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This paper is concerned with p(≥ 2)-cyclic self-mappings T :
⋃

i∈p Ai → ⋃i∈p Ai in a metric space
(X, d), with Ai ⊂ X, T(Ai) ⊆ Ai+1 for i = 1, 2, . . . , p, under a general contractive condition which
includes as particular cases several of the existing ones in the literature. The existence and unique-
ness of fixed points and best proximity points is discussed as well as the convergence to them of the
iterates generated by the self-mapping from given initial points.

1. Introduction

There are exhaustive results about fixed point theory concerning the use of general contrac-
tive conditions in Banach spaces or in complete metric spaces and in partially ordered metric
spaces which include as particular cases previous ones in the background literature. See, for
instance, [1, 2] and references therein. On the other hand, important attention is being paid to
the study of fixed points and best proximity points of (p ≥ 2)-cyclic contractive mappings and
p-cyclic Meir-Keeler contractive mappings, [3–7]. Generally speaking, cyclic contract self-
mappings T :

⋃
i∈p Ai → ⋃

i∈p Ai on the union of p nonempty closed convex subsets Ai of a
complete metric space (X, d), subject to T(Ai) ⊆ Ai+1, have a unique fixed point located in
the intersection of such p subsets if such subsets intersect, [3, 4]. If the p-subsets are disjoint
convex closed nonempty subsets of a uniformly convex Banach space, then there is a unique
best proximity point at each of the p subsets. The above properties also hold for cyclic Meir-
Keeler contractions, [5–7]. In this paper, a contractive condition for p-cyclic self-mapping on
the union of p subsets of a metric space which includes as particular cases a number of the
existing ones in the background literature is proposed, and their basic associate properties
are discussed. It is discussed the existence and uniqueness of fixed points if the metric space
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is complete and the set of subsets involved in the cyclic contractive condition have nonempty
intersections and the existence and uniqueness of best proximity points within each of the
subsets Ai ⊂ X if they are convex, closed and disjoint and X is a uniformly convex Banach
space. The asymptotic convergence of the iterates from given initial point to best proximity
points at each subset or to the unique fixed point if the subsets intersect is also discussed.

2. Main Results for a General Contractive Condition

This section contains the main results of the paper for p(≥ 2)-cyclic self-mapping on the union
of a set of p nonempty subsets of a metric space (X, d) under a very general contractive con-
dition which contains as particular cases several previous ones being known in the back-
ground of the literature for the noncyclic case (p = 1).

Theorem 2.1. Let (X, d) be a metric space with p nonempty closed subsets Ai of X, ∀i ∈ p :=
{1, 2, . . . , p} such that Apj+� ≡ A� ; ∀� ∈ p − 1, and let T :

⋃
i∈p Ai → ⋃

i∈p Ai be a continuous
p(≥ 2)-cyclic self-mapping subject to T(Ai) ⊆ Ai+1; ∀i ∈ p and satisfying the following con-
tractive condition:
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for all x ∈ Ai, ∀y(/=x) ∈ Ai+1; αi ≥ 0, βji ≥ 0, γji ≥ 0, δji ≥ 0, μi ≥ 0, and ωi > 0 if Di /= 0; j =
1, 2, fo rall i ∈ p.

Then, the following properties hold:
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where

Ki :=
δ1i + μi + γ1i + β1i + ηi

1 − αi − β1i − β2i − δ2i − γ2i − ηi
, ∀i ∈ p. (2.4)

If, in addition, the distances between any pairs of adjacent subsetsDi = dist(Ai,Ai+1) = D are
identical; ∀i ∈ p, then T :

⋃
i∈p Ai →

⋃
i∈p Ai is a p-cyclic self-mapping. If, furthermore,

αi + β2i + γ1i + γ2i + δ1i + δ2i + μi + 2
(
β1i + ηi

) ≤ 1, ∀i ∈ p,

∏

i∈p

[
δ1i + μi + γ1i + β1i + ηi

1 − αi − β1i − β2i − δ2i − γ2i − ηi

]

< 1,
(2.5)

then all the iterates d(Tn+1x, Tnx) fulfil the following constraints:
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where � ∈ N0,M ∈ R+, D := maxi∈pDi,K :=
∏p

i=1[Ki] < 1 and K0 = mini∈pKi < 1; ∀n ∈ N for
any given x ∈ ⋃i∈p Ai, with ωi = 1 −Ki, ∀i ∈ p.

If (2.4) is replaced by Ki ∈ [0, 1), that is,

αi + β2i + γ1i + γ2i + δ1i + δ2i + μi + 2
(
β1i + ηi

)
< 1, ∀i ∈ p, (2.9)

then the inequalities (2.6)–(2.8) trivially hold.
(ii) Assume that the contractive condition (2.1) satisfies (2.5). Then,

Di ≤ lim sup
n→∞
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∀x ∈ Ai, ∀i ∈ p under the necessary condition (2.3).
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If, in particular, (2.9) holds, that is,Ki ∈ [0, 1), then ωi := ((1−Ki)/Di)D for anyDi /= 0
and some D ≥ D, ∀i ∈ p, then

Di ≤ lim sup
n→∞

d
(
Tpn+1x, Tpnx

)
≤ D, ∀x ∈ Ai, ∀i ∈ p. (2.11)

If (2.9) holds, Di = D and

ωi = 1 −Ki = αi + β2i + γ1i + γ2i + δ1i + δ2i + μi + 2
(
β1i + ηi

)
, ∀i ∈ p, (2.12)

then the limit below exists:

lim
n→∞

d
(
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)
= D; ∀x ∈

⋃

i∈p
Ai, ∀i ∈ p (2.13)

which is guaranteed by the condition (2.3).
(iii) If the constants of (2.4) fulfil K =

