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The convergence of three-step fixed point iterative processes for generalized multivalued
nonexpansive mapping was considered in this paper. Under some different conditions, the
sequences of three-step fixed point iterates strongly or weakly converge to a fixed point of the
generalized multivalued nonexpansive mapping. Our results extend and improve some recent
results.

1. Introduction

Let X be a Banach space and K a nonempty subset of X. The set K is called proximinal if
for each x ∈ X, there exists an element y ∈ K such that ‖x − y‖ = d(x,K), where d(x,K) =
inf{‖x − z‖ : z ∈ K}. Let CB(K), C(K), P(K), F(T) denote the family of nonempty closed
bounded subsets, nonempty compact subsets, nonempty proximinal bounded subsets of K,
and the set of fixed points, respectively. A multivalued mapping T : K → CB(K) is said to
be nonexpansive (quasi-nonexpansive) if

H
(
Tx, Ty

) ≤ ∥∥x − y
∥∥, x, y ∈ K,

(
H
(
Tx, Tp

) ≤ ∥∥x − p
∥∥, x ∈ K, p ∈ F(T)

)
,

(1.1)

where H(·, ·) denotes the Hausdorff metric on CB(X) defined by

H(A,B) := max

{

sup
x∈A

inf
y∈B

∥∥x − y
∥∥, sup

y∈B
inf
x∈A

∥∥x − y
∥∥
}

, A, B ∈ CB(X). (1.2)
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A point x is called a fixed point of T if x ∈ Tx. Since Banach’s Contraction Mapping Principle
was extended nicely tomultivaluedmappings byNadler in 1969 (see [1]), many authors have
studied the fixed point theory for multivalued mappings (e.g., see [2]). For single-valued
nonexpansive mappings, Mann [3] and Ishikawa [4], respectively, introduced a new iteration
procedure for approximating its fixed point in a Banach space as follows:

xn+1 = (1 − αn)xn + αnTxn,

xn+1 = (1 − αn)xn + αnyn, yn = (1 − bn)xn + bnTxn,
(1.3)

where {αn} and {bn} are sequences in [0, 1]. Obviously, Mann iteration is a special case of
Ishikawa iteration. Recently Song and Wang in [5, 6] introduce the following algorithms for
multivalued nonexpansive mapping:

xn+1 = (1 − αn)xn + αnsn, (1.4)

where sn ∈ Txn, γn ∈ (0,+∞) such that limn→∞γn = 0 and ‖sn+1 − sn‖ ≤ H(Txn+1, Txn) + γn,

xn+1 = (1 − αn)xn + αnrn, yn = (1 − bn)xn + bnsn, (1.5)

where ‖sn − rn‖ ≤ H(Txn, Tyn) + γn and ‖sn+1 − rn‖ ≤ H(Txn+1, Tyn) + γn for sn ∈ Txn and
rn ∈ Tyn. They show some strong convergence results of the above iterates for multivalued
nonexpansive mapping T under some appropriate conditions. However, the iteration scheme
constructed by Song and Wang involves the following estimates,

‖sn − rn‖ ≤ H
(
Txn, Tyn

)
+ γn, ‖sn+1 − rn‖ ≤ H

(
Txn+1, Tyn

)
+ γn, (1.6)

which are not easy to be computed and the scheme is more time consuming. It is observed
that Song and Wang [6] did not use the above estimates in their proofs and the assumption
on T , namely, T(p) = {p} for any p ∈ F(T) is quite strong. It is noted that the domain of T is
compact, which is a strong condition. The aim of this paper is to construct an three iteration
scheme for a generalized multivalued mappings, which removes the restriction of T , namely,
T(p) = {p} for any p ∈ F(T) and also relax compactness of the domain of T . The generalized
multivalued mappings was introduced in [7], if

