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We analyze a differential-algebraic biological economic system with time delay. The model has
two different Holling functional responses. By considering time delay as bifurcation parameter,
we find that there exists stability switches when delay varies, and the Hopf bifurcation occurs
when delay passes through a sequence of critical values. Furthermore, we also consider the
stability and direction of the Hopf bifurcation by applying the normal form theory and the center
manifold theorem. Finally, using Matlab software, we do some numerical simulations to illustrate
the effectiveness of our results.

1. Introduction

Recently, dynamics of differential-algebraic equations have become a subject of intense
research activities because differential-algebraic equation models can describe many kinds
of practical systems such as power system, biological economic system, and singular prey-
predator economic model [1, 2]. The dynamic relationship between predators and their preys
with harvesting has long been and will continue to be one of the dominant themes in both
ecology and mathematical ecology due to its universal existence and importance. Harvesting
has a strong impact on the dynamic evolution of a population. Depending on the nature
of applied harvesting strategy, the long-run stationary density of the population may be
significantly smaller than the long-run stationary density of a population in the absence of
harvesting. Time delays of one type or another have been incorporated into mathematical
models of population dynamics due to maturation time, capturing time, or other reasons. In
general, delay differential equations exhibit much more complicated dynamics than ordinary
differential equations since a time delay could cause a stable equilibrium to become unstable
and cause the populations to fluctuate. Recently, a number of researches have been devoted
to the dynamic properties for delayed predator-prey systems with harvesting. For further
details, refer to [3–7].
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Kar and Pahari [8] have investigated the dynamical behavior of an exploited system
consisting of a prey and a predator that are harvested:

ẋ = x(t)g(x(t − τ)) − yp(x(t)) − q1E1x(t),

ẏ = y(t)
(−d + αp(x(t))

) − q2E2y(t),
(1.1)

where x(t) and y(t) respect prey and predator population densities at time t and g(x) is the
growth rate of prey when y(t) is zero. p(x) is the response function, d is the death rate of y(t)
and α is the conversion factor. q1E1x and q2E2y represent harvesting of x(t) and y(t).

In system (1.1) x(t) and y(t) have the same Holling function. But in real life they may
have different adaptation for the environment. So we formulate the aforementioned problem
with different Holling functions as follows:

ẋ = α
(
1 − x(t − τ)

k

)
x(t) − βx(t)y(t)

1 + bx(t) + cy(t)
− E(t)x(t),

ẏ = −dy(t) + aβx(t)y(t)
1 + bx(t)

.

(1.2)

In 1954, Gordon analyzed the effect of harvest effort on ecosystem from an economic
perspective and proposed the following economic theory [9]:

Net Economic Revenue (NER) = Total Revenue (TR) − Total Cost (TC).
Based on the previous economic theory, we let E(t) represent the harvest effort for x(t)

at time t. TR = pE(t)x(t) and TC = c0E(t). p represents harvesting reward per unit harvesting
effort for unit weight of prey. c0 represents the cost per unit harvest effort for prey. Then
a differential-algebraic model which consists of two differential equations and an algebraic
equation can be established as follows:

ẋ = α
(
1 − x(t − τ)

k

)
x(t) − βx(t)y(t)

1 + bx(t) + cy(t)
− E(t)x(t),

ẏ = −dy(t) + aβx(t)y(t)
1 + bx(t)

,

E(t)
(
px(t) − c0

) −m = 0.

(1.3)

Define

g(x, E) = E(t)
(
px(t) − c0

) −m. (1.4)

From the standpoint of biology, we are only interested in the dynamics of model (1.3) in the
region

R3
+ =

{(
x, y, E

) | x ≥ 0, y ≥ 0, E ≥ 0
}
. (1.5)
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2. Stability Analysis

Firstly, we consider the location and number of the equilibria ofmodel (1.3) inR3
+. The interior

equilibrium point is a root of the following equation:

α

(
1 − x0

k

)
x0 −

βx0y0
1 + bx0 + cy0

− E0x0 = 0,

−dy0 +
aβx0y0
1 + bx0

= 0,

E0
(
px0 − c0

) −m = 0.