∏p

i=1[Ki] < 1, then the p subsets Ai of X, ∀i ∈ p
have nonempty intersection (i.e., Di = D = 0, ∀i ∈ p), and, if furthermore, the metric space
(X, d) is complete, then limn→∞d(Tpn+1x, Tpnx) = 0, ∀x ∈ ⋃i∈p Ai and T :

⋃
i∈p Ai → ⋃i∈p Ai

has a unique fixed point in
⋂

i∈p Ai to which all the sequences {Tnx}n∈N0
, which are then

bounded, converge, ∀x ∈ ⋃i∈p Ai.
If Ai are disjoint, closed, and convex, ∀i ∈ p,X is uniformly convex and

∏p

i=1[Ki] < 1
and (2.12) holds with Di = D > 0, ∀i ∈ p, then all sequences {Tpnx}n∈N0

, ∀x ∈ Ai converge to
a best proximity point of Ai, ∀i ∈ p.

Proof. Let x0 be an arbitrary point in
⋃

i∈p Ai ⊂ X and take x = x(n, x0) ≡ xn = Tnx0 ∈ Aj =
Aj(n, i) and y ≡ xn+1(n + 1, x0) = Txn = Tn+1x0 ∈ Aj+1, ∀n ∈ N0(:= N ∪ {0}), where T0 = id,
and j = ĵ := [(i + n)/p] if (i + n)/p ∈ N and j = ĵ + 1, otherwise. Then, from (2.1),
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Thus, it follows proceeding recursively with (2.14) subject to (2.9), (2.16), and ωi = 1 − Ki,
∀i ∈ p
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where the first inequality holds irrespective of the identities ωi = 1 − Ki; ∀ip and it implies
directly (2.2) since ωi+jp ≡ ωi and Ki+jp ≡ Ki and Di+jp ≡ Di; ∀i ∈ p, ∀j ∈ N0, so that
∑p

�=1(
∏p

j=i+1[Kj])ωiDi =
∑p+i−1

�=i (
∏p+i−1

j=i+1 [Kj])ω�D� . The second inequality follows in the case

that ωi = 1 −Ki, if (2.9) holds so thatKp < K =
∏p

i=1[Ki] < 1, ∀i ∈ p if (2.3) leading directly to
(2.5)–(2.7). Property (i) has been proven.

Property (ii) is proven by taking x ∈ Ai for any i ∈ p and proceeding recursively with
the first inequality of (2.17) to obtain directly (2.10) and (2.11) since

∏p

i=1[Ki] < 1 and (2.13)
if, in addition, (2.12) holds. To prove Property (iii), note from (2.8), (2.9), (2.12), and (2.13)
that 0 = limn→∞d(Tpn+jx, Tpn+j−1x) ≤ limn→∞d(Tpn+1x, Tpnx) = 0, ∀x ∈ ⋃i∈p Ai,if Di = D = 0
and
∏p

i=1[Ki] < 1; ∀i, j ∈ p. If, furthermore, (X, d) is a complete metric space, then each
sequence {Tnx}n∈N0

; ∀x ∈ ⋃i∈p Ai is a Cauchy sequence with a limit x = limn→∞Tnx =
limn→∞Tpnx in

⋂
i∈p Ai since this set intersection is nonempty and closed since all the

intersected sets are nonempty and closed. Since the sequences {Tnx}n∈N0
are convergent to

a limit x, they are bounded. Also, since T :
⋃

i∈p Ai → ⋃i∈p Ai is continuous in
⋂

i∈p Ai, then
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Tx = T(limn→∞Tpnx) ≤ limn→∞Tpn+1x = x so that x ∈ Fix(T) ⊂ ⋂i∈p Ai. It is proven by con-
tradiction that there exists a unique fixed point. Assume that there exist u = x and v subject
to u = Tu/=v = Tv in Fix(T), the set of fixed points of T . Then, the subsequent contradiction
follows from (2.1) for Di = D = 0, ∀i ∈ p, by using d(u, Tu) = d(v, Tv) = 0,d(u, Tv) =
d(v, Tu) = d(u, v)/= 0 and (2.4):

d(u, v) = d(Tu, Tv) ≤ αi
d(u, Tu)d(v, Tv) + d(u, Tv)d(v, Tu)

d(u, v)

+
β1id(u, Tu)

(
d(u, Tv) + d
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y, Ty

))
+ β2id(v, Tv)(d(v, Tu) + d(u, Tu))

d(u, v) + d(u, Tv) + d(v, Tu)

+
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)
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d(u, Tu) + d(v, Tu) + d(v, Tv) + d(u, Tv)

+ δ1id(u, Tu) + δ2id(v, Tv) + ηi(d(u, Tv) + d(v, Tu)) + μid(u, v)

≤ max
i∈p
(
αi + 2ηi + μi

)
d(u, v) < d(u, v),

(2.18)

so that u = v. Property (iii) has been proven.
Note that it cannot be concluded from Theorem 2.1 that T :

