ξn) + e2F4(ξn), (2.6)

where e0, e1, and e2 are arbitrary constants.

Step 3. Since the general solution of the proposed (2.6) is difficult to obtain and so the iteration
relations corresponding to the general exact solutions. So that we discuss the solutions of the
proposed discrete Jacobi elliptic differential equation (2.6) at some special cases to e0, e1 and
e2 to cover all the Jacobi elliptic functions as follows:

Type 1. if e0 = 1, e1 = −(1 +m2), e2 = m2. In this case (2.6) has the solution F(ξn) = sn(ξn,m),
where sn(ξn,m) is the Jacobi elliptic sine function, andm is the modulus.

The Jacobi elliptic functions satisfy the following properties:

[sn(ξn,m)]′ = cn(ξn,m)dn(ξn,m), [cn(ξn,m)]′ = −sn(ξn,m)dn(ξn,m),

[dn(ξn,m)]′ = −m2sn(ξn,m)cn(ξn,m), [cs(ξn,m)]′ = −ns(ξn,m)ds(ξn,m),

[sd(ξn,m)]′ = −nd(ξn,m)ds(ξn,m), [dc(ξn,m)]′ =
(
1 −m2

)
nc(ξn,m)sc(ξn,m),

(2.7)

where cn(ξn,m), and dn(ξn,m) are the Jacobi elliptic cosine function, and the Jacobi elliptic
function of the third kind. The other Jacobi elliptic functions can be generated by sn(ξn,m),
cn(ξn,m), and dn(ξn,m) as follows:

cd(ξn,m)=
cn(ξn,m)
dn(ξn,m)

, dc(ξn,m)=
dn(ξn,m)
cn(ξn,m)

, nc(ξn,m)=
1

cn(ξn,m)
, nd(ξn,m)=

1
dn(ξn,m)

,

cs(ξn,m) =
cn(ξn,m)
sn(ξn,m)

, sc(ξn,m) =
sn(ξn,m)
cn(ξn,m)

, sd(ξ) =
sn(ξn,m)
dn(ξn,m)

, ds(ξn,m) =
dn(ξn,m)
sn(ξn,m)

,

(2.8)

sn(ξ1 ± ξ2, m) =
sn(ξ1, m)cn(ξ2, m)dn(ξ2, m) ± sn(ξ2, m)cn(ξ1, m)dn(ξ1, m)

1 −m2sn2(ξ1, m)sn2(ξ2, m)
,

cn(ξ1 ± ξ2, m) =
cn(ξ1, m)cn(ξ2, m) ∓ sn(ξ1, m)sn(ξ2, m)dn(ξ1, m)dn(ξ2, m)

1 −m2sn2(ξ1, m)sn2(ξ2, m)
,

dn(ξ1 ± ξ2, m) =
dn(ξ1, m)dn(ξ2, m) ∓ sn(ξ1, m)sn(ξ2, m)cn(ξ1, m)cn(ξ2, m)

1 −m2sn2(ξ1, m)sn2(ξ2, m)
.

(2.9)
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In this case from using the properties of Jacobi elliptic functions, the series expansion solu-
tions (2.5) take the following form
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(2.10)

Further by using the properties of Jacobi elliptic functions, the iterative relations can be writ-
ten in the following form:
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)
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(2.11)

where

F ′(ξn±d)
F(ξn±d)

=
1
M1

{
±cn(d,m)cn(ξn)dn(ξn,m)dn(d,m) ±m2sn(d,m)sn(ξn,m)

∓ 2m2sn(d,m)sn3(ξn,m) ∓ 2m2sn3(d,m)sn(ξn,m) ±m2sn3(d,m)sn3(ξn,m)

+ sn(d,m)sn(ξn,m) ±m4sn3(d,m)sn3(ξn,m)

∓m2sn2(d,m)sn2(ξn,m)dn(ξn,m)dn(d,m)cn(d,m)cn(ξn,m)
}
,

(2.12)

M1 = −cn(φ,m)
dn

(
φ,m

)
sn(ξn,m) ∓ sn(φ,m)

dn(ξn,m)cn(ξn,m) +m2sn3(ξn,m)

× sn2(φ,m)
cn

(
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(
φ,m

)
cn(ξn,m)dn(ξn,m),

(2.13)

d = ps1d1 + ps2d2 + · · · + psQdQ, psj is the jth component of shift vector ps.