(2.1)

It is obvious that (2.1) has an only real solution Y0 = (x0, y0, E0)where

x0 =
d

aβ − bd , y0 =

(
α(1 − x0/k) −m/

(
px0 − c0

))
(1 + bx0)

β − c(α(1 − x0/k) −m/
(
px0 − c0

)) , E0 =
m

px0 − c0 ,
(2.2)

and αβ > bd, 0 < m < α(px0 − c0)(1 − x0/k). In order to analyze the local stability of the
positive equilibrium point for the system (1.3) we use the linear transformation YT = QNT

N =
(
u(t), v(t), E(t)

)
, Q =

⎛

⎜⎜⎜⎜
⎝

1 0 0

0 1 0

− pE0

px0 − c0 0 1

⎞

⎟⎟⎟⎟
⎠
. (2.3)

Then we have

u(t) = x(t), v(t) = y(t), E(t) =
pE0

px0 − c0x(t) + E(t), Dyg(x)Q =
(
0, 0, px0 − c0

)
,

(2.4)

for which system (1.3) yields

u̇ = α
(
1 − u(t − τ)

k

)
u(t) − βu(t)v(t)

1 + bu(t) + cv(t)
− E(t)u(t) + pE0u

2(t)
px0 − c0 ,

v̇ = −dv(t) + aβu(t)v(t)
1 + bu(t)

,

(
E(t) − pE0u(t)

px0 − c0

)
(
pu(t) − c0

) −m = 0.

(2.5)

Nowwe derive the formula for determining the properties of the positive equilibrium
point of the system (2.5). Firstly, we consider the local parametric [10] ψ, which is defined as
follows:

ψ(z(t)) =NT
0 +U0z(t) + V0h(z(t)), (2.6)
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where U0 =
( 1 0

0 1
0 0

)
, V0 =

( 0
0
1

)
, z(t) =

(
y1(t)
y2(t)

)
, and h =

(
0
0
h3

)
, h3 = m/(p(u0 + y1(t)) − c0) +

pE0(u0 + y1(t))/(px0 − c0) − E0. Introducing perturbations u(t) = u0 + y1 and v(t) = v0 + y2
and defining ψ(z(t)) = (u(t), v(t), E(t))

T
, E(t) = E0 + h3(y(1), y(2)), and g(ψ(z(t))) = 0, then

we can obtain the parametric system of system (2.5) as follows:

ẏ1 = α
(
1 − y1(t − τ) + u0

k

)
(
y1(t) + u0

) − β
(
y1(t) + u0

)(
y2(t) + v0

)

1 + b
(
y1(t) + u0

)
+ c

(
y2(t) + v0

)

−
(
E0 + h3

(
y1(t), y2(t)

))(
y1(t) + u0

)
+
pE0

(
y1(t) + u0

)

px0 − c0 ,

ẏ2 = −d(y2 + v0
)
+
aβ

(
y1(t) + u0

)(
y2(t) + v0

)

1 + b
(
y1(t) + u0

) .

(2.7)

Neglecting 2nd- and higher-order products of y1 and y2, we get

ẏ1 =

(

α

(
1 − u0

k

)
− βv0(1 + cv0)

(1 + bv0 + cv0)
2
− E0 +

pE0u0
px0 − c0

)

y1(t)

− αu0
k
y1(t − τ) −

βu0(1 + bu0)

(1 + bu0 + cv0)
2
y2(t),

ẏ2 =
aβv0

(1 + bu0)
2
y2(t).

(2.8)

The characteristic equation of system (2.8) at (0, 0) takes the form

λ2 +
(
A − αu0

k
+
αu0
k
e(−λτ)

)
λ + B = 0. (2.9)

First of all, we know that the roots of (2.9) with τ = 0 have always negative real parts
when A < 0, B > 0, where

A = −α
(
1 − 2u0

k

)
− βv0(1 + cv0)

(1 + bu0 + cv0)
2
− E0 +

pE0u0
pu0 − c , B =

αβv0

(1 + bu0 + cv0)
2(1 + bu0)

2
.