⋃
i∈p Ai → ⋃

i∈p Ai

under the contractive condition (2.1) is either a p-cyclic nonexpansive self-mapping from
Theorem 2.1(i), even if all the contractive constants in (2.7) are identical and all the dis-
tances between adjacent subsets of X are also identical, or a p-cyclic contraction under
Theorem 2.1(ii) since (2.6)–(2.8), or its respective versions with strict inequalities, are only
guaranteed for the iterates {Tnx}n∈N0

and {Tpnx}n∈N0
for any x ∈ ⋃i∈p Ai. Assume that the

norm ‖ ‖ of the uniformly convex (Banach) space (X, ‖ ‖) induces themetric d : X×X → R0+

being used. Otherwise, any alternative equivalent metric d1 : X × X → R0+ may be used
to conclude the result. If (2.9) and (2.12) hold with distances between adjacent subsets
Di = D > 0; ∀i ∈ p, then all sequences {Tpnx}n∈N0

are Cauchy sequences, ∀x ∈ Ai converge
to a best proximity point xi ∈ Ai of Ai for any given i ∈ p from (2.13) and the continuity of
Tp :
⋃

i∈p Ai →
⋃

i∈p Ai ensured by that of T :
⋃

i∈p Ai →
⋃

i∈p Ai.

Remark 2.2. If
∏q

i=1[Ki]
p ∈ [0, 1], with some of the Ki being eventually larger than one, then

d(Tn+1x, Tnx), ∀n ∈ N is bounded provided that d(Tx, x) is finite. If, furthermore,
∏q

i=1[Ki]
p ∈

[0, 1) and D = 0, then all the composed mappings T̂i : Ai → Im T̂i ⊂ Ai defined by T̂i(Ai) =
(T)p(Ai) = (T ◦ Tp−1)(Ai); ∀i ∈ p satisfies lim supn→∞d(T̂

n+1
i x, T̂n

i x) = 0; ∀x ∈ Ai,∀i ∈ p, so
that T :

⋃
i∈p Ai → ⋃

i∈p Ai satisfies and (2.13) holds with some of the Ki being eventually
not less than one. The last part of the proof of Theorem 2.1(iii) leads to the conclusion that
if T :

⋃
i∈p Ai → ⋃i∈p Ai is not continuous while the composed self-mapping Tp :

⋃
i∈p Ai →

⋃
i∈p Ai is continuous, then the convergence of the iterates to a best proximity point in each

adjacent subset Ai(i ∈ p) is still ensured.

The existence of a unique fixed point is guaranteed if the p subsets are closed and inter-
sect even if T :

⋃
i∈p Ai → ⋃

i∈p Ai is not continuous and all the constants (2.4) are not less
than unity provided that (X, d) is complete and

∏p

i=1[Ki] < 1 as follows.
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Theorem 2.3. Let (X, d) be a complete metric space with p nonempty closed subsets Ai of X, ∀i ∈ p,
with nonempty intersection satisfying Apj+� ≡ A� ; ∀� ∈ p − 1, and let T :

⋃
i∈p Ai → ⋃i∈p Ai be a

p(≥ 2)-cyclic self-mapping subject to T(Ai) ⊆ Ai+1; ∀i ∈ p and satisfying the contractive condition
(2.1) subject to

∏p

i=1[Ki] < 1 for constants defined in (2.8). Then, all the sequences {Tpn+jx}n∈N0
are

bounded and converge to a unique fixed point in
⋂

i ∈p Ai; ∀i ∈ p of T :
⋃

i∈p Ai →
⋃

i∈p Ai.

Proof. Since Di = 0 (since
⋂

i∈p Ai /= ∅), ∀i ∈ p,
∏p

i=1[Ki] < 1, T(Ai) ⊆ Ai+1,
⋂

i∈p Ai is nonempty
and closed and (X, d) is complete, it follows that

0 = lim
n→∞

d
(
Tpn+j+1x, Tpn+jx

)
≤
⎛

⎝
p∏

j=i+1

[
Kj
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⎞
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n→∞

d
(
Tpn+1x, Tpnx

)
= 0, (2.19)

for any x ∈ Ai, and then for any x ∈ ⋃i∈p Ai, from Theorem 2.1(iii) irrespective of T :
⋃

i∈p Ai → ⋃
i∈p Ai being continuous or not. Thus, for any ε ∈ R+, ∃n0 ∈ N0 such that from

triangle inequality for distances, one has

d
(
Tpn+jx, Tpn+j−1x

)
<
ε

p
<ε; ∀j ∈ p, d

(
Tpn+jx, Tpn+jx

)
≤

p∑

j=1

d
(
Tpn+jx, Tpn+j−1x

)
< ε,

(2.20)

∀x ∈ ⋃i∈p Ai, ∀n > n0 so that each {Tpn+jx}n∈N0
is a Cauchy sequence with a limit in the closed

nonempty set
⋂

i∈p Ai which is also bounded since it is convergent. Hence, it follows the exis-
tence of fixed points in

⋂
i∈p Ai being each of those limits. The uniqueness of the fixed point

follows from its counterpart in the proof of Theorem 2.1(iii) where the continuity of T :
⋃

i∈p Ai →
⋃

i∈p Ai has not been used. Hence, the theorem.

The following result allows to fulfil (2.10) in Theorem 2.1 under some negative scalars
ωi and constantsKi exceeding unity provided that a set of necessary conditions involving dis-
tances between the adjacent subsets and such scalars are satisfied.

Corollary 2.4. Assume that (2.1) holds and
∏p

i=1[Ki] < 1 and Di /= 0, ∀i ∈ p. Then, (2.3), and
thus (2.2), equivalently (2.17), holds if αi ≥ 0, βji ≥ 0, γji ≥ 0, δji ≥ 0, μi ≥ 0, ∀i ∈ p provided that the
distances between adjacent subsets and the real scalars ωi satisfy the joint constraints:

Di ≤
∑p+i−1

�(/= i)=1

(∏p+i−1
j=i+1

[
Kj

])
ω�D�

1 −∏p

i=1[Ki] −
∏p+i−1

j=i+1

[
Kj

]
ωi

, ∀i ∈ p. (2.21)

Proof. A necessary condition for (2.2)-(2.3) to hold, with a nonnegative second right-hand
side term in (2.2) is that the constraints (2.21) hold.