Type 2. if e0 = 1 − m2, e1 = 2m2 − 1, e2 = −m2. In this case, (2.6) has the solution F(ξn) =
cn(ξn,m). From using the properties of Jacobi elliptic functions, the series expansion solutions
(2.5) take the following form

U(ξn) =
K∑
i=0

αi

(
−sn(ξn,m)dn(ξn,m)

cn(ξn,m)

)i

,

V (ξn) =
L∑
i=0

βi

(
−sn(ξn,m)dn(ξn,m)

cn(ξn,m)

)i

, . . . .

(2.14)
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Type 3. if e0 = m2−1, e1 = 2−m2, e2 = −1. In this case, (2.6) has the solution F(ξn) = dn(ξn,m).
From using the properties of Jacobi elliptic functions the series expansion solutions (2.5) take
the following form

U(ξn) =
K∑
i=0

αi

(
−m

2sn(ξn,m)cn(ξn,m)
dn(ξn,m)

)i

,

V (ξn) =
L∑
i=0

βi

(
−m

2sn(ξn,m)cn(ξn,m)
dn(ξn,m)

)i

, . . . .

(2.15)

Type 4. if e0 = 1 −m2, e1 = 2 −m2, e2 = 1. In this case, (2.6) has the solution F(ξn) = cs(ξn,m),
then the series expansion solutions (2.5) take the following form

U(ξn) =
K∑
i=0

αi

(
−ns(ξn,m)ds(ξn,m)

cs(ξn,m)

)i

, V (ξn) =
L∑
i=0

βi

(
−ns(ξn,m)ds(ξn,m)

cs(ξn,m)

)i

, . . . .

(2.16)

Equation (2.16) can be written in the following form:

U(ξn) =
K∑
i=0

αi

(
− dn(ξn,m)
sn(ξn,m)cn(ξn,m)

)i

, V (ξn) =
L∑
i=0
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(
− dn(ξn,m)
sn(ξn,m)cn(ξn,m)

)i

, . . . .

(2.17)

Type 5. if e0 = 1, e1 = 2m2 − 1, and e2 = m2(m2 − 1). In this case, (2.6) has the solution
F(ξn) = sd(ξn,m), then the series expansion solutions (2.5) take the following form

U(ξn) =
K∑
i=0

αi

(
nd(ξn,m)cd(ξn,m)

sd(ξn,m)

)i

, V (ξn) =
L∑
i=0
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(
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)i

, . . . .

(2.18)

Equation (2.18) can be written in the following form:

U(ξn) =
K∑
i=0

αi

(
cn(ξn,m)

sn(ξn,m)dn(ξn,m)

)i

, V (ξn) =
L∑
i=0

βi

(
cn(ξn,m)

sn(ξn,m)dn(ξn,m)

)i

, . . . .

(2.19)

Type 6. if e0 = m2, e1 = −(m2 + 1), and e2 = 1. In this case, (2.6) has the solution F(ξn) =
dc(ξn,m), then the series expansion solutions (2.5) take the following form

U(ξn) =
K∑
i=0

αi

((
1 −m2)nc(ξn,m)sc(ξn,m)

dc(ξn,m)

)i

,

V (ξn) =
L∑
i=0

βi

((
1 −m2)nc(ξn,m)sc(ξn,m)

dc(ξn,m)

)i

, . . . .

(2.20)
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Equation (2.20) can be written in the following form:

U(ξn) =
K∑
i=0

αi

( (
1 −m2)sn(ξn,m)

cn(ξn,m)dn(ξn,m)

)i

, Vn(ξn) =
L∑
i=0

βi

( (
1 −m2)sn(ξn,m)

cn(ξn,m)dn(ξn,m)

)i

, . . . .

(2.21)

From the properties of the Jacobi elliptic functions, we can deduce the iterative relation to the
above kind of solutions from Types 2−6 as we show in Type 1.

Equations (2.10)–(2.21) lead to getting all formulas of solutions from Types 1–6 as
different. Consequently, we will discuss all solutions from Types 1–6.

Step 4. Determine the degree K,L, . . . of (2.5) by balancing the nonlinear term(s) and the
highest-order derivatives ofU(ξn),V (ξn),. . . in (2.4). It should be noted that the leading terms
U(ξn±p), V (ξn±p), . . ., p /= 0 will not affect the balance because we are interested in balancing
the terms of F ′(ξn)/F(ξn).

Step 5. Substituting U(ξn), V (ξn), and . . . in each type form 1–6 and the given values of K,
L, and . . . into (2.4). Cleaning the denominator and collecting all terms with the same degree
of sn(ξn,m), dn(ξn,m), and cn(ξn,m) together, the left hand side of (2.4) is converted into a
polynomial in sn(ξn,m), dn(ξn,m), and cn(ξn,m). Setting each coefficient of this polynomial
to zero, we derive a set of algebraic equations for αi, βi, di, and ci.

