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The steady three-dimensional flow of condensation or spraying on inclined spinning disk is
studied analytically. The governing nonlinear equations and their associated boundary conditions
are transformed into the system of nonlinear ordinary differential equations. The series solution
of the problem is obtained by utilizing the homotopy perturbation method (HPM). The velocity
and temperature profiles are shown and the influence of Prandtl number on the heat transfer and
Nusselt number is discussed in detail. The validity of our solutions is verified by the numerical
results. Unlike free surface flows on an incline, this through flow is highly affected by the spray
rate and the rotation of the disk.

1. Introduction

The removal of a condensate liquid from a cooled, saturated vapor is important in engi-
neering processes. Sparrow and Gregg [1] considered the removal of the condensate using
centrifugal forces on a cooled rotating disk. Following von Karman’s [2] study of a rotating
disk in an infinite fluid, Sparrow and Gregg transformed the Navier-Stokes equations into
a system of nonlinear ordinary differential equations and numerically integrated for the
similarity solution for several finite film thicknesses. Their work was extended by adding
vapor drag by Beckett et al. [3] and adding suction on the plate by Chary and Sarma [4]. The
problem is also related to chemical vapor deposition, when a thin fluid film is deposited on a
cooled rotating disk [5].

Most of the scientific problems and phenomena are modeled by nonlinear ordinary or
partial differential equations. In recent years, many powerful methods have been developed
to construct explicit analytical solution of nonlinear differential equations. Among them, two
analytical methods have drawn special attention, namely, the homotopy perturbationmethod
(HPM) [6, 7] and homotopy analysis method (HAM) [8–11]. The essential idea in these
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methods is to introduce a homotopy parameter, say p, which takes the value from 0 to 1.
For p = 0, the system of equations takes a simplified form which readily admits a particularly
simple solution. When p is gradually increased to 1, the system goes through a sequence
of “deformations,” the solution of each of which is “close” to that at the previous stage of
“deformation.” Eventually at p = 1, the system takes the original forms of equation and the
final stage of “deformation” gives the desired solution.

We know all perturbation methods require small parameter in nonlinear equation
and the approximate solutions of equation containing this parameter are expressed as series
expansions in the small parameter. Selection of small parameter requires a special skill.
A proper choice of small parameter gives acceptable results, while an improper choice
may result in incorrect solutions. The homotopy perturbation method, which is a coupling
of the traditional perturbation method and homotopy in topology, does not require a
small parameter in equation modeling phenomena. In recent years, the HPM has been
successfully employed to solve many types of linear and nonlinear problems such as the
quadratic Ricatti differential equation [12], the axisymmetric flow over a stretching sheet
[13], the fractional Fokker-Planck equations [14], the magnetohydrodynamic flow over a
nonlinear stretching sheet [15], the thin-film flow of a fourth-grade fluid down a vertical
cylinder [16], the fractional diffusion equation with absorbent term and external force
[17], Burgers equation with finite transport memory [18], the system of Fredholm integral
equations [19], the generalized Burger and Burger-Fisher equations [20], the wave and
nonlinear diffusion equations [21], the flow through slowly expanding or contracting porous
walls [22], the torsional flow of third grade fluid [23], Emden-Fowler equations [24], and
Zakharov-Kuznetsov equations [25]. All of these successful applications verified the validity,
effectiveness, and flexibility of the HPM.

With the above discussion in mind, the purpose of the present paper is to examine
analytically the problem of condensation or spraying on an inclined rotating disk. The
governing equations here are highly nonlinear coupled differential equations, which are
solved by using the homotopy perturbationmethod. In this way, the letter has been organized
as follows. In Section 2, the problem statement and mathematical formulation are presented.
In Section 3, we extend the application of the HPM to construct the approximate solution for
the governing equations. Section 4 contains the results and discussion. The conclusions are
summarized in Section 5.