It is wellknown that p-cyclic nonexpansive self-maps require that the adjacent subsets
have all the same pairwise distances. In the case that the relevant self-mappings are con-
tractive areMeir-Keeler contractions, they have a unique fixed point if all the subsets intersect
and the metric space is complete. In the case that the subsets do not intersect, there is a
unique convergence best proximity point at each subset, to which the iterates through the
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self-mapping T converge asymptotically, provided that the subsets are nonempty convex and
closed and the vector space X defining the metric space is uniformly convex, then also being
reflexive and strictly convex, [8]. It is still required that all the distances between adjacent
subsets be identical so that, otherwise, the self-mappings from the union of the subsets to
itself cannot be nonexpansive [9, 10]; hence, they cannot be contractive. In the following,
the condition of all the distances between the adjacent subsets being identical is not longer
being required. The price to be paid is that the convergence of the iterates through the self-
mapping do not necessarily converge to best proximity points located in the boundaries of
the sets but to best proximity points located at the boundaries of appropriate nonempty
closed convex subsets of the original subsets of X. In order to facilitate the formalism for the
case of distinct distances between adjacent subsets, the maps of interest are restricting their
images as the iterations progress in order to asymptotically reach a new set of adjacent subsets
all possessing identical pairwise distances. For such a subsequent analysis, first proceed as
follows by first introducing the following hypotheses.

Hypotheses

(H1) Assume that a sequence of nonempty closed sets {Âij}j∈N0
exists such that Âi0 ≡ Ai and

Âi,j+1 ⊆ Âij ; ∀i ∈ p, j ∈ N and that ∃D := limj→∞Dij = limj→∞ dist(Âij , Âi+1,j) > 0; ∀i ∈ p

satisfying D := limj→∞ dist(Âij , Âi+1,j) ≥ maxi∈pDi, ∀i ∈ p.
(H2)Assume that any sequence of p(≥ 2)-cyclic self-mappings Tj :

⋃
i∈p Âij → ⋃i∈p Âij

is subject to Tj(Âij) ⊆ Âi+1,j ; ∀i ∈ p, ∀j ∈ N0 while all its elements satisfy the contractive con-
dition (2.1), satisfying (2.8)-(2.9), with Kij = Ki with

∏p

i=1[Ki] < 1 and ωij ≡ ωi := D/Di −
Ki; ∀i ∈ p, ∀j ∈ N0.

(H3) Define composed self-mapping T
pn+k
{j�} :

⋃
i∈p Ai → ⋃i∈p Ai as follows (with a cer-

tain abuse of notation):

T
pn

{j�} :=

⎛

⎜
⎜
⎝Tjn2

p
︸︷︷︸

◦ ◦ · · · ◦ ◦ Tjn1

⎞

⎟
⎟
⎠

n︸︷︷︸

◦ · · · ◦

⎛

⎜
⎜
⎝Tj2

p
︸︷︷︸

◦ ◦ · · · ◦ ◦ T1

⎞

⎟
⎟
⎠,

T
pn+k

{j�} :=

⎛

⎜
⎜
⎝Tjn2

i︸︷︷︸

◦ ◦ · · · ◦ ◦ Tjn1

⎞

⎟
⎟
⎠ ◦

⎛

⎜
⎜
⎝Tjn2

p
︸︷︷︸

◦ ◦ · · · ◦ ◦ Tjn1

⎞

⎟
⎟
⎠

n︸︷︷︸

◦ · · · ◦

⎛

⎜
⎜
⎝Tj2

p
︸︷︷︸

◦ ◦ · · · ◦ ◦ T1

⎞

⎟
⎟
⎠,

∀k ∈ p − 1 ∪ {0},
(2.22)

where {j�}�∈N is a (nonnecessarily monotone) increasing sequence of natural numbers fulfil-
ling j1 = 1, p = jn2 − jn1 + 1 for the given jn1,2 ∈ N, for some n2 ≥ n1 ≥ n2 if k ≥ 1, with
the sequence of natural numbersj�satisfying 1 ≤ j� ≤ jn2 , n1,2, k ∈ p − 1 ∪ {0}. Note that in
fact Tpn+k

{j�} :
⋃

i∈p Ai → ⋃
i∈p(
⋂jn2

j=1 Âij) since its image is always restricted to be contained in
⋃

i∈p(
⋂jn2

j=1 Âij) by construction.
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The reason of the abuse of notation when defining the composed mapping is useful
since it is explicitly indicated that we are dealing with the composition of n times groups of p
compositions of the sequence of self-mappings Tj :

⋃
i∈p Âij → ⋃i∈p Âij . The following result

holds.

Theorem 2.5. Any composed mapping Tpn+k
{j�} from

⋃
i∈p Ai to

⋃
i∈p(
⋂jn2

j=1 Âij), defined by (2.22) under
the Hypothesis (H1)–(H3), has the following properties.