Step 6. Solving the over determined system of nonlinear algebraic equations by using Maple
or Mathematica. We end up with explicit expressions for αi, βi, di, and cj .

Step 7. Substituting αi, βi, di, and ci intoU(ξn), V (ξn), and . . . in the corresponding type from
1–6, we can finally obtain the exact solutions for (2.1).

3. Applications

In this section, we apply the proposed rational Jacobi elliptic functions method to construct
the traveling wave solutions for some nonlinear DDEs via the lattice equation and the
discrete nonlinear Schrodinger equation with a saturable nonlinearity which are very
important in the mathematical physics and have been paid attention to by many research-
ers.

3.1. Example 1. The Lattice Equation

In this section, we study the lattice equation which takes the following form [22–25]

dun(t)
dt

=
(
α + βun + γu2n

)
(un−1 − un+1), (3.1)
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where α, β, and γ are nonzero constants. The equation contains hybrid lattice equation, mKdV
lattice equation, modified Volterra lattice equation, and Langmuir chain equation:

(i) (1+1) dimensional Hybrid lattice equation [25]:

dun(t)
dt

=
(
1 + βun + γu2n

)
(un−1 − un+1); (3.2)

(ii) mKdV lattice equation [25]:

dun(t)
dt

=
(
α − u2n

)
(un−1 − un+1); (3.3)

(iii) modified Volterra equation [24]:

dun(t)
dt

= u2n(un−1 − un+1); (3.4)

(iv) Langmuir chain equation [25]:

dun(t)
dt

= un(un+1 − un−1). (3.5)

According to the above steps, to seek traveling wave solutions of (3.1), we construct the
transformation

un(t) = U(ξn), ξn = dn + c1t + ξ0, (3.6)

where d, c1, and ξ0 are constants. The transformation in (3.6) permits us to convert (3.1) into
the following form:

c1U
′(ξn) =

(
α + βU(ξn) + γU2(ξn)

)
(U(ξn − d) −U(ξn + d)), (3.7)

where ′ = d/dξn. Considering the homogeneous balance between the highest-order
derivative and the nonlinear term in (3.7), we get K = 1. Thus, the solution of (3.7) has
the following form:

U(ξn) = α1
(
F ′(ξn)
F(ξn)

)
+ α0, (3.8)

where α0, and α1 are constants to be determined later, and F(ξn) satisfies a discrete Jacobi
elliptic ordinary differential (2.6). When, we discuss the solutions of the Jacobi elliptic
differential difference (2.6), we get the following types.
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Type 1. If e0 = 1, e1 = −(1 + m2), and e2 = m2. In this case, the series expansion solution of
(3.7) has the form:

U(ξn) = α0 +
α1cn(ξn,m)dn(ξn,m)

sn(ξn,m)
. (3.9)

With help of Maple, we substitute (3.9) and (2.12) into (3.7), cleaning the denominator and
collecting all terms with the same degree of sn(ξn,m), dn(ξn,m), and cn(ξn,m) together, the
left hand side of (3.7) is converted into polynomial in sn(ξn,m), dn(ξn,m), and cn(ξn,m). Set-
ting each coefficient of this polynomial to zero, we derive a set of algebraic equations for α0,
α1, d, and c1. Solving the set of algebraic equations by using Maple or Mathematica, we have

α0=−
β

2γ
, α1=

√
β2 − 4αγsn(d,m)

2γcn(d,m)dn(d,m)
, c1=−

(
4αγ − β2)sn(d,m)

2γcn(d,m)dn(d,m)
. (3.10)

From (3.9) and (3.10), the solution of (3.7) takes the following form:

U(ξn) =

√
β2 − 4αγsn(d,m)cn(ξn,m)dn(ξn,m)

2γcn(d,m)dn(d,m)sn(ξn,m)
− β

2γ
, (3.11)

where ξn = dn − ((4αγ − β2)sn(d,m)/[2γcn(d,m)dn(d,m)])t + ξ0.