2. Problem Statement and Mathematical Formulation

Figure 1 shows a disk rotating in its own plane with angular velocity Ω. The angle between
horizontal axis and disk is β. A fluid film of thickness t is formed by spraying, with the
W velocity. We assume the disk radius is large compared to the film thickness such that
the end effects can be ignored. Vapor shear effects at the interface of vapor and fluid are
usually also unimportant. The gravitational acceleration, g, acts in the downward direction.
The temperature on the disk is Tw and the temperature on the film surface is T0. Besides, the
ambient pressure on the film surface is constant at p0, and we can safely say the pressure is
a function of z only. Neglecting viscous dissipation, the continuity, momentum, and energy
equations for steady state are given in the following form [26]:

ux + vy +wz = 0, (2.1)

uux + vuy +wuz = ν
(
uxx + uyy + uzz

)
+ g sin β, (2.2)
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Figure 1: The schematic diagram of steady three-dimensional problem of condensation film on inclined
rotating disk.

uvx + vvy +wvz = ν
(
vxx + vyy + vzz

)
, (2.3)

uwx + vwy +wwz = ν
(
wxx +wyy +wzz

) − g cos β − pz
ρ
, (2.4)

uTx + vTy +wTz = α
(
Txx + Tyy + Tzz

)
. (2.5)

In above equations, u, v, andw indicate the velocity components in the x, y, and z directions,
T denotes the temperature, ρ, ν, and α are the density, kinematic viscosity, and thermal
diffusivity of the fluid, respectively. Supposing zero slip on the disk and zero shear on the
film surface, the boundary conditions are

u = − Ωy, v = Ωx, w = 0, T = Tw at z = 0,

uz = 0, vz = 0, w = −W, T = T0, p = p0 at z = t.
(2.6)

For mentioned problem, Wang introduced the following transform [26]:

u = −Ωyg
(
η
)
+ Ωxf ′(η

)
+
gk

(
η
)
sin β

Ω
,

v = Ωxg
(
η
)
+ Ωyf ′(η

)
+
gs

(
η
)
sin β

Ω
,

w = − 2
√
Ωνf

(
η
)
,

T = (T0 − Tw)θ
(
η
)
+ Tw,

(2.7)

where

η = z

√
Ω
ν
. (2.8)
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Continuity equation (2.1) automatically is satisfied. Equations (2.2) and (2.3) can be written
as follows:

f ′′′ − (
f ′)2 + g2 + 2ff ′′ = 0,

g ′′ − 2gf ′ + 2fg ′ = 0,

k′′ − kf ′ + sg + 2fk′ + 1 = 0,

s′′ − gk − sf ′ + 2fs′ = 0.

(2.9)

If the temperature is a function of the distance z only, (2.5) becomes

θ′′ + 2 Pr fθ′ = 0, (2.10)

where Pr = ν/α is the Prandtl number. The boundary conditions for (2.9)-(2.10) are

f(0) = 0, f ′(0) = 0, f ′′(δ) = 0,

g(0) = 1, g ′(δ) = 0,

k(0) = 0, k′(δ) = 0,

s(0) = 0, s′(δ) = 0,

θ(0) = 0, θ(δ) = 1,

(2.11)

and δ is the constant normalized thickness as

δ = t

√
Ω
ν
. (2.12)

After the flow field is found, the pressure can be obtained by integrating (2.4):

p(z) = p0 + ρ

{

ν[wz(z) −wz(t)] −
[
w2(z) −w2(t)

]

2
− g(z − t) cos β

}

. (2.13)

3. Solution by Homotopy Perturbation Method

3.1. Basic Idea

Now, for convenience, consider the following general nonlinear differential equation:

A(u) − f(r) = 0, r ∈ Ω, (3.1)
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with boundary conditions:

B

(
u,

∂u

∂n

)
= 0, r ∈ Γ, (3.2)

where A is a general differential operator, B is a boundary operator, f(r) is a known analytic
function, and Γ is the boundary of the domain Ω.