1
2
d(x, Tx) ≤ ∥∥x − y

∥∥ implies H
(
Tx, Ty

) ≤ ∥∥x − y
∥∥ ∀x, y ∈ K, (1.7)

where d is induced by the norm. Obviously, the condition is weaker than nonexpansiveness
and stronger than quasinonexpansiveness, furthermore, there are some examples of a
generalized nonexpansive multivalued mapping which is not a nonexpansive multivalued
mapping (see [7, 8]).
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Let T : K → P(K) be a generalized nonexpansive multivalued mapping and PT (x) =
{y ∈ T(x) : ‖x − y‖ = d(x, T(x))}. The three-step mean multivalued iterative scheme is
defined by x0 ∈ K,

zn = (1 − an)xn + ansn,
yn = (1 − bn − cn)xn + bntn + cnsn,

xn+1 =
(
1 − αn − βn − γn

)
xn + αnrn + βntn + γnsn,

(1.8)

where {an}, {bn}, {cn}, {bn + cn}, {αn}, {βn}, {γn}, and {αn + βn + γn} are appropriate sequence
in [0, 1], furthermore sn ∈ PT (xn), tn ∈ PT (zn), rn ∈ PT (yn). If an = cn = βn = γn ≡ 0 or
an = bn = cn = βn = γn ≡ 0, then iterative scheme (1.8) reduces to the Ishikawa and Mann
multivalued iterative scheme. In fact let γn ≡ 0 or cn = βn = γn ≡ 0 or bn = cn = αn = γn ≡ 0, we
also have the other three algorithms.

The mapping T : K → CB(K) is called hemicompact if, for any sequence xn in K
such that d(xn, T(xn)) → 0 as n → ∞, there exists a subsequence xnk of xn such that xnk →
p ∈ K. We note that if K is compact, then every multivalued mapping T : K → CB(K) is
hemicompact. The following definition was introduced in [9].

Definition 1.1. A multivalued mapping T : K → CB(K) is said to satisfy Condition (A) if
there is a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0, f(x) > 0 for x ∈ (0,∞)
such that

d(x, Tx) ≥ f(d(x, F(T))) ∀x ∈ K. (1.9)

where F(T)/= ∅ is the fixed point set of themultivaluedmapping T . From now on, F(T) stands
for the fixed point set of the multivalued mapping T .

2. Preliminaries

A Banach space X is said to be satisfy Opial’s condition [10] if, for any sequence {xn} in X,
xn ⇀ x(n → ∞) implies the following inequality:

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

∥∥xn − y
∥∥, (2.1)

for all y ∈ X with y /=x. It is known that Hilbert spaces and lp(1 < p < ∞) have the Opial’s
condition.

Lemma 2.1 (see [7, 11]). Let {xn}, {yn}, and {zn} be sequence in uniformly convex Banach space
X. Suppose that {αn}, {βn}, and {γn} are sequence in [0, 1] with αn + βn + γn = 1, lim supn‖xn‖ ≤
d, lim supn‖yn‖ ≤ d, lim supn‖zn‖ ≤ d, and limn‖αnxn + βnyn + γnzn‖ = d. If lim infnαn > 0
and lim infnβn > 0, then limn‖xn − yn‖ = 0.
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Lemma 2.2 (see [7, 11]). Let X be a uniformly convex Banach space and Br := {x ∈ X : ‖x‖ ≤
r}, r > 0. Then there exists a continuous strictly increasing convex function g : [0,∞) → [0,∞)
with g(0) = 0 such that

∥
∥λx + μy + ξz + ϑω

∥
∥2

≤ λ‖x‖2 + μ
∥
∥y

∥
∥2 + ξ‖z‖2 + ϑ‖ω‖2 − 1

3
ϑ
(
λg(‖x −ω‖) + μg

(∥∥y −ω
∥
∥) + ξg(‖z −ω‖)),

(2.2)

for all x, y, z,ω ∈ Br and λ, μ, ξ, ϑ ∈ [0, 1] with λ + μ + ξ + ϑ = 1.