(i) If the sequence {j�}�∈Nα
, defined for some Nα ⊂ N, is unbounded then,

∃ lim
n→∞

d

(

T
pn+k

{j�} x, T
pn+k+1

{j�} x

)

= D; ∀x ∈
⋃

i∈p
Ai, ∀k ∈ p − 1 ∪ {0}. (2.23)

(ii) Assume that the sequence Tj :
⋃

i∈p Âij → ⋃
i∈p Âij , with Tj(Âij) ⊆ Âi+1,j , converges

uniformly on some nonempty subset S ⊂ ⋃i∈p Ai (under proper set inclusion) as j → ∞. Then, any

sequence Tpn+k
{j�} :

⋃
i∈p Ai → ⋃i∈p(

⋂jn2
j=1 Âij) converges uniformly to a limit self-mapping, dependent

on the sequence {j�}�∈Nα
, T̂pn+k :

⋃
i∈p Ai → ⋃

i∈p(
⋂∞

j=1 Âij) as j�, n → ∞ provided that S ⊇
⋃

i∈p(
⋂jn2

j=1 Âij). Also,

∃ lim
n→∞

d
(
T̂ pn+kx, T̂pn+k+1x

)
= lim

n→∞
d

(

T
pn+k

{j�} x, T
pn+k+1

{j�} x

)

= D; ∀x ∈
⋃

i∈p
Ai, ∀k ∈ p − 1 ∪ {0}.

(2.24)

(iii) The limit T̂ pn+k :
⋃

i∈p Ai → ⋃
i∈p(
⋂∞

j=1 Âij) of any composed sequence of mappings

T
pn+k
{j�} :

⋃
i∈p Ai → ⋃

i∈p(
⋂jn2

j=1 Âij), ∀x ∈ ⋃i∈p Ai generated by some unbounded sequence {j�}�∈Nα

has a best proximity point xi between the adjacent sets(
⋂∞

j=1 Âij) and (
⋂∞

j=1 Âi+1,j) at each ∂(
⋂∞

j=1 Âij)

which is also in Ai, ∀i ∈ p to which all the sequences {T̂ pnx}n∈N0
, which are then bounded, converge;

∀x ∈ Ai, ∀i ∈ p.
If Di = D > 0, ∀i ∈ p, then all sequences {Tpnx}n∈N0

; ∀x ∈ Ai converges to a best proximity
point of Ai, ∀i ∈ p.

If, in addition, the metric space (X, d) is complete and Di = D = 0, ∀i ∈ p then all sequences
{Tpnx}n∈N0

, ∀x ∈ Ai converge to a unique fixed point of Ai, ∀i ∈ p.
(iv) Assume that X is a uniformly convex space and that the subsets Ai are convex and

closed. Then, the best proximity points xi ∈ (
⋂∞

j=1 Âij) of the adjacent subsets (
⋂∞

j=1 Âij) ⊆ Ai

and (
⋂∞

j=1 Âi,j+1) ⊆ Ai+1 are unique for each i ∈ p. Furthermore, xi+j = Tjxi and d(xi, T̂xi) =

d(T̂ jxi, T̂
j+1xi) = d(xi+j , xi+j+1) = D; ∀i, j ∈ p with xi+np = xi; ∀n ∈ N0, ∀i ∈ p.

Proof. Note that the necessary condition (2.3) for Property (i) holds by construction and take,
with no loss of generality, n = (m1jn2 + m2 − k)/p for k ∈ p and n := m1jn2 + m2/p for
k = 0 for any given finite positive natural numbers m1,2, dependent on n and k, so that
jn1 := max1≤�≤n2j� → ∞, if k = 0 in (2.22), and also jn2 := max1≤�≤n2j� → ∞, if k ∈ p − 1,
as n → ∞ in (2.22) for {j�}�∈Nα

being some unbounded sequence of natural numbers as
�, j� → ∞. Since Kij ≡ Ki with

∏p

i=1[Ki] < 1 and ωij ≡ ωi := D/Di − Ki; ∀i ∈ p, ∀j ∈
N0, D := limj→∞ dist(Âij , Âi+1,j) ≥ maxi∈pDi and Tj :

⋃
i∈p Âij → ⋃

i∈p Âij subject to
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Tj(Âij) ⊆ Âi+1,j ; ∀i ∈ p, ∀j ∈ N0, it follows from Cantor’s intersection theorem that any
arbitrary intersection

⋂
j∈N̂0

Âij is nonempty and closed; ∀i ∈ p andN̂0 ⊆ N0 since Âi0 ≡ Aiand

Âi,j+1 ⊆ Âij ; ∀i ∈ p, ∀j ∈ N0. Then, the composed ∀k ∈ p − 1 ∪ {0} mapping T
pn

{j�} from
⋃

i∈p Ai

to
⋃

i∈p Ai, whose nonempty image is restricted by construction to the subset
⋃

i∈p(
⋂jn2

j=1 Âij) of
⋃

i∈p Ai, is well-posed for any arbitrary sequence{j�} and for any x ∈ ⋃i∈p Ai. Thus, one gets
from Theorem 2.1, (2.10), that for any given ε ∈ R+, ∃n0 = n0(ε) ∈ N such that:

D≤ d

(

T
pn+k

{j�} x, T
pn+k+1

{j�} x

)

≤ D + ε; ∀x ∈
⋃

i∈p
Ai, ∀n(∈ N0) ≥ n0, ∀x ∈

⋃

i∈p
Ai, ∀k ∈ p − 1 ∪ {0},

(2.25)

where the sequence of natural numbers {j�}�∈N being subject to n = (m1jn2 + m2 − k)/p for
k ∈ p and n := m1jn2 + m2/p for k = 0. Thus, it follows that (2.23) holds from (2.25) since
m1jn2 +m2 = np + k → ∞ that implies jn2 , jn2 → ∞ for k ∈ p, and jn2 → ∞ for k = 0 so that
{j�}�∈N̂ 0

diverges to infinity as � → ∞ taking values in a subset N̂0 of N of infinite cardinal.
Hence, Property (i).