The operator A can, generally speaking, be divided into two parts L and N, where L
is linear, and N is nonlinear, therefore, (3.1) can be written as

L(u) +N(u) − f(r) = 0. (3.3)

By using homotopy technique, one can construct a homotopy ũ(r, p) : Ω × [0, 1] → R which
satisfies

H
(
ũ, p

)
=
(
1 − p

)
[L(ũ) − L(u0)] + p

[
A(ũ) − f(r)

]
= 0, (3.4)

or

H
(
ũ, p

)
= L(ũ) − L(u0) + pL(u0) + p

[
N(ũ) − f(r)

]
= 0, (3.5)

where p ∈ [0, 1] is an embedding parameter, and u0 is the initial approximation of (3.1)which
satisfies the boundary conditions. Clearly, we have

H(ũ, 0) = L(ũ) − L(u0) = 0,

H(ũ, 1) = A(ũ) − f(r) = 0.
(3.6)

The changing process of p from zero to unity is just that of ũ(r, p) changing from u0(r) to
u(r). This is called deformation, and also L(ũ) − L(u0) and A(ũ) − f(r) are called homotopic
in topology. If the embedding parameter p (0 ≤ p ≤ 1) is considered as a “small parameter,”
applying the classical perturbation technique, we can naturally assume that the solution of
(3.4) and (3.5) can be given as a power series in p:

ũ = ũ0 + pũ1 + p2ũ2 + · · · (3.7)

and setting p = 1 results in the approximate solution of (3.1) as

u = lim
p→ 1

ũ = ũ0 + ũ1 + ũ2 + · · · . (3.8)

The convergence of series (3.8) has been proved by He in his paper [27]. It is worth to
note that the major advantage of He homotopy perturbation method is that the perturbation
equation can be freely constructed in many ways (therefore, it is problem dependent) by
homotopy in topology, and the initial approximation can also be freely selected.Moreover, the
construction of the homotopy for the perturb problem plays very important role for obtaining
desired accuracy.
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3.2. Guidelines for Choosing Homotopy Equation

In a homotopy equation, what we are mainly concerned about are the auxiliary linear
operator L and the initial approximation u0. Once one chooses these parts, the homotopy
equation is completely determined, because the remaining part is actually the original
equation (3.5) and we have less freedom to change it. Here, we discuss some general rules
that should be noted in choosing L and u0.

3.2.1. Discussion on Auxiliary Linear Operator L

According to the steps of the homotopy perturbation method, L should be as follows.

(i) Easy to Handle

We mean that it must be chosen in such a way that one has no difficulty in subsequently
solving systems of resulting equations. It should be noted that this condition does not restrict
L to be linear. In scarce cases, as was done by He in [27] to solve the Lighthill equation, a
nonlinear choice of L may be more suitable; But it is strongly recommended for beginners to
take a linear operator as L.

(ii) Closely Related to the Original Equation

Strictly speaking, in constructing L, it is better to use some part of the original equation [23].
We can see the effectiveness of this view in [28]where Chowdhury and Hashim have gained
very good results with technically choosing the L part.

3.2.2. Discussion on Initial Approximation u0

There is no unique universal technique for choosing the initial approximation in iterative
methods, but from previous works done on HPM [29, 30] and our own experiences, we can
conclude the following facts.

(i) It Should Be Obtained from the Original Equation

For example, it can be chosen to be the solution to some part of the original equation, or it
can be chosen from initial/boundary conditions.

(ii) It Should Reduce Complexity of the Resulting Equations

Although this condition only can be checked after solving some of the first few equations
of the resulting system, this is the criteria that has been used by many authors when they
encountered different choices as an initial approximation.

3.2.3. Completive Discussion on Auxiliary Convergence-Control Parameter

An important point to note is that, whenever we apply an auxiliary parameter as a factor for
second term of homotopy equation (3.4), we have an option for convergence control of series
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solution. Foregoing parameter would be applicable similar to convergence-control parameter
in homotopy analysis method pointed out by Liao [31].