3. Main Results

Lemma 3.1. Let X be a real Banach space and K be a nonempty convex subset of X, T : K → P(K)
be a generalized multivalued nonexpansive mapping with F(T)/= ∅ such that PT is nonexpansive. Let
{xn} be a sequence in K defined by (1.8), then one has the following conclusion:

lim
n

∥∥xn − p
∥∥ exists for any p ∈ F(T). (3.1)

Proof. Let p ∈ F(T), then p ∈ PT (p) = {p}. Since T is quasi-nonexpansive, thus we obtain

∥∥zn − p
∥∥ ≤ (1 − an)

∥∥xn − p
∥∥ + an

∥∥sn − p
∥∥

≤ (1 − an)
∥∥xn − p

∥∥ + and
(
sn, PT

(
p
))

≤ (1 − an)
∥∥xn − p

∥∥ + anH
(
PT (xn), PT

(
p
))

≤ (1 − an)
∥∥xn − p

∥∥ + an

∥∥xn − p
∥∥

≤ ∥∥xn − p
∥∥,

(3.2)

similarly ‖yn − p‖ ≤ ‖xn − p‖, then we have
∥∥xn+1 − p

∥∥ ≤ (
1 − αn − βn − γn

)∥∥xn − p
∥∥ + αn

∥∥rn − p
∥∥

+ βn
∥
∥tn − p

∥
∥ + γn

∥
∥sn − p

∥
∥

≤ (
1 − αn − βn − γn

)∥∥xn − p
∥∥ + αnH

(
PT

(
yn

)
, PT

(
p
))

+ βnH
(
PT (zn), PT

(
p
))

+ γnH
(
PT (xn), PT

(
p
))

≤ ∥∥xn − p
∥∥.

(3.3)

Then {‖xn − p‖} is a decreasing sequence and hence limn‖xn − p‖ exists for any p ∈ F(T).

Lemma 3.2. Let X be a uniformly convex Banach space and K be a nonempty convex subset of
X, T : K → P(K) be a generalized multivalued nonexpansive mapping with F(T)/= ∅ such that
PT is nonexpansive. Let {xn} be a sequence in K defined by (1.8), if the coefficient satisfy one of the
following control conditions:

(i) lim infnαn > 0 and one of the following holds:

(a) lim supn(αn + βn + γn) < 1 and lim supn(bn + cn) < 1,
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(b) 0 < lim infnβn ≤ lim supn(αn + βn + γn) < 1 and lim supncn < 1,

(c) 0 < lim infnbn ≤ lim supn(bn + cn) < 1 and lim supnan < 1,

(d) 0 < lim infncn ≤ lim supn(bn + cn) < 1;

(ii) 0 < lim infnβn ≤ lim supn(αn + βn + γn) < 1 and lim supnan < 1;

(iii) 0 < lim infnγn ≤ lim supn(αn + βn + γn) < 1;

(iv) 0 < lim infn(αnbn + βn) and 0 < lim infnan ≤ lim supnan < 1;

then we have limnd(xn, Txn) = 0.

Proof. By Lemma 3.1, we know that limn‖xn − p‖ exists for any p ∈ F(T), then it follows that
{sn − p}, {tn − p}, and {rn − p} are all bounded. We may assume that these sequences belong
to Br where r > 0. Note that p ∈ PT (p) = {p} for any fixed point p ∈ F(T) and T is quasi-
nonexpansive. By Lemma 2.2, we get

∥∥zn − p
∥∥2 ≤ (1 − an)

∥∥xn − p
∥∥2 + an

∥∥sn − p
∥∥2

≤ (1 − an)
∥∥xn − p

∥∥2 + anH
(
PT (xn), PT

(
p
))2

≤ ∥∥xn − p
∥∥2
,

∥∥yn − p
∥∥2 ≤ (1 − bn − cn)