(2.10)

Next, we will investigate the distribution of the roots of (2.9). If iω(ω > 0) is a root of
(2.9), then we have

−ω2 +
(
A − αu0

k
+
αu0
k
eiωτ

)
iω + B = 0. (2.11)
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Separating the real and imaginary parts, we have

αωu0
k

sin(ωτ) = ω2 − B,

αωu0
k

cos(ωτ) = ω
(
αu0
k

−A
)
,

(2.12)

which lead to

ω4 +

[(
αu0
k

−A
)2

− 2B −
(
αu0
k

)2
]

ω2 + B2 = 0. (2.13)

When (αu0/k −A)2 < 2B+(αu0/k)
2 and [(αu0/k −A)2 − 2B − (αu0/k)

2]
2
> 4B2 hold, we can

get that (2.13) has two positive roots ω+ and ω−.
According to the analysis previous, we have the following lemma 2.1:

Lemma 2.1. (1) IfA < 0, B > 0 and (αu0/k −A)2 > 2B + (αu0/k)
2, then all the roots of (2.9) have

negative real parts for all τ ≥ 0.

(2) If (αu0/k −A)2 < 2B + (αu0/k)
2 and [(αu0/k −A)2 − 2B − (αu0/k)

2]
2
> 4B2, then

(2.13) has two positive roots ω+, ω−. Furthermore, one has

τ± =
1
ω± arccos

(
k

αu0

(
αu0
k

−A
))

+
2nπ
ω± , n = 0, 1, 2, . . . . (2.14)

Differentiating the two sides of (2.9) and noticing that λ is a function of τ , we have

(
dλ

dτ

)−1
=

2λ − (αu0/k)λτe−λτ +
(
A − αu0/k + (αu0/k)e−λτ

)

(αu0/k)λ2e−λτ
, (2.15)

and then we can obtain

sign
{
Re

(
dλ

dτ

)}

τ=τ+, ω=ω+
> 0, sign

{
Re

(
dλ

dτ

)}

τ=τ−, ω=ω−
< 0. (2.16)

Therefore, we can obtain the following results about the stability of the positive equilibrium
and the Hopf bifurcation of (2.7).

Theorem 2.2. Assume that A < 0, B > 0.

(1) If (αu0/k −A)2 < 2B + (αu0/k)
2 and [(αu0/k −A)2 − 2B − (αu0/k)

2]
2
> 4B2 are

satisfied, then there exists an integer N such that the zero solution of system (2.7)
is asymptotically stable when τ ∈ [0, τ+0 )

⋃ (τ−0 , τ
+
1 )

⋃ (τ−1 , τ
+
2 )

⋃ · · · ⋃ (τ−N−1, τ
+
N) and

unstable when τ ∈ (τ+0 , τ
−
0 )

⋃ (τ+1 , τ
−
1 )

⋃ · · · ⋃ (τ+N,+∞).

(2) When τ = τ±n , n = 0, 1, 2 . . ., there are Hopf bifurcations at the equilibrium point of system
(2.7).
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3. Direction and the Stability of Hopf Bifurcation

In the previous section, we have already obtained the conditions which ensure that model
(2.7) undergoes the Hopf bifurcation at the critical values τn (n = 0, 1, . . .). In this section,
we will study the direction and stability of the Hopf bifurcation based on the normal form
approach theory and center manifold theory introduced by Hassard et al. [11].

First of all, by the transformation y1 = u − u0, y2 = v − v0, t = t/τ , τ = τn + μ, the
parametric system (2.7) is equivalent to the following Functional Differential Equation (FDE)
system in C = C([−1, 0], R2):

ż(t) = Lμ(zt) + f
(
μ, zt

)
, (3.1)

where z(t) = (y1(t), y2(t))
T , zt(θ) = z(t + θ) for θ ∈ [−1, 0], and Lμ : C → R : f : R × C → R.