Type 2. If e0 = 1−m2, e1 = 2m2 − 1, and e2 = −m2. In this case, the series expansion solution of
(3.7) has the form:

U(ξn) = α0 − α1 sn(ξn)dn(ξn)
cn(ξn,m)

. (3.12)

With the help of Maple, we substitute (3.12) into (3.7), cleaning the denominator and col-
lecting all terms with the same degree of sn(ξn,m), dn(ξn,m), and cn(ξn,m) together, the left
hand side of (3.7) is converted into polynomial in sn(ξn,m), dn(ξn,m), and cn(ξn,m). Setting
each coefficient of this polynomial to zero, we derive a set of algebraic equations for α0, α1, d,
and c1. Solving the set of algebraic equations by using Maple or Mathematica, we get

α0=−
β

2γ
, α1=

√
β2 − 4αγsn(d,m)dn(d,m)

2γcn(d,m)
, c1=−

(
4αγ − β2)dn(d,m)sn(d,m)

2γcn(d,m)
.

(3.13)

In this case the solution of (3.7) takes the following form:

U(ξn) = − β

2γ
−

√
β2 − 4αγsn(d,m)dn(d,m)sn(ξn,m)dn(ξn,m)

2γcn(d,m)cn(ξn,m)
, (3.14)

where ξn = dn − ((4αγ − β2)dn(d,m)sn(d,m)/[2γcn(d,m)])t + ξ0.
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Type 3. if e0 = m2 − 1, e1 = 2 −m2, and e2 = −1. In this case, the series expansion solution of
(3.7) has the form:

U(ξn) = α0 − m2α1sn(ξn)cn(ξn)
dn(ξn)

. (3.15)

Consequently, by using Maple or Mathematica, we obtain the following results:

α0=−
β

2γ
, α1=

√
β2 − 4αγsn(d,m)cn(d,m)

2γdn(d,m)
, c1=−

(
4αγ − β2)cn(d,m)sn(d,m)

2γdn(d,m)
.

(3.16)

In this case, the solution takes the following form:

U(ξn) = − β

2γ
−

√
β2 − 4αγm2sn(d,m)cn(d,m)sn(ξn,m)cn(ξn,m)

2γdn(d,m)dn(ξn,m)
, (3.17)

where ξn = dn − ((4αγ − β2)cn(d,m)sn(d,m)/[2γdn(d,m)])t + ξ0.

Type 4. if e0 = 1 − m2, e1 = 2 − m2, and e2 = 1. In this case, the series expansion solution of
(3.7) has the form:

Un(ξn) = α0 − α1ns(ξn)ds(ξn)
cs(ξn)

. (3.18)

Consequently, using the Maple or Mathematica we get the following results:

α0 = − β

2γ
, α1 =

√
β2 − 4αγsn(d,m)cn(d,m)

2γdn(d,m)
, c1 = −

(
4αγ − β2)cn(d,m)sn(d,m)

2γdn(d,m)
.

(3.19)

In this case, the solution of (3.7) takes the following form:

Un(ξn) = − β

2γ
−

√
β2 − 4αγsn(d,m)cn(d,m)ns(ξn,m)ds(ξn,m)

2γdn(d,m)cs(ξn,m)
, (3.20)

where ξn = dn − ((4αγ − β2)cn(d,m)sn(d,m)/[2γdn(d,m)])t + ξ0.

Type 5. if e0 = 1, e1 = 2m2 − 1, and e2 = m2(m2 − 1). In this case, the series expansion solution
of (3.7) has the form:

U(ξn) = α0 +
α1nd(ξn)cd(ξn)

sd(ξn)
. (3.21)
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Consequently, by using Maple or Mathematica, we get the following results:

α0 = − β

2γ
, α1 =

√
β2 − 4αγsn(d,m)dn(d,m)

2γcn(d,m)
, c1 =

(
β2 − 4αγ

)
sn(d,m)dn(d,m)

2γcn(d,m)
.

(3.22)

In this case, the solution takes of (3.7) the following form:

U(ξn) = − β

2γ
+

√
β2 − 4αγsn(d,m)dn(d,m)nd(ξn,m)cd(ξn,m)

2γcn(d,m)sd(ξn,m)
, (3.23)

where ξn = dn + ((β2 − 4αγ)sn(d,m)dn(d,m)/[2γcn(d,m)])t + ξ0.