∥∥xn − p
∥∥2 + bn

∥∥tn − p
∥∥2 + cn

∥∥sn − p
∥∥2

− 1
3
(1 − bn − cn)

(
bng(‖tn − xn‖) + cng(‖sn − xn‖)

)

≤ (1 − bn − cn)
∥∥xn − p

∥∥2 + bnH
(
PT (zn), PT

(
p
))2 + cnH

(
PT (xn), PT

(
p
))2

− 1
3
(1 − bn − cn)bng(‖tn − xn‖)

≤ ∥∥xn − p
∥∥2 − 1

3
(1 − bn − cn)bng(‖tn − xn‖),

(3.4)

and therefore we have

∥∥xn+1 − p
∥∥2 ≤ (

1 − αn − βn − γn
)∥∥xn − p

∥∥2 + αn

∥∥rn − p
∥∥2 + βn

∥∥tn − p
∥∥2 + γn

∥∥sn − p
∥∥2

− 1
3
(
1 − αn − βn − γn

)[
αng(‖xn − rn‖) + βng(‖xn − tn‖) + γng(‖xn − sn‖)

]

≤ (
1 − αn − βn − γn

)∥∥xn − p
∥∥2 + αnH

(
PT

(
yn

)
, PT

(
p
))2 + βnH

(
PT (zn), PT

(
p
))2

+ γnH
(
PT (xn), PT

(
p
))2

− 1
3
(
1 − αn − βn − γn

)[
αng(‖xn − rn‖) + βng(‖xn − tn‖) + γng(‖xn − sn‖)

]
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≤ ∥
∥xn − p

∥
∥2 − αn

3
(1 − bn − cn)bng(‖tn − xn‖) − 1

3
(
1 − αn − βn − γn

)

× [
αng(‖xn − rn‖) + βng(‖xn − tn‖) + γng(‖xn − sn‖)

]
.

(3.5)

Then

(
1 − αn − βn − γn

)
αng(‖xn − rn‖) ≤ 3

(∥
∥xn − p

∥
∥2 − ∥

∥xn+1 − p
∥
∥2
)
, (3.6)

(
1 − αn − βn − γn

)
βng(‖xn − tn‖) ≤ 3

(∥
∥xn − p

∥
∥2 − ∥

∥xn+1 − p
∥
∥2
)
, (3.7)

(
1 − αn − βn − γn

)
γng(‖xn − sn‖) ≤ 3

(∥
∥xn − p

∥
∥2 − ∥

∥xn+1 − p
∥
∥2
)
, (3.8)

αn(1 − bn − cn)bng(‖tn − xn‖) ≤ 3
(∥
∥xn − p

∥
∥2 − ∥

∥xn+1 − p
∥
∥2
)
. (3.9)

Since limn‖xn − p‖ exists for any p ∈ F(T), it follows from (3.6) that limn(1 − αn − βn −
γn)αng(‖xn − rn‖) = 0. From g is continuous strictly increasing with g(0) = 0 and 0 <
lim infnαn ≤ lim supn(αn + βn + γn) < 1, then

lim
n
‖xn − rn‖ = 0. (3.10)

Using a similarly method together with inequalities (3.7) and 0 < lim infnβn ≤ lim supn(αn +
βn + γn) < 1, then

lim
n
‖xn − tn‖ = 0. (3.11)

Similarly, from (3.8) and 0 < lim infnγn ≤ lim supn(αn+βn+γn) < 1, we have limn‖xn−sn‖ = 0,
since sn ∈ Txn, then 0 ≤ limnd(xn, Txn) ≤ limn‖xn − sn‖ = 0, thus we get (iii). In the sequence
we prove (i) (a). From iterative scheme (1.8), we have

‖sn − xn‖ ≤ ‖sn − rn‖ + ‖rn − xn‖ ≤ H
(
PT (xn), PT

(
yn

))
+ ‖rn − xn‖

≤ ∥∥xn − yn

∥∥ + ‖rn − xn‖
≤ bn‖xn − tn‖ + cn‖xn − sn‖ + ‖rn − xn‖.

