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The author extends two fixed point theorems (due to Gregori, Sapena, and Žikić, resp.) in fuzzy
metric spaces to intuitionistic fuzzy metric spaces.

1. Introduction

In this paper, we pay our attention to the fixed point theory on intuitionistic fuzzy metric
spaces. Since Zadeh [1] introduced the theory of fuzzy sets, many authors have studied the
character of fuzzy metric spaces in different ways [2–5]. Among others, fixed point theorem
was an important subject. Gregori and Sapena [6] investigated fixed point theorems for fuzzy
contractive mappings defined on fuzzy metric spaces. Recently, Žikić [7] proved a fixed
point theorem for mappings on fuzzy metric space which improved the result of Gregori
and Sapena. As further development, Atanassov [8] introduced and studied the concept of
intuitionistic fuzzy sets as a generalization of fuzzy sets, and later there has been much prog-
ress in the study of intuitionistic fuzzy sets [9, 10]. Using the idea of intuitionistic sets, Park
[11] defined the notion of intuitionistic fuzzy metric spaces with the help of continuous
t-norms and continuous t-conorms as a generalization of fuzzymetric space. Recently, several
authors studied the structure of intuitionistic fuzzy metric spaces and fixed point theorems
for the mappings defined on intuitionistic fuzzy metric spaces. We refer the reader to [11–13]
for further details. In this paper, we will prove the following two fixed point theorems.

The first theorem extends Gregori-Sapena’s fixed point theorem [6] in fuzzy metric
spaces to complete intuitionistic fuzzy metric spaces. As preparation, we recall the definition
of s-increasing sequence [6]. A sequence {tn} of positive real numbers is said to be an s-in-
creasing sequence if there exists m0 ∈ N such that tm + 1 ≤ tm+1, for all m ≥ m0.
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Theorem 1.1. Let (X,M,N, ∗,♦) be a complete intuitionistic fuzzy metric space such that for every
s-increasing sequence {tn} and arbitrary x, y ∈ X,

lim
n→∞

∞∏

i=n

M
(
x, y, ti

)
= 1, lim

n→∞

∞∏

i=n

N
(
x, y, ti

)
= 0 (1.1)

hold.
Let k ∈ (0, 1) and T : X → X be a mapping satisfying M(Tx, Ty, kt) ≥ M(x, y, t) and

N(Tx, Ty, kt) ≤ N(x, y, t) for all x, y ∈ X. Then T has a unique fixed point.

The second theorem extends Žikić’s fixed point theorem [7] in fuzzy metric space to
intuitionistic fuzzy metric space.

Theorem 1.2. Let (X,M,N, ∗,♦) be a complete intuitionistic fuzzy metric space such that for some
σ0 ∈ (0, 1) and x0 ∈ X,

lim
n→∞

∞∏

i=n

M

(
x0, Tx0,

1
σi
0

)
= 1, lim

n→∞

∞∏

i=n

N

(
x0, Tx0,

1
σi
0

)
= 0 (1.2)

hold.
Let k ∈ (0, 1) and T : X → X be a mapping satisfying M(Tx, Ty, kt) ≥ M(x, y, t) and

N(Tx, Ty, kt) ≤ N(x, y, t) for all x, y ∈ X. Then T has a unique fixed point.

2. Basic Notions and Preliminary Results

For the sake of completeness, in this section we will recall some definitions and preliminaries
on intuitionistic fuzzy metric spaces.

Definition 2.1 (see [14]). LetX be a nonempty fixed set. An intuitionistic fuzzy setA is an object
having the form

A =
{〈
x, μA(x), νA(x)

〉
: x ∈ X

}
, (2.1)

where the functions μA : X → [0, 1] and νA : X → [0, 1] denote the degree of membership
and the degree of nonmembership of each element x ∈ X to the set A, respectively, and
0 ≤ μA(x) + νA(x) ≤ 1 for each x ∈ X.

For developing intuitionistic fuzzy topological spaces, in [10], Çoker introduced the
intuitionistic fuzzy sets 0∼ and 1∼ in X as follows.

Definition 2.2 (see [10]). 0∼ = {〈x, 0, 1〉 : x ∈ X} and 1∼ = {〈x, 1, 0〉 : x ∈ X}.
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By Definition 2.2, Çoker defined the notion of intuitionistic fuzzy topological spaces.

Definition 2.3 (see [10]). An intuitionistic fuzzy topology on a nonempty set X is a family τ of
intuitionistic fuzzy sets in X satisfying the following axioms:

(T1) 0∼, 1∼ ∈ τ ;

(T2) G1 ∩G2 ∈ τ for any G1, G2 ∈ τ ;

(T3)
⋃
Gi ∈ τ for any arbitrary family {Gi : i ∈ J} ⊆ τ .