To prove Property (ii), note first that the composed self-mapping map T
pn+k
{j�} :

⋃
i∈p Ai →

⋃
i∈p Ai has an image restricted to

⋃
i∈p(
⋂jn2

j=1 Âij) by construction. If Tj :
⋃

i∈p Âij →
⋃

i∈p Âij , satisfying Tj(Âij) ⊆ Âi+1,j , converges uniformly as j → ∞ on some subset S of X

satisfying
⋃

i∈p Ai ⊃ S ⊇ ⋃i∈p(
⋂jn2

j=1 Âij), then T
pn+k
{j�} can converge uniformly in

⋃
i∈p(
⋂jn2

j=1 Âij) as

j� → ∞. Proceed by contradiction. If Tpn+k
{j�} :

⋃
i∈p Ai → ⋃i∈p(

⋂jn2
j=1 Âij) do not converge uni-

formly, while Tpn+k converges does, then, for any given ε ∈ R+, there exist some ε0 ∈ R+,
some x ∈ ⋃i∈p Ai and some n0 = n0(ε0), n0 = n0(ε) ∈ N0 and some sequences of nonnegative
ordered integers {nt} and {mt} of minimal element n̂0 = pmax(n0, n0) such that:

ε + g ≥ d
(
T
pn+k
{nt} x, Tpm+k+1x

)
+ d
(
Tpm+k+1x, Tpn+kx

)
+ d
(
Tpn+kx, T

pn+k+1
{mt} x

)

≥ d
(
T
pn+k
{nt} x, T

pn+k+1
{mt} x

)

≥ ε0,

(2.26)

after using the triangle property for distances, for some g = g(x) ∈ R0+ and n,m ∈ N satis-
fying

nt ≥ pn + k ≥ n̂0, mt ≥ pm + k ≥ n̂0, ∀k ∈ p − 1 ∪ {0}. (2.27)

The chained inequalities (2.25) contradict a choice of ε ∈ R+ satisfying ε < ε0. Since ε ∈ R+ is
arbitrary, Tpn+k

{j�} :
⋃

i∈p Ai → ⋃i∈p(
⋂jn2

j=1 Âij) converges uniformly in (
⋂jn2

j=1 Âij) as jn1 → ∞, or
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trivially, if jn1is finite, for all k ∈ p − 1 ∪ {0}. On the other hand, the triangle inequality yields

d
(
T̂ pn+kx, T̂pn+k+1x

)
≤ d

(

T̂ pn+kx, T
pn+k

{j�} x
)

+ d

(

T
pn+k

{j�} x, T̂
pn+k+1x

)

−→ 0 as j�, n −→ ∞,

(2.28)

∀x ∈ ⋃i∈p Ai, ∀k ∈ p − 1∪ {0}, since a uniform convergence of the sequence Tpn+k
{j�} x → T̂ pn+kx

as j�, n → ∞, ∀x ∈ ⋃i∈p Ai has been proven, so that (2.24) follows. Hence, Property (ii).

To prove Property (iii), remember that form Property (ii), Tj :
⋃

i∈p Âij → ⋃i∈p Âij and

the composed T
pn+k
{j�} :

⋃
i∈p Ai →

⋃
i∈p(
⋂jn2

j=1 Âij) fulfil:

Tjx −→ T̂x as j −→ ∞ =⇒ T
pn+k

{j�} x −→ T̂ pn+kx, ∀k ∈ p − 1 ∪ {0} as j�, n −→ ∞, ∀x ∈
⋃

i∈p
Ai.

(2.29)

From (2.24), ∀ε ∈ R+ ⇒ ∃n1 = n1(ε) such that for any integers n,m ≥ n1,

d
(
T̂ pmx, T̂pnx

)
≤ ε; d

(
T̂ pnx, T̂pn+1x

)
= d

(

T
pn

{j�}x, T
pn+1

{j�} x
)

< D + ε, ∀x ∈
⋃

i∈p
Ai.

(2.30)

Proceed by contradiction to prove the convergence of the iterates to best proximity points of
⋂∞

j=1 Âij ; ∀i ∈ p. Assume that there is no xi ∈ Ai such that xi = T̂npxi ∈ ⋂∞
j=1 Âij ,and D =

d(xi, T̂xi) = d(xi+1, T̂xi+1); ∀i ∈ p so that there exist some integers n,m ≥ max(n1, n2), ε1 ∈ R+

and x ∈ Ai such that

D + 2ε > d
(
T̂ pmx, T̂pnx

)
+ d
(
T̂ pnx, T̂pn+1x

)
≥ d
(
T̂ pmx, T̂pn+1x

)
≥ D + ε1. (2.31)

Since ε is arbitrary, one can choose ε < ε1/2 which yields a contradiction in (2.31). Then,
∃xi = T̂npxi ∈

⋂∞
j=1 Âij such that D = d(xi, T̂xi) = d(xi+1, T̂xi+1), ∀i ∈ p. Furthermore, xi ∈ Ai

since Tj(Âij) ⊆ Âi+1,j ⊆ Âi+1,0 ≡ Ai+1, ∀i ∈ p, ∀j ∈ N0. If all the distances are nonzero and
identical then the best proximity points are at the boundaries of the closed subsets Ai, ∀i ∈ p.
If, in addition, the metric space is complete and the subsets intersect (i.e., all the distances
between adjacent subsets are zero), then ωi = 1 − Ki and the best proximity points are also
coincident in a unique fixed point (Theorem 2.1(iii)) in the nonempty intersection of all such
subsets. Property (iii) has been proven.
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Property (iv) is proven by contradiction. Assume that there are two distinct best pro-
ximity points xi, yi ∈ (