3.3. Application for Steady Three-Dimensional Flow of Condensation Film
on Inclined Spinning Disk

To investigate the explicit and totally analytic solutions of present problem by using HPM, we
first define homotopy f̃(η, p) : Ω×[0, 1] → R, g̃(η, p) : Ω×[0, 1] → R, k̃(η, p) : Ω×[0, 1] → R,
s̃(η, p) : Ω × [0, 1] → R, and θ̃(η, p) : Ω × [0, 1] → R for (2.9)-(2.10)which satisfies

(
1 − p

)[
L1

(
f̃
)
− L1

(
f0
)]

+ p

[
f̃ ′′′ −

(
f̃ ′
)2

+ g̃2 + 2f̃ f̃ ′′
]
= 0,

(
1 − p

)[
L2

(
g̃
) − L2

(
g0
)]

+ p
[
g̃ ′′ − 2g̃f̃ ′ + 2f̃ g̃ ′

]
= 0,

(
1 − p

)[
L3

(
k̃
)
− L3(k0)

]
+ p

[
k̃′′ − k̃f̃ ′ + s̃ g̃ + 2f̃ k̃′ + 1

]
= 0,

(
1 − p

)
[L4(s̃) − L4(s0)] + p

[
s̃′′ − g̃ k̃ − s̃f̃ ′ + 2f̃ s̃′

]
= 0,

(
1 − p

)[
L5

(
θ̃
)
− L5(θ0)

]
+ p

[
θ̃′′ + 2 Pr f̃ θ̃′

]
= 0,

(3.9)

where L1, L2, L3, L4, and L5 are linear operators as follows:

L1

(
f̃
)
=

d3f̃

dη3
,

L2
(
g̃
)
=

d2g̃

dη2
,

L3

(
k̃
)
=

d2k̃

dη2
,

L4(s̃) =
d2s̃

dη2
,

L5

(
θ̃
)
=

d2θ̃

dη2
.

(3.10)

We choose

f0
(
η
)
=

1
3

(
3δη2 − η3

)
,

g0
(
η
)
= 1,
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k0
(
η
)
=

1
2

(
2δη − η2

)
,

s0
(
η
)
=

1
2

(
2δη − η2

)
,

θ0
(
η
)
=

η

δ
,

(3.11)

as initial approximations of f(η), g(η), k(η), s(η), and θ(η), which satisfy the boundary
conditions (2.11). Assume the solutions of (3.9) have the forms:

f̃
(
η
)
= f̃0

(
η
)
+ pf̃1

(
η
)
+ p2f̃2

(
η
)
+ · · · ,

g̃
(
η
)
= g̃0

(
η
)
+ pg̃1

(
η
)
+ p2g̃2

(
η
)
+ · · · ,

k̃
(
η
)
= k̃0

(
η
)
+ pk̃1

(
η
)
+ p2k̃2

(
η
)
+ · · · ,

s̃
(
η
)
= s̃0

(
η
)
+ ps̃1

(
η
)
+ p2s̃2

(
η
)
+ · · · ,

θ̃
(
η
)
= θ̃0

(
η
)
+ pθ̃1

(
η
)
+ p2θ̃2

(
η
)
+ · · · ,

(3.12)

where f̃i(η), g̃i(η), k̃i(η), s̃i(η), and θ̃i(η), i = 1, 2, 3, . . . are functions yet to be determined.
Substituting (3.12) into (3.9) and equating the terms with identical powers of p, we have

p0 =⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f̃ ′′′
0 − f ′′′

0 = 0,

f̃0(0) = 0, f̃ ′
0(0) = 0, f̃ ′′

0 (δ) = 0,

g̃ ′′
0 − g ′′

0 = 0,

g̃0(0) = 1, g̃ ′
0(δ) = 0,

k̃′′
0 − k′′

0 = 0,

k̃0(0) = 0, k̃′
0(δ) = 0,

s̃′′0 − s′′0 = 0,

s̃0(0) = 0, s̃′0(δ) = 0,

θ̃′′
0 − θ′′

0 = 0,

θ̃0(0) = 0, θ̃0(δ) = 1,
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p1 =⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f̃ ′′′
1 + f ′′′