In this case, the pair (X, τ) is called an intuitionistic fuzzy topological space.

Definition 2.4 (see [15]). A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is a continuous t-norm
(triangular norm) if ∗ satisfies the following conditions:

(a) ∗ is associative and commutative;

(b) ∗ is continuous;
(c) a ∗ 1 = a for all a ∈ [0, 1];

(d) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, and a, b, c, d ∈ [0, 1].

By this definition, it is easy to see that 1 ∗ 1 = 1. According to condition (a), the fol-
lowing product is well defined: M(x1, y1, t1) ∗ M(x2, y2, t2) ∗ · · · ∗ M(xn, yn, tn), and we will
denote it by

∏i=n
i=1M(xi, yi, ti).

Definition 2.5 (see [15]). A binary operation ♦ : [0, 1]× [0, 1] → [0, 1] is a continuous t-conorm
(triangular conorm) if ♦ satisfies the following conditions:

(e) ♦ is associative and commutative;

(f) ♦ is continuous;

(g) a♦0 = a for all a ∈ [0, 1];

(h) a♦b ≤ c♦d whenever a ≤ c and b ≤ d, and a, b, c, d ∈ [0, 1].

By this definition, it is easy to see that 0♦0 = 0. According to condition (e), the follow-
ing product is well defined:N(x1, y1, t1)♦N(x2, y2, t2)♦ · · ·♦N(xn, yn, tn), and we also denote
this product by

∏i=n
i=1N(xi, yi, ti).

Remark 2.6. The origin of concepts of t-norms and related t-conorms was in the theory of sta-
tistical metric spaces in the work of Menger [5]. These concepts are known as the axiomatic
skeletons that we use for characterizing fuzzy intersections and unions, respectively. Basic
examples of t-norms are a ∗b = ab and a ∗b = min{a, b}, and basic examples of t-conorms are
a♦b = max{a, b} and a♦b = min{1, a + b}.

Definition 2.7 (see [13]). A 5-tuple (X,M,N, ∗,♦) is said to be an intuitionistic fuzzy metric space
if X is an arbitrary set, ∗ is a continuous t-norm, ♦ is a continuous t-conorm, and M,N are
fuzzy sets on X ×X × [0,∞) satisfying the following conditions:

(IFm 1) M(x, y, t) +N(x, y, t) ≤ 1;

(IFm 2) M(x, y, 0) = 0;

(IFm 3) M(x, y, t) = 1 for all t > 0 if and only if x = y;
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(IFm 4) M(x, y, t) = M(y, x, t);

(IFm 5) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t + s) for all x, y, z ∈ X, s, t > 0;

(IFm 6) M(x, y, ·) : [0,∞) → [0, 1] is left continuous;

(IFm 7) limt→∞M(x, y, t) = 1 for all x, y ∈ X;

(IFm 8) N(x, y, 0) = 1;

(IFm 9) N(x, y, t) = 0 for all t > 0 if and only if x = y;

(IFm 10) N(x, y, t) = N(y, x, t);

(IFm 11) N(x, y, t)♦N(y, z, s) ≥ N(x, z, t + s) for all x, y, z ∈ X, s, t > 0;

(IFm 12) N(x, y, ·) : [0,∞) → [0, 1] is right continuous;

(IFm 13) limt→∞N(x, y, t) = 0 for all x, y ∈ X.

We denote by (M,N) the intuitionistic fuzzymetric onX. In intuitionistic fuzzymetric
space X, it is easy to see M(x, y, ·) is nondecreasing and N(x, y, ·) is nonincreasing for all
x, y ∈ X. We also note that the successive product

∏
with respect toM(x, y, t) is in the sense

of ∗ and the successive product
∏

with respect to N(x, y, t) is in the sense of ♦ throughout
this paper.

Definition 2.8. Let (X,M,N, ∗,♦) be an intuitionistic fuzzy metric space. Then

(I) a sequence {xn} in X is Cauchy sequence if and only if for each t > 0 and p > 0,

lim
n→∞

M
(
xn, xn+p, t

)
= 1, lim

n→∞
N
(
xn, xn+p, t

)
= 0, (2.2)

(II) a sequence {xn} in X is convergent to x ∈ X if and only if for each t > 0,

lim
n→∞

M(xn, x, t) = 1, lim
n→∞

N(xn, x, t) = 0. (2.3)

Definition 2.9. An intuitionistic fuzzy metric space is said to be complete if and only if every
Cauchy sequence is convergent.

3. Proof of Theorem 1.1

In this section, we will give the proof of Theorem 1.1 of the present paper.