⋂∞
j=1 Âij) for any given i ∈ p. Define the following real sequences

{xn}n∈N, {yn}n∈N, and {zn}n∈N by its general terms as follows:

xn = T
pn+1

{j�} x −→ T̂ pn+1x −→ T̂xi = T̂ pnxi as n −→ ∞,

yn = T
pn

{j�}x −→ T̂ pnx −→ xi = T̂ pnxi as n −→ ∞,

zn = T
pn+1

{j�} y −→ T̂ pnyi = yi,

(2.32)

generated by a uniformly convergent mapping T
pn+k
{j�} :

⋃
i∈p Ai → ⋃i∈p(

⋂jn2
j=1 Âij), k ∈ p − 1 ∪

{0} for some x, y(/=x) ∈ Ai, some i ∈ p as the integer sequencesj�, jn2 → ∞. The limits above
exist from Property (iii). Also, one gets from Property (i), (2.23), and Lemma 3.8 of [4], since
X is uniformly convex and (

⋂∞
j=1 Âij) are nonempty and closed ∀i ∈ p, that

(

d

(

T
pn+1

{j�} x, T
pn

{j�}x
)

−→ d
(
T̂ pn+1x, T̂pnx

)
−→ d

(
xi, T̂xi

)
= D as n −→ ∞

)

∧
(

d

(

T
pn+1

{j�} y, T
pn

{j�}x
)

−→ d
(
T̂ pn+1y, T̂pnx

)
−→ d

(
xi, T̂yi

)
= D as n −→ ∞

)
(2.33)

=⇒
(

d

(

T
pn

{j�}x, T
pn

{j�}y
)

−→ d
(
T̂ pnx, T̂pny

)
−→ d

(
xi, yi

)
= 0
)

, (2.34)

since the uniformly convex space (X, ‖ · ‖)with a norm ‖ · ‖ is a Banach space so that we could
rewrite the above constraints by replacing the metric d : X × X → R0+ by a metric d1 :
X × X → R0+, induced by ‖ · ‖, which is always equivalent to d : X × X → R0+ even in the
case that both metric functions are not coincident. Equation (2.34) contradicts xi /=yi, since
there is no n0 = n0(ε) for any given ε ∈ R+ such that d(Tpn

{j�}x, T
pn

{j�}y) ≤ ε, ∀n ≥ n0 implying

that d(Tpm

{j�}x, T
pm

{j�}y) > ε for some m ≥ n0. Thus, (2.33) is false unless xi = yi; ∀i ∈ p. It follows

also as a result that the p best proximity points xi ∈ (
⋂∞

j=1 Âij), ∀i ∈ p satisfy xi+j = Tjxiand

d(xi, T̂xi) = d(T̂ jxi, T̂
j+1xi) = d(xi+j , xi+j+1) = D, ∀i, j ∈ p with xi+np = xi, ∀n ∈ N0, ∀i ∈ p.

Note that the existence of nonempty subsets Âi ⊆ Ai,∀i ∈ p, in Theorem 2.5 are
guaranteed if Ai are bounded (although nonnecessarily closed) and Di ≤ D ≤ Di + diam Ai;
∀i ∈ p. Note also that

∏p

i=1[Ki +ωi] ≥ 1 is guaranteed since ωi := D/Di −Ki ≥ 1 −Ki, ∀i ∈ p.

3. Links with General Kannan Mappings and
p-Cyclic Kannan Mappings

The next result is concerned with p-cyclic Kannan self-mappings [7, 11, 12] which can
eventually satisfy contractive conditions within the class (2.1).
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Theorem 3.1. Assume that a p(≥ 2)-cyclic self-mapping T :
⋃

i∈p Ai → ⋃
i∈p Ai satisfies the con-

tractive condition (2.1) with αi = 0, Di = D; ∀i ∈ p. Then, the following properties hold.
(i) If

γi :=
1

1 − 2ηi − μi

[

ηi + μi +
β1i + β2i

2
+max

(
β1i + γ1i + δ1i, β2i + γ2i + δ2i

)
]

<
1
2
, ∀i ∈ p, (3.1)

and, furthermore, ωi = (2ηi + μi)(1 − Ki) with the constants Ki defined in (2.4), ∀i ∈ p then,
T :
⋃

i∈p Ai →
⋃

i∈p Ai is a p-cyclic Kannan self-mapping.
(ii) If, in addition, (2.9) is replaced by the constraints

β2i + γ1i + γ2i + 3
(
δ1i + δ2i + μi + 2

(
β1i + ηi

))
< 1, ∀i ∈ p, (3.2)

and, furthermore,

2ηi + μi < 1, ∀i ∈ p,

δ1i + μi + γ1i + β1i + ηi
1 − 2β1i − β2i − δ1i − δ2i − γ2i − 2ηi − μi − γ1i

≤ γi :=
1

1 − 2ηi − μi

[

ηi + μi +
β1i + β2i

2
+max

(
β1i + γ1i + δ1i, β2i + γ2i + δ2i

)
]