Lμ
(
φ
)
=

(
τn + μ

)
(
a11 a12

a21 0

)

φT (0) +
(
τn + μ

)
(
b11 0

0 0

)

φT (−1),

a11 =
(
α − αu0

k

)
− βv0(1 + cv0)

(1 + bu0 + cv0)
2
− E0 +

pE0u0
pu0 − c0 ,

a12 =
−βu0(1 + bu0)
(1 + bu0 + cv0)

2
, a21 =

aβv0

(1 + bv0)
2
, b11 = −αu0

k
.

(3.2)

Let φ = (φ1, φ2)
T . Then

f
(
μ, φ

)
=

(
τn + μ

)(
f11, f22

)T
, (3.3)

with

f11 =

(
pE0

px0 − c0 − p2E0u0
(
px0 − c0

)2 +
βbv0

(1 + bu0 + cv0)
3

)

φ1(0)2 − α

k
φ1(0)φ1(−1)

− β

(1 + bu0 + cv0)
2
φ1(0)φ2(0),

f22 = − βabv0

(1 + bu0 + cv0)
3
φ1(0)2 +

aβ

(1 + bu0 + cv0)
2
φ1(0)φ2(0).

(3.4)

By the Riesz representation theorem, there exists a matrix whose components are bounded
variation functions η(θ, μ) such that

Lμ =
∫0

−1
dη

(
θ, μ

)
φ(θ), φ ∈ C, θ ∈ [−1, 0]. (3.5)

In fact, we can choose

η
(
θ, μ

)
=

(
τn + μ

)
(
a11 a12

a21 0

)

δ(θ) +
(
τn + μ

)
(
b11 0

0 0

)

δ(θ + 1), (3.6)
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where

δ(θ) =

⎧
⎨

⎩

0, θ /= 0,

1, θ = 0,
(3.7)

for φ ∈ C1([−1, 0], R2). Define

A
(
μ
)
φ(θ) =

⎧
⎪⎪⎨

⎪⎪⎩

dφ(θ)
dθ

, −1 ≤ θ < 0,
∫0

−1
dη

(
θ, μ

)
φ(θ), θ = 0,

R
(
μ
)
φ =

⎧
⎨

⎩

0, θ ∈ [−1, 0),
f
(
μ, φ

)
, θ = 0.

(3.8)

Then the system (3.1) is equivalent to

żt = A
(
μ
)
zt + R

(
μ
)
zt, (3.9)

for ψ ∈ C([0, 1], (R2)∗), the adjoint operator A∗ of A is

A∗ψ(s) =

⎧
⎪⎪⎨

⎪⎪⎩

−dψ(s)
ds

, 0 < s ≤ 1,
∫0

−1
dηT (s, 0)ψ(−s), s = 0,

(3.10)

and a bilinear inner product is given by

〈
ψ(s), φ(θ)

〉
= ψ(0)φ(0) −

∫0

θ=1

∫θ

ξ=0
ψ(ξ − θ)dη(θ)φ(ξ)dξ. (3.11)

By the discussion in Section 2, we know that ±iτnω± are eigenvalues of A(0). Thus,
they are also eigenvalues of A∗. It is easy to calculate that

q(θ) = (1, r)Teiω±τnθ, q∗(s) = G(r∗, 1)eiω±τns, (3.12)

where

r =
iω − a11 − b11e−iωτn

a12
, G =

1

r + r∗ − τnr∗b11e−iωτn
,

〈
q∗(s), q(θ)

〉
= 1,

〈
q∗(s), q(θ)

〉
= 0.