Proof. Select an arbitrary point x ∈ X. Let xn = Tn(x), n ∈ N. We have

M(x1, x2, t) = M
(
T(x), T2(x), t

)
≥ M

(
x, T(x),

t

k

)
= M

(
x, x1,

t

k

)
,

N(x1, x2, t) = N
(
T(x), T2(x), t

)
≤ N

(
x, T(x),

t

k

)
= N

(
x, x1,

t

k

)
.

(3.1)

By induction it follows that M(xn, xn+1, t) ≥ M(x, x1, t/k
n) and N(xn, xn+1, t) ≤ N(x, x1,

t/kn).
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Let t > 0. For m,n ∈ N, without loss of generality, we suppose n < m; if we choose
si > 0, i = n, . . . ,m − 1, satisfying sn + sn+1 + · · · + sm−1 ≤ 1, then we have

M(xn, xm, t) ≥ M(xn, xn+1, snt) ∗ · · · ∗M(xm−1, xm, sm−1t)

≥ M

(
x, x1,

snt

kn

)
∗ · · · ∗M

(
x, x1,

sm−1t
km−1

)
,

N(xn, xm, t) ≤ N(xn, xn+1, snt)♦ · · ·♦N(xm−1, xm, sm−1t)

≤ N

(
x, x1,

snt

kn

)
♦ · · ·♦N

(
x, x1,

sm−1t
km−1

)
.

(3.2)

In particular, since
∑∞

n=1 1/n(n + 1) = 1, taking si = 1/i(i + 1), i = n, . . . ,m − 1, one achieves

M(xn, xm, t) ≥ M

(
x, x1,

t

n(n + 1)kn

)
∗ · · · ∗M

(
x, x1,

t

(m − 1)mkm−1

)
, (3.3)

N(xn, xm, t) ≤ N

(
x, x1,

t

n(n + 1)kn

)
♦ · · ·♦N

(
x, x1,

t

(m − 1)mkm−1

)
. (3.4)

We define tn = t/n(n+ 1)kn. It is preliminary to show that (tn+1 − tn) → ∞, as n → ∞, so {tn}
is an s-increasing sequence, and hence we get

lim
m→∞

∞∏

n=m
M

(
x, x1,

t

n(n + 1)kn

)
= 1, lim

m→∞

∞∏

n=m
N

(
x, x1,

t

n(n + 1)kn

)
= 0. (3.5)

The combination of (3.3), (3.4), and (3.5) implies limn→∞M(xn, xm, t) = 1 and limn→∞N(xn,
xm, t) = 0 for m > n. Hence {xn} is a Cauchy sequence. Since X is complete, there is y ∈ X
such that limn→∞xn = y. We claim y is a fixed point of T . In fact, it is easy to see

M
(
T
(
y
)
, y, t

) ≥
{
lim
n→∞

M

(
T
(
y
)
, T(xn),

t

2

)}
∗
{
lim
n→∞

M

(
xn+1, y,

t

2

)}

≥
{
lim
n→∞

M

(
y, xn,

t

2k

)}
∗
{
lim
n→∞

M

(
xn+1, y,

t

2

)}

= 1 ∗ 1,

N
(
T
(
y
)
, y, t

) ≤
{
lim
n→∞

N

(
T
(
y
)
, T(xn),

t

2

)}
♦
{
lim
n→∞

N

(
xn+1, y,

t

2

)}

≤
{
lim
n→∞

N

(
y, xn,

t

2k

)}
♦
{
lim
n→∞

N

(
xn+1, y,

t

2

)}

= 0♦0.

(3.6)
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ThusM(T(y), y, t) = 1 andN(T(y), y, t) = 0, and we obtain T(y) = y. In the sequel, we show
the uniqueness of the fixed point. We assume T(z) = z for some z ∈ X. We have

1 ≥ M
(
y, z, t

)
= M

(
Ty, Tz, t

)

≥ M

(
y, z,

t

k

)
= M

(
T
(
y
)
, T(z),

t

k

)

≥ M

(
y, z,

t

k2

)
= M

(
T
(
y
)
, T(z),

t

k2

)

· · ·

≥ lim
n→∞

M

(
y, z,

t

kn

)

= 1,

0 ≤ N
(
y, z, t

)
= N

(
Ty, Tz, t

)

≤ N

(
y, z,

t

k

)
= N

(
T
(
y
)
, T(z),

t

k

)

≤ N

(
y, z,

t

k2

)
= N

(
T
(
y
)
, T(z),

t

k2

)

· · ·

≤ lim
n→∞

N

(
y, z,

t

kn

)

= 0.