(3.12)

To show that limn‖xn − sn‖ = 0, it suffices to show that there exist a subsequence {nj} of {n}
such that limnj‖xnj − snj‖ = 0. If lim infjbnj > 0, it follows from (3.9) that

αnj

(
1 − bnj − cnj

)
bnj g

(∥∥∥tnj − xnj

∥∥∥
)
≤ 3

(∥∥∥xnj − p
∥∥∥
2 −

∥∥∥xnj+1 − p
∥∥∥
2
)
. (3.13)

Since limn‖xn − p‖ exists for any p ∈ F(T), we have

lim
nj

αnj

(
1 − bnj − cnj

)
bnj g

(∥∥∥tnj − xnj

∥∥∥
)
= 0. (3.14)
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From g is continuous strictly increasing with g(0) = 0, lim infjαnj > 0 and 0 < lim infnj bnj ≤
lim supnj

(bnj + cnj ) < 1, we have

lim
nj

∥
∥
∥tnj − xnj

∥
∥
∥ = 0. (3.15)

This together with (3.10), (3.12), (3.15) gives

lim
j

(
1 − cnj

)∥∥
∥snj − xnj

∥
∥
∥ = 0. (3.16)

Since lim infnj (1 − cnj ) = 1 − lim supnj
cnj > 0, we have limj‖snj − xnj‖ = 0. On the other hand,

if lim infjbnj = 0, then we may extract a subsequence {bnk} of {bnj} so that limkbnk = 0. This
together with (i) (a) and (3.10), (3.12) gives

lim
k
(1 − cnk)‖snk − xnk‖ = 0, and so lim

k
‖snk − xnk‖ = 0. (3.17)

By Double Extract Subsequence Principle, we obtain the result.
If 0 < lim infnβn ≤ lim supn(αn + βn + γn) < 1 and lim supnan < 1, we will prove (ii),

‖sn − xn‖ ≤ ‖sn − tn‖ + ‖tn − xn‖ ≤ H(PT (xn), PT (zn)) + ‖tn − xn‖
≤ ‖xn − zn‖ + ‖tn − xn‖
≤ an‖xn − sn‖ + ‖tn − xn‖.

(3.18)

Since lim supnan < 1, then

lim inf
n

(1 − an) = 1 − lim sup
n

an > 0. (3.19)

This together with (3.11), (3.18), we obtain the result.
We will prove (i) (b), let p ∈ F(T). By Lemma 3.1, we let limn‖xn − p‖ = d for some

d ≥ 0. From iterative scheme (1.8), we know

d = lim
n

∥∥xn+1 − p
∥∥ = lim

n

∥∥(1 − αn − βn − γn
)(
xn − p

)
+ αn

(
rn − p

)
+ βn

(
tn − p

)
+ γn

(
sn − p

)∥∥.

(3.20)

From Lemma 3.1, we have known that ‖zn − p‖ ≤ ‖xn − p‖ and ‖yn − p‖ ≤ ‖xn − p‖, then
lim sup

n

∥∥rn − p
∥∥ ≤ lim sup

n
H
(
PT

(
yn

)
, PT

(
p
)) ≤ lim sup

n

∥∥yn − p
∥∥ ≤ d,

lim sup
n

∥∥tn − p
∥∥ ≤ lim sup

n
H
(
PT (zn), PT

(
p
)) ≤ lim sup

n

∥∥zn − p
∥∥ ≤ d,

lim sup
n

∥∥sn − p
∥∥ ≤ lim sup

n
H
(
PT (xn), PT

(
p
)) ≤ lim sup

n

∥∥xn − p
∥∥ ≤ d.