(3.13)

Let zt be the solution of (3.9)when μ = 0. Define

ż(t) =
〈
q∗, zt

〉
, w(t, θ) = zt − 2Re

{
ztq(θ)

}
. (3.14)
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On the center manifold C0, we have

w(t, θ) = w(z(t), z(t), θ) = w(θ)
20
z2

2
+w(θ)

11 zz +w
(θ)
02
z2

2
+ · · · . (3.15)

Note that w is real. When μ = 0 we have

ż = iωτnz +
〈
q∗(θ), f

(
0, ω + 2Re z(t)q(θ)

)〉
. (3.16)

Then

ż = iωτnz + g(z, z), (3.17)

where

g(z, z) = g20(θ)
z2

2
+ g11(θ)zz + g02(θ)

z2

2
+ · · · . (3.18)

From (3.9) and (3.16), we have

Ẇ = żt − żq − ż q =

⎧
⎨

⎩

Aw − 2Re q∗(0)f(z, z)q(θ), −1 ≤ θ ≤ 0,

Aw − 2Re q∗(0)f(z, z)q(θ) + f, θ = 0.
(3.19)

Rewrite

Ẇ = AW +H(z, z, θ), (3.20)

where

H(z, z, θ) = H(θ)
20
z2

2
+H(θ)

11 zz +H
(θ)
02
z2

2
+ · · · . (3.21)

We can obtain

(A − 2iωτn)w20 = −H(θ)
20 , Aw

(θ)
11 = −H(θ)

11 . (3.22)

Now we have g20, g11, g02, and g21:

g20 = 2Gτn

[

Fr∗ − βrr∗ − arβ
(1 + bu0 + cv0)

2
− αr∗

k
e−iωτnθ − βabv0

(1 + bu0 + cv0)
3

]

,

g11 = Gτn

[

2Fr∗ +
(
2aB − 2Br∗

)
Re(r) − 2βabv0

(1 + bu0 + cv0)
3
− 2αr∗

k
Re

(
eiωτnθ

)]

,

g02 = 2Gτn

[

Fr∗ − βrr∗ − aβr
(1 + bu0 + cv0)

2
− αr∗

k
eiωτnθ − βabv0

(1 + bu0 + cv0)
3

]

,
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g21 = 2Gτn

[(

2Fr∗ − αr∗

k
e−iωτnθ − 2βabv0

(1 + bu0 + cv0)
3
+

aβr − βrr∗
(1 + bu0 + cv0)

2

)

W
(1)
20 (0)

+

(
aβ − βr∗

)

(1 + bu0 + cv0)
2
W

(2)
11 (0)

+

(

Fr∗ − βabv0

(1 + bu0 + cv0)
3
− αr∗

2k
eiωτnθ +

aβr − βrr∗
2(1 + bu0 + cv0)

2

)

W
(1)
20 (0)

−αr
∗

k
W

(1)
11 (−1) +

aβ − βr∗
2(1 + bu0 + cv0)

2
W

(2)
20 (0) −

αr∗

2k
W

(1)
20 (−1)

]

,

(3.23)

where

F =
pE0

px0 − c0 − p2E0u0
(
px0 − c0

)2 +
βbv0

(1 + bu0 + cv0)
3
,

W20(θ) =
ig20
τnω

q(0)eiωτnθ +
ig02

3ωτn
q(0)e−iωτnθ +M1e

2iωτnθ,

W11(θ) = − ig11
τnω

q(0)eiωτnθ +
ig11

ωτn
q(0)e−iωτn +M2,

M
(1)
1 = − 4A(1)

1 iω + 2a12A
(2)
1

a21a12 + 2b11iωe−2iωτn + 4ω2 + 2a11iω
,

M
(2)
1 = −2A

(1)
1 a21 +

(
4iω − 2a21 − 2b11e−2iωτn

)
A

(2)
1

a21a12 + 2b11iωe−2iωτn + 4ω2 + 2a11iω
,

M
(1)
2 = −2A

(2)
2

a21
, M

(2)
2 =

−2a21A(1)
2 + 2(a11 + b11)A

(2)
2

a12a21
.