Type 6. if e0 = m2, e1 = −(m2 + 1), and e2 = 1. In this case, the series expansion solution of
(3.7) has the form:

U(ξn) = α0 +

(
1 −m2)α1nc(ξn)sc(ξn)

dc(ξn)
. (3.24)

Consequently, by using Maple or Mathematica, we get the following results:

α0 = − β

2γ
, α1 =

√
β2 − 4αγsn(d,m)

2γcn(d,m)dn(d,m)
, c1 =

(
β2 − 4αγ

)
sn(d,m)

2γcn(d,m)dn(d,m)
. (3.25)

In this case, the solution of (3.7) takes the following form:

U(ξn) = − β

2γ
+

√
β2 − 4αγ

(
1 −m2)sn(d,m)nc(ξn,m)sc(ξn,m)

2γdn(d,m)cn(d,m)dc(ξn,m)
, (3.26)

where ξn = dn + ((β2 − 4αγ)sn(d,m)/[2γcn(d,m)dn(d,m)])t + ξ0.

3.2. Example 2. The Discrete Nonlinear Schrodinger Equation

The discrete nonlinear Schrodinger equation (DNSE) is one of the most fundamental
nonlinear lattice models [8]. It arises in nonlinear optics as a model of infinite wave guide
arrays [26] and has been recently implemented to describe Bose-Einstein condensates in
optical lattices. The class of DNSE model with saturable nonlinearity is also of particular
interest in their own right, due to a feature first unveiled in [27]. In this section, we study the
DNSE with a saturable nonlinearity [28, 29] having the form

i
∂ψn
∂t

+
(
ψn+1 + ψn−1 − 2ψn

)
+

ν
∣∣ψn

∣∣2

1 + μ
∣∣ψn

∣∣2ψn = 0, (3.27)



Journal of Applied Mathematics 11

which describes optical pulse propagations in various doped fibers, ψn is a complex valued
wave function at sites nwhile ν and μ. We make the transformation

ψn = φ(ξn)e−i(σt+ρ), ξn = αn + β, (3.28)

where σ, ρ, α, and β are arbitrary real constants. The transformation (3.28) permits us convert-
ing (3.27) into the following nonlinear difference equation

(σ − 2)φ(ξn) + φ(ξn+1) + φ(ξn−1) +
νφ3(ξn)

1 + μφ2(ξn)
= 0. (3.29)

We assume that (3.29) has a solution of the form:

φ(ξn) = U(ξn) = α1
(
F ′(ξn)
F(ξn)

)
+ α0, (3.30)

where α1, and α0 are constants to be determined later and F(ξn) satisfying a discrete Jacobi
elliptic differential equation (2.6). When, we discuss the solutions of (2.6), we have the follow-
ing types.

Type 1. If e0 = 1, e1 = −(1 + m2), and e2 = m2. In this case, the series expansion solution of
(3.29) has the form:

U(ξn) = α1
cn(ξn,m)dn(ξn,m)

sn(ξn,m)
+ α0. (3.31)

With the help of Maple, we substitute (3.31) and (2.12) into (3.29), cleaning the denominator
and collecting all terms with the same order of cn(ξn,m), dn(ξn,m), and sn(ξn,m) together,
the left hand side of (3.29) is converted into polynomial in cn(ξn,m), dn(ξn,m), and sn(ξn,m).
Setting each coefficient of this polynomial to zero, we derive a set of algebraic equations for
α0, α1, σ, ρ, α, and β. Solving the set of algebraic equations by using Maple or Mathematica,
we obtain

α0 = 0, α1 =
sn(α,m)√−μcn(α,m)dn(α,m)

, ν =
−2μ(m2sn4(α,m) − 1

)

cn2(α,m)dn2(α,m)
,

σ =
−2sn2(α,m)

[
m2cn2(α,m) + dn2(α,m)

]

cn2(α,m)dn2(α,m)
, μ < 0.

(3.32)

In this case, the solution of (3.27) takes the following form:

ψn=
sn(α,m)cn(ξn,m)dn(ξn,m)√−μcn(α,m)dn(α,m)sn(ξn,m)

Exp

{
−i
[
−2tsn2(α,m)

[
m2cn2(α,m) + dn2(α,m)

]

cn2(α,m)dn2(α,m)
+ρ

]}
,

(3.33)

where ξn = αn + β.
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Type 2. If e0 = 1 −m2, e1 = 2m2 − 1, and e2 = −m2. In this case the solution of (3.29) has the
form:

U(ξn) = α0 − α1 sn(ξn,m)dn(ξn,m)
cn(ξn,m)

. (3.34)

Consequently, by using Maple or Mathematica, we get the following results:

α0 = 0, α1 =
sn(α,m)dn(α,m)√−μcn(α,m)

, ν =
2μ

(
m2sn4(α,m) − 2m2sn2(α,m) + 1

)

cn2(α,m)
,

σ =
−2sn2(α,m)

[
m2sn2(α,m) + 1 − 2m2]

cn2(α,m)
, μ < 0.