(3.21)

From (3.20) and Lemma 2.1, we have

lim
n
‖xn − tn‖ = lim

n
‖rn − xn‖ = 0. (3.22)
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Notice that

‖xn − sn‖ ≤ ‖xn − rn‖ + ‖rn − sn‖ ≤ ‖xn − rn‖ +H
(
PT

(
yn

)
, PT (xn)

)

≤ ∥
∥xn − yn

∥
∥ + ‖xn − rn‖

≤ bn‖xn − tn‖ + cn‖xn − sn‖ + ‖xn − rn‖.
(3.23)

Since lim supncn < 1, we have limn‖sn−xn‖ = 0, therefore 0 ≤ limnd(xn, Txn) ≤ limn‖xn−sn‖ =
0.

We will prove (i) (c). From iterative scheme (1.8) and Lemma 3.1, we have

∥
∥xn+1 − p

∥
∥ ≤ (

1 − αn − βn − γn
)∥∥xn − p

∥
∥ + αn

∥
∥yn − p

∥
∥ + βn

∥
∥zn − p

∥
∥ + γn

∥
∥xn − p

∥
∥

≤ (1 − αn)
∥∥xn − p

∥∥ + αn

∥∥yn − p
∥∥. (3.24)

which implies

∥∥xn+1 − p
∥∥ − ∥∥xn − p

∥∥ + αn

∥∥xn − p
∥∥ ≤ αn

∥∥yn − p
∥∥. (3.25)

Notice that lim infnαn > 0 and limn‖xn − p‖ exists. Hence from (3.25)we have

d = lim
n

∥∥xn − p
∥∥ ≤ lim inf

n

∥∥yn − p
∥∥ ≤ lim sup

∥∥yn − p
∥∥ ≤ d. (3.26)

Therefore, from iterative scheme (1.8) we have

d = lim
n

∥∥yn − p
∥∥ = lim

n

∥∥(1 − bn − cn)
(
xn − p

)
+ bn

(
tn − p

)
+ cn

(
sn − p

)∥∥. (3.27)

From Lemma 2.1, we have

lim
n
‖xn − tn‖ = 0. (3.28)

Notice that

‖sn − xn‖ ≤ ‖sn − tn‖ + ‖tn − xn‖ ≤ H(PT (xn), PT (zn)) + ‖tn − xn‖
≤ ‖xn − zn‖ + ‖tn − xn‖
≤ an‖xn − sn‖ + ‖tn − xn‖.

(3.29)

Since lim supnan < 1, then 0 ≤ limnd(xn, Txn) ≤ limn‖xn − sn‖ = 0.
By (3.27) and Lemma 2.1, we can similarly prove (i) (d).
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Finally, we will prove (iv). From iterative scheme (1.8) and Lemma 3.1, we have

∥
∥xn+1 − p

∥
∥ ≤ (

1 − αn − βn − γn
)∥∥xn − p

∥
∥ + αn

∥
∥rn − p

∥
∥ + βn

∥
∥tn − p

∥
∥ + γn

∥
∥sn − p

∥
∥

≤ (
1 − αn − βn − γn

)∥∥xn − p
∥
∥ + αn

∥
∥yn − p

∥
∥ + βn

∥
∥zn − p

∥
∥ + γn

∥
∥xn − p

∥
∥

≤ (
1 − αn − βn

)∥∥xn − p
∥
∥ + αn

[
(1 − bn)

∥
∥xn − p

∥
∥ + bn

∥
∥zn − p

∥
∥] + βn

∥
∥zn − p

∥
∥,
(3.30)

which implies

∥
∥xn+1 − p

∥
∥ − ∥

∥xn − p
∥
∥ +

(
αnbn + βn

)∥∥xn − p
∥
∥ ≤ (

αnbn + βn
)∥∥zn − p

∥
∥. (3.31)

Notice that

0 < lim inf
n

(
αnbn + βn

)
, lim

n

∥∥xn − p
∥∥ exists. (3.32)

Hence we have

d = lim
n

∥∥xn − p
∥∥ ≤ lim inf

n

∥∥zn − p
∥∥ ≤ lim sup

∥∥zn − p
∥∥ ≤ d. (3.33)

Thus, we have

d = lim
n

∥∥zn − p
∥∥ = lim

n
(1 − an)

∥∥xn − p
∥∥ + an

∥∥sn − p
∥∥. (3.34)

By Lemma 2.1 and 0 < lim infnan ≤ lim supnan < 1, we have 0 ≤ limnd(xn, Txn) ≤ limn‖xn −
sn‖ = 0.