(3.7)

Thus we get M(y, z, t) = 1 and N(y, z, t) = 0, and hence y = z. The proof is complete.

4. Proof of Theorem 1.2

In this section, we will give the proof of Theorem 1.2 by three lemmas.

Lemma 4.1. For any monotonely nondecreasing function F : (0,∞) → [0, 1], the following impli-
cation holds:

lim
n→∞

∞∏

i=n

F
(
σi
0

)
= 0 =⇒ lim

n→∞

∞∏

i=n

F
(
σi
)
= 0 (4.1)

for all σ ∈ (0, 1), where the infinite product
∏

is in the sense of ♦.

Proof

Case 1 (σ < σ0). For i ∈ N, σi < σi
0, and since F is nondecreasing, F(σi) ≤ F(σi

0) hold. And
hence

∏∞
i=nF(σ

i) ≤ ∏∞
i=nF(σ

i
0), n ∈ N. So implication (4.1) holds.
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Case 2 (σ ≥ σ0). If σ =
√
σ0, it follows

∞∏

i=2m

F
(
σi
)
=

[ ∞∏

i=m

F
(
σ2i

)]
♦
[ ∞∏

i=m

F
(
σ2i+1

)]

≤
[ ∞∏

i=m

F
(
σi
0

)]
♦
[ ∞∏

i=m

F
(
σi
0

)]
.

(4.2)

Then we have limm→∞
∏∞

i=2mF(σ
i) ≤ 0♦0 = 0. And limm→∞

∏∞
i=2m+1F(σ

i) ≤ limm→∞∏∞
i=2m+2F(σ

i) = 0. Thus it follows that limm→∞
∏∞

i=mF(σ
i) = 0 for σ =

√
σ0. Since F is non-

decreasing, it is easy to show limm→∞
∏∞

i=mF(σ
i) = 0 for σ <

√
σ0.

For an arbitrary σ > σ0, there existsm ∈ N such that σ < σ
[(1/2)m]
0 , and we can repeat the

above process m-times to get limm→∞
∏∞

i=mF(σ
i) = 0.

Lemma 4.2. For any monotonely nonincreasing function G : (0,∞) → [0, 1], the following impli-
cation holds:

lim
n→∞

∞∏

i=n

G
(
σi
0

)
= 1 =⇒ lim

n→∞

∞∏

i=n

G
(
σi
)
= 1 (4.3)

for all σ ∈ (0, 1), where the infinite product
∏

is in the sense of ∗.

Proof. One can take a similar procedure as in the proof of Lemma 4.1 to complete the proof
of this lemma. For simplicity, we omit the detailed argument. We refer the reader to [7] for
further details.

Lemma 4.3. We define xn = Tn(x0)(n ∈ N). Then {xn} is a Cauchy sequence.

Proof. We assume F(x) = N(x0, T(x0), 1/x) and G(x) = M(x0, T(x0), 1/x) for x > 0. Then
F(x) (G(x)) is nondecreasing (nonincreasing) mapping from (0,∞) into [0, 1]. Taking 1 >
σ > k, by Lemmas 4.1 and 4.2, we have

lim
n→∞

∞∏

i=n

M

(
x0, T(x0),

1

(k/σ)i

)
= 1, lim

n→∞

∞∏

i=n

N

(
x0, T(x0),

1

(k/σ)i

)
= 0. (4.4)

Since σ < 1,
∑∞

n=1 σ
n < ∞, for any ε0 > 0 there exists n0 such that

∑∞
n=n0

σn < ε0. For the above
ε0 > 0, if m > n > n0 and t > ε0,

M(xn, xm, t) ≥ M(xn, xm, ε0) ≥
m−1∏

i=n

M
(
xi, xi−1, σi

)

≥
m−1∏

i=n

M

(
x0, Tx0,

σi

ki

)

=
m−1∏

i=n

M

(
x0, Tx0,

1

(k/σ)i

)
,
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N(xn, xm, t) ≤ N(xn, xm, ε0) ≤
m−1∏

i=n

N
(
xi, xi−1, σi

)

≤
m−1∏

i=n

N

(
x0, Tx0,

σi

ki

)

=
m−1∏

i=n

N

(
x0, Tx0,

1

(k/σ)i

)

(4.5)

hold.
And according to (4.4), we have limn→∞M(xn, xm, t) = 1 and limn→∞N(xn, xm, t) = 0

for m > n. So {xn} is Cauchy sequence.
Since X is complete, there exists some y ∈ X such that limn→∞xn = y. One can prove

y is the unique fixed point of T by repeating the same process as in the proof of Theorem 1.1.
Thus, we complete the proof of Theorem 1.2.
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