0 − f̃ ′2
0 + g̃2

0 + 2 f̃0f̃
′′
0 = 0,

f̃1(0) = 0, f̃ ′
1(0) = 0, f̃ ′′

1 (δ) = 0,

g̃ ′′
1 + g ′′

0 − 2g̃0f̃ ′
0 + 2f̃0g̃ ′

0 = 0,

g̃1(0) = 0, g̃ ′
1(δ) = 0,

k̃′′
1 + k′′

0 − k̃0f̃
′
0 + s̃0g̃0 + 2f̃0k̃′

0 + 1 = 0,

k̃1(0) = 0, k̃′
1(δ) = 0,

s̃′′1 + s′′0 − k̃0g̃0 − s̃0f̃
′
0 + 2f̃0s̃′0 = 0,

s̃1(0) = 0, s̃′1(δ) = 0,

θ̃′′
1 + θ′′

0 + 2Prf̃0θ̃′
0 = 0,

θ̃1(0) = 0, θ̃1(δ) = 0,

p2 =⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f̃ ′′′
2 − 2f̃ ′

0f̃
′
1 + 2g̃0g̃1 + 2f̃0f̃ ′′

1 + 2f̃1f̃ ′′
0 = 0,

f̃2(0) = 0, f̃ ′
2(0) = 0, f̃ ′′

2 (δ) = 0,

g̃ ′′
0 − 2g̃0f̃ ′

1 − 2g̃1f̃ ′
0 + 2f̃0g̃ ′

1 + 2f̃1g̃ ′
0 = 0,

g̃2(0) = 0, g̃ ′
2(δ) = 0,

k̃′′
2 − k̃0f̃

′
1 − k̃1f̃

′
0 + s̃0g̃1 + s̃1g̃0 + 2f̃0k̃′

1 + 2f̃1k̃′
0 = 0,

k̃2(0) = 0, k̃′
2(δ) = 0,

s̃′′2 − k̃0g̃1 − k̃1g̃0 − s̃0f̃
′
1 − s̃1f̃

′
0 + 2f̃0s̃′1 + 2f̃1s̃′0 = 0,

s̃2(0) = 0, s̃′2(δ) = 0,

θ̃′′
2 + 2Prf̃0θ̃′

1 + 2Prf̃1θ̃′′
0 = 0,

θ̃2(0) = 0, θ̃2(δ) = 0,

...

(3.13)

The solutions of system (3.13)may be written as follows:

f̃0
(
η
)
=

1
3

(
3δη2 − η3

)
,

g̃0
(
η
)
= 1,

k̃0
(
η
)
=

1
2

(
2δη − η2

)
,
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s̃0
(
η
)
=

1
2

(
2δη − η2

)
,

θ̃0
(
η
)
=

η

δ
,

f̃1
(
η
)
= − 1

630

[(
315δ + 84δ5

)
η2 − 105η3 − 7δη6 + η7

]
,

g̃1
(
η
)
= −1

6

[
8δ3η − 4δη3 + η4

]
,

k̃1
(
η
)
= − 1

360

[(
−120δ3 + 48δ5

)
η + 60δη3 − 15η4 − 12δη5 + 2η6

]
,

s̃1
(
η
)
= − 1

360

[(
360δ + 120δ3 + 48δ5

)
η − 180η2 − 60δη3 + 15η4 − 12δη5 + 2η6

]
,

θ̃1
(
η
)
= − Pr

30δ

[
−4δ4η + 5δη4 − η5

]
,

...