Theorem 3.3. Let X be a uniformly convex Banach space and K be a nonempty convex subset of
X, T : K → P(K) be a generalized multivalued nonexpansive mapping with F(T)/= ∅ such that
PT is nonexpansive. Let {xn} be a sequence in K defined by (1.8), the coefficient satisfy the control
conditions in Lemma 3.2 and T satisfies Condition (A) with respect to the sequence {xn}, then {xn}
converges strongly to a fixed point of T .

Proof. By Lemma 3.2, we have limnd(xn, Txn) = 0. Since T satisfies Condition (A) with
respect to {xn}. Then

f(d(xn, F(T))) ≤ d(xn, Txn) −→ 0. (3.35)

Thus, we get limnd(xn, F(T)) = 0. The remainder of the proof is the same as in [6, Theorem
2.4], we omit it.

Theorem 3.4. Let X be a uniformly convex Banach space and K be a nonempty convex subset of
X, T : K → P(K) be a generalized multivalued nonexpansive mapping with F(T)/= ∅ such that
PT is nonexpansive. Let {xn} be a sequence in K defined by (1.8), the coefficient satisfy the control
conditions in Lemma 3.2 and T is hemicompact, then {xn} converges strongly to a fixed point of T .
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Proof. By Lemma 3.2, we have limnd(xn, Txn) = 0. Since T is hemicompact, then there exist a
subsequence {xnk} of {xn} such that limk→∞‖xnk − q‖ = 0 for some q ∈ K. Thus,

d
(
q, Tq

) ≤ ∥
∥q − xnk

∥
∥ + d(xnk , Txnk) +H

(
Txnk , Tq

)

≤ 2
∥
∥q − xnk

∥
∥ + d(xnk , Txnk) −→ 0. (3.36)

Hence, q is a fixed point of T . Now on take on q in place of p, we get that limn→∞‖xn − q‖
exists. It follows that xn → q as n → ∞. This completes the proof.

Theorem 3.5. Let X, T and {xn} be the same as in Lemma 3.2. If K be a nonempty weakly compact
convex subset of a Banach space X and X satisfies Opial’s condition, then {xn} converges weakly to a
fixed point of T .

Proof. The proof of the Theorem is the same as in [6, Theorem 2.5], we omit it.

Remark 3.6. From the definition of iterative scheme (1.8), Theorems 3.3, 3.4, and 3.5 extend
some results in [6, 12], and also give some new results are different from the [5]. In fact, we
can present an example of a multivalued map T for which PT is nonexpansive. A multivalued
map T : D → CB(X) is ∗-nonexpansive [13] if for all x, y ∈ D and ux ∈ T(x) with d(x, ux) =
inf{d(x, z) : z ∈ T(x)}, there exists uy ∈ T(y) with d(y, uy) = inf{d(y,w) : ω ∈ T(y)} such
that

d
(
ux, uy

) ≤ d
(
x, y

)
. (3.37)

It is clear that if T is ∗-nonexpansive, then PT is nonexpansive. It is known that ∗-
nonexpansiveness is different from nonexpansiveness for multivalued maps. Let D = [0,∞)
and T be defined by Tx = [x, 2x] for x ∈ D [14]. Then PT (x) = x for x ∈ D and thus it is
nonexpansive. Note that T is ∗-nonexpansive but not nonexpansive (see [14]).
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