(3.35)

In this case, the solution takes the following form:

ψn = − sn(α,m)dn(α,m)sn(ξn,m)dn(ξn,m)√−μcn(α,m)cn(ξn,m)

× Exp

{
−i
[
−2tsn2(α,m)

[
m2sn2(α,m) + 1 − 2m2]

cn2(α,m)
+ ρ

]}
.

(3.36)

Type 3. if e0 = m2 − 1, e1 = 2 −m2, and e2 = −1. In this case, the series expansion solution of
(3.29) has the form:

U(ξn) = α0 − m2α1sn(ξn)cn(ξn)
dn(ξn)

. (3.37)

Consequently, by using Maple or Mathematica, we get the following results:

α0 = 0, α1 =
sn(α,m)cn(α,m)√−μ dn(α,m)

, ν =
2μ

(
m2sn4(α,m) − 2sn2(α,m) + 1

)

dn2(α,m)
,

σ =
−2sn2(α,m)

[
m2sn2(α,m) − 2 +m2]

dn2(α,m)
, μ < 0.

(3.38)

In this case, the solution takes the following form:

ψn = − m2sn(α,m)cn(α,m)sn(ξn,m)cn(ξn,m)√−μdn(α,m)dn(ξn,m)

× Exp

{
−i
[
−2tsn2(α,m)

[
m2sn2(α,m) − 2 +m2]

dn2(α,m)
+ ρ

]}
.

(3.39)
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Type 4. if e0 = 1 − m2, e1 = 2 − m2, and e2 = 1. In this case, the series expansion solution of
(3.29) has the form:

U(ξn) = α0 − α1ns(ξn)ds(ξn)
cs(ξn)

. (3.40)

After some calculation, the solution of (3.27) takes the following form:

ψn = − sn(α,m)cn(α,m)ns(ξn,m)ds(ξn,m)√−μ dn(α,m)cn(ξn,m)

× Exp

{
−i
[
−2t sn2(α,m)

[
m2sn2(α,m) − 2 +m2]

dn2(α,m)
+ ρ

]}
,

(3.41)

where ν = 2μ(m2 sn4(α,m) − 2sn2(α,m) + 1)/dn2(α,m).

Type 5. if e0 = 1, e1 = 2m2 − 1, and e2 = m2(m2 − 1). In this case, the series expansion solution
of (3.29) has the form:

U(ξn) = α0 +
α1nd(ξn)cd(ξn)

sd(ξn)
. (3.42)

After some calculation, the solution of (3.27) takes the following form:

ψn = − sn(α,m)dn(α,m)cd(ξn,m)nd(ξn,m)√−μcn(α,m)sd(ξn,m)

× Exp

{
−i
[
−2tsn2(α,m)

[
m2sn2(α,m) + 1 − 2m2]

cn2(α,m)
+ ρ

]}
,

(3.43)

where ν = 2μ(m2sn4(α,m) − 2sn2(α,m) + 1)/cn2(α,m).

Type 6. if e0 = m2, e1 = −(m2 + 1), and e2 = 1. In this case, the series expansion solution of
(3.29) has the form:

U(ξn) = α0 +

(
1 −m2)α1 nc(ξn)sc(ξn)

dc(ξn)
. (3.44)

After some calculation, the solution of (3.27) takes the following form:

ψn =

(
1 −m2)sn(α,m)nc(ξn,m)sc(ξn,m)√−μ cn(α,m)dn(α,m)dc(ξn,m)

× Exp

{
−i
[
−2tsn2(α,m)

[
m2cn2(α,m) + dn2(α,m)

]

cn2(α,m)dn2(α,m)
+ ρ

]}
,

(3.45)

where ν = −2μ(m2sn4(α,m) − 1)/[cn2(α,m)dn2(α,m)].



14 Journal of Applied Mathematics

Remark 3.1. (1) The formulas of the exact solutions from Types 1–6 are different, and
consequently, we must discuss the exact solutions in all types from 1–6.

(2) The values of αi, βi, di, and ci in Examples 1 and 2 have a unique determination in
all types of this method.

4. Conclusion

In this paper, we put a direct method to calculate the rational Jacobi elliptic solutions
for the nonlinear difference differential equations via the lattice equation and the discrete
nonlinear Schrodinger equation with a saturable nonlinearity. As a result, many new and
more rational Jacobi elliptic solutions are obtained, from which hyperbolic function solutions
and trigonometric function solutions are derived when the modulusm → 1 andm → 0.
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