(3.14)

In the same manner, the rest of components were obtained using the MATHEMATICA
Package. According to the HPM, we can conclude that

f
(
η
)
= lim

p→ 1
f̃
(
η
)
= f̃0

(
η
)
+ f̃1

(
η
)
+ f̃2

(
η
)
+ · · · ,

g
(
η
)
= lim

p→ 1
g̃
(
η
)
= g̃0

(
η
)
+ g̃1

(
η
)
+ g̃2

(
η
)
+ · · · ,

k
(
η
)
= lim

p→ 1
k̃
(
η
)
= k̃0

(
η
)
+ k̃1

(
η
)
+ k̃2

(
η
)
+ · · · ,

s
(
η
)
= lim

p→ 1
s̃
(
η
)
= s̃0

(
η
)
+ s̃1

(
η
)
+ s̃2

(
η
)
+ · · · ,

θ
(
η
)
= lim

p→ 1
θ̃
(
η
)
= θ̃0

(
η
)
+ θ̃1

(
η
)
+ θ̃2

(
η
)
+ · · · .

(3.15)

4. Results and Discussion

Figures 2 and 3 show the normalized velocity profiles f(η), f ′(η), g(η), k(η), and s(η)
obtained by the HPM in comparison with the numerical solution by the fourth-order Runge-
Kutta method. From Figures 2 and 3, we can see a very good agreement between the purely
analytic results of the HPM and numerical results. The net flow due to the tilting of the
disk includes two components. The net draining flow per width in the x direction and
induced net flow in the lateral y direction, normalized by g

√
ν/Ω3 sin β, are

∫δ
0 k(η)dη and

∫δ
0 s(η)dη, respectively. Figure 4 shows the normalized draining and lateral flow rate obtained
by the HPM. Another one of the important quantities is the net force on the disk.



Journal of Applied Mathematics 11

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

η

f(η) 
f ′(η)

g(η) 
Numerical (RK4)[HPM]

[HPM] [HPM]

Figure 2: The normalized radial velocity profiles for the rotating flow obtained by the 8th-order
approximation of the HPM in comparison with the numerical solution, when δ = 0.8.
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Figure 3: The normalized velocity profiles for the draining flow (k(η)) and lateral flow (s(η)) obtained by
the 8th-order approximation of the HPM in comparison with the numerical solution, when δ = 0.8.

The net forces per unit area in the x and y directions, normalized by ρg
√
ν/Ω sin β, are

k′(0) and s′(0), respectively. Figure 5 shows these quantities. The normalized temperature
profiles for different values of the Prandtl number are represented in Figure 6. The value of
θ′(0) represents the local heat transfer on the disk normalized by k(T0 − Tw)

√
Ω/ν, where

k is the thermal conductivity. We show θ′(0) for different values of the Prandtl number in
Figure 7. The Nusselt number is defined by

Nu =
(∂T/∂z)w
T0 − Tw

= δθ′(0). (4.1)
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obtained by the 8th-order approximation of the HPM.
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Figure 5: The normalized shear on the disk in the x(k′(0)) and y(s′(0)) directions, obtained by the 8th-order
approximation of the HPM.

The Nusselt number for different values of the Prandtl number is illustrated in Figure 8. This
figure elucidates that the Nusselt number increases with thickness. Furthermore, the Nusselt
number approaches one as thickness tends to zero.

5. Final Remarks

In this paper, the homotopy perturbation method (HPM) was used for finding the totally
analytic solutions of the system of nonlinear ordinary differential equations derived from
similarity transform for the steady three-dimensional problem of fluid deposition on an
inclined rotating disk. The analytical results depicted by the graphs are consistent with
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Figure 6: The normalized temperature profiles (θ(η)) obtained by the 8th-order approximation of the HPM
for different values of the Prandtl number, when δ = 0.5.
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Figure 7: The temperature gradient on the disk (θ′(0)) obtained by the 8th-order approximation of the
HPM for different values of the Prandtl number.

the graphs produced by the fourth-order Runge-Kutta method, and, therefore, further
establish the reliability and effectiveness of the HPM solution. This method provides an
analytical approximate solution without any assumption of linearization. This character is
very important for systems with strong nonlinearities which could be extremely sensitive to
small changes in parameters. The solution obtained by means of HPM is an infinite power
series for appropriate initial approximation, which can be, in turn, expressed in a closed
form. In this regard, the homotopy perturbation method is found to be a very useful analytic
technique to get highly accurate and purely analytic solution to such kind of nonlinear
problems.
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