A
(1)
1 = F − βr

(1 + bu0 + cv0)
2
− α

k
e−iωτnθ, A

(2)
1 =

aβr

(1 + bu0 + cv0)
2
− βabv0

(1 + bu0 + cv0)
3
,

A
(1)
2 = F − βRe(r)

(1 + bu0 + cv0)
2
− α

k
Re

(
eiωτnθ

)
, A

(2)
2 =

aβRe
(
γ
)

(1 + bu0 + cv0)
2
− βabv0

(1 + bu0 + cv0)
3
.

(3.24)

At last, we can calculate

C1(0) =
i

2ωτn

(

g11g20 − 2
∣∣∣g2

11

∣∣∣ −
∣∣g02

∣∣2

3

)

+
g21
2
,

μ2 = − Re{c1(0)}
Re{λ′(τn)} , β2 = 2Re{c1(0)},

T2 = − Im{c1(0)} + μ2 Im{λ′(τn)}
ωτn

.

(3.25)

Now we have a conclusion.
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Figure 1: When τ = 0.1, the positive equilibrium point Y0 is asymptotically stable.

Conclusion 1. (1) The sign of μ2 determines the direction of Hopf bifurcation. When μ2 > 0,
the Hopf bifurcation is supercritical; when μ2 < 0, the Hopf bifurcation is subcritical.

(2) β2 determines the stability of bifurcated periodic solutions. When β2 < 0, the
periodic solutions are stable; when β2 > 0, the periodic solutions is unstable.

(3) T2 determines the period of bifurcated periodic solutions. When T2 > 0, the period
increases; when T2 < 0, the period decreases.

4. Numerical Simulations

In this section, we use some numerical simulations to illustrate the analytical results we
obtained in previous sections.

Let α = β = 2, k = p = 2, a = b = c0 = d = 1, c = 0, andm = 1/4. The system (1.3) is

ẋ = 2
(
1 − x(t − τ)

2

)
x(t) − 2x(t)y(t)

1 + x(t)
− E(t)x(t),

ẏ = −y(t) + 2x(t)y(t)
1 + x(t)

,

0 = E(t)(2x(t) − 1) − 1
4
.

(4.1)



Journal of Applied Mathematics 11

1.15

1.1

1.05

1

0.95

0.9

x

0 20 40 60 80 100

t

(a)

0.65

0.75

0.7

0.8

y

0 20 40 60 80 100

t

(b)

0.2

0.22

0.24

0.26

0.28

0.3

0.32

E

0 20 40 60 80 100

t

(c)

0.8

0.75

0.7

0.65

y

0.2

0.24
0.22

0.28
0.3

0.26E

0.9 0.95 1 1.05 1.1 1.15

x

(d)

Figure 2: When τ = 0.5618, periodic solutions occur from Y0.

The only positive equilibrium point of (4.1) is Y0 = (1, 3/4, 1/4). By simple
computation we have ω− = 0.4164 and ω+ = 0.9005. Substituting these parameters into
(2.14) gives τ−0 = 1.2136, τ+0 = 0.5612, τ+1 = 7.5386, and τ−1 = 16.2129. Applying Theorem
(2.5), we have that the positive equilibrium point of (4.1) is asymptotically stable when
τ ∈ [0, 0.5612) ∪ (1.2136, 7.5386). The results can be illustrated in Figures 1 and 3.

When τ > τ+0 = 0.5612 and is sufficiently near τ+0 , the bifurcating periodic solution
from positive equilibrium point of (4.1) occurs. Furthermore, we consider the properties of
the Hopf bifurcation at τ = τ+0 = 0.5612. Based on Theorem (2.5) and conclusion 1, we get
c1(0) = 0.1673 − 0.6835i, and λ′(τ0) = 0.9563 − 0.1856i. This implies that

μ2 = −0.1749, β2 = 0.3346, T2 = 1.2883. (4.2)

We conclude that the bifurcating periodic solution is subcritical and unstable. The
results are illustrated in Figure 2.
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Figure 3: When τ = 1.3, the positive equilibrium point Y0 is stable.
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