<
1
2
, ∀i ∈ p

(3.3)

then

lim
n→∞

d
(
Tpn+1x, Tpnx

)
= D, ∀x ∈ Ai, ∀i ∈ p, (3.4)

which is guaranteed by the condition (2.3). If the p subsetsAi ofX, ∀i ∈ p, have nonempty intersection
and if the metric space (X, d) is complete, then limn→∞d(Tpn+1x, Tpnx) = 0; ∀x ∈ ⋃i∈p Ai and
T :
⋃

i∈p Ai → ⋃
i∈p Ai have a unique fixed point in

⋂
i∈p Ai to which all the sequences {Tnx}n∈N0

,
which are then bounded, converge; ∀x ∈ ⋃i∈p Ai. If the above p subsets of X are disjoint, closed, and
convex, ∀i ∈ p, X is uniformly convex and D > 0 then all sequences {Tpnx}n∈N0

, ∀x ∈ Ai converge
to a best proximity point xi of Ai and xi+1 = Txi = Tpxi, ∀i ∈ p.

Proof. If αi = 0, ∀i ∈ p, then the contractive condition (2.1) may be upper-bounded as follows
for all ∀x, y(/=x) ∈ Ai; any i ∈ p by using the triangle inequality where necessary and
upper-bounding the necessary fractions by unity when the denominator is not less than the
numerator in the right-hand side of (2.1):

d
(
Tx, Ty

) ≤ (2ηi + μi

)
d
(
Tx, Ty

)
+
(

β1i +
β1i + β2i

2
+ γ1i + ηi + μi

)

d(x, Tx)

+
(

β2i +
β1i + β2i

2
+ γ2i + δ2i + ηi + μi

)

d
(
y, Ty

)
+ωiD,

(3.5)
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and, since 2ηi + μi < 1, one gets

d
(
Tx, Ty

) ≤ γi
(
d(x, Tx) + d

(
y, Ty

))
+ωiDi, ∀x, y(/=x) ∈ Ai, ∀i ∈ p, (3.6)

with γi ∈ [0, 1/2), ∀i ∈ p. Thus, T :
⋃

i∈p Ai → ⋃
i∈p Ai is a p-cyclic Kannan self-mapping.

Hence, Property (i).
Furthermore, since (2.9) is replaced by (3.1) for αi = 0 so that if Ki ∈ [0, 1/3) in (2.4)

and ωi = (2ηi + μi)(1 − Ki), ∀i ∈ p in (2.1), it follows from (3.5) that (3.1)–(3.3) guarantee
that Ki/(1 − Ki) ≤ γi < 1/2 under the necessary condition Ki ∈ [0, 1/3), ∀i ∈ p, [11, 12].
Then, the self-mapping T :

⋃
i∈p Ai →

⋃
i∈p Ai satisfies the following contractive condition for

y = Tx(/=x) ∈ Ai and any i ∈ p:

d
(
Tx, Ty

) ≤ γi
(
d(x, Tx) + d

(
y, Ty

))

d
(
Tx, Ty

) ≤ Kid
(
x, y
) ≤ Kid

(
Tx, Ty

)
+Ki

(
d(x, Tx) + d

(
y, Ty

))

≤ γi
(
d(x, Tx) + d

(
y, Ty

))
; ∀x, y(/=x) ∈ Ai; ∀i ∈ p

=⇒ d
(
Tx, Ty

) ≤ Ki

1 −Ki

(
d(x, Tx) + d

(
y, Ty

))
.

(3.7)

Hence, Property (ii) follows directly from Theorem 2.1.

Remark 3.2. Note that there are several contractive conditions discussed in the literature for
the noncyclic (p = 1) case and eventually for the cyclic (p ≥ 2) case which are particular cases
of (2.1), under (2.9), as follows.

(1) If μ1 ∈ [0, 1) while all the remaining constants are zero, the contractive condition
reduces to that of Banach contraction principle, [13]. A similar extended condition
for i ∈ p, p ≥ 2 relies on Banach contraction principle for p-cyclic self-mappings.

(2) If α1 /= 0 and μ1 ∈ [0, 1), then the contractive condition (2.1) is of the same type as
that of [2] and generalizes it.

(3) If δ = δi1 /= 0 (i = 1, 2), μ1 /= 0 with appropriate constraints and the remaining con-
stants being zero then the contractive condition is that proposed by Chaterjee [14].

(4) If η1 /= 0, μ1 /= 0, with appropriate constraints and the remaining constants being
zero, then the contractive condition is that proposed by Fisher [15].

(5) If 1/2 > δ = δi1 /= 0 (i = 1, 2) with the remaining constants being zero, then the
contractive condition is that proposed by Kannan, [16, 17], recently generalized in
[12]. See also [7, 11]. A similar extended condition for i ∈ p, p ≥ 2 relies on Banach
contraction principle for p-cyclic Kannan self-mappings which can be simulta-
neously contractive [7].

(6) δ1 /= 0, η1 /= 0, μ1 /= 0 with appropriate constraints and the remaining constants being
zero, then the contractive condition is that proposed by Reich [18].

(7) γi = β2 = 0 for i = 1, 2 and the remaining constants are either zero or nonzero then
the contractive condition is that of Bhardwaj et al. [1].

(8) The contractive condition also can include a generalization of Kannan’s fixed point
theorem due to Kikkawa and Syuzuki [19], reported in Enjouji et al. [12] if an
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implication is established to get Kannan’s condition supported by the use of a non-
increasing real function ϕ : [0, 1/2) → (1/2, 1] defined as:

ϕ(δ) :=

⎧
⎪⎨

⎪⎩

1, if 0 ≤ δ <
√
2 − 1,

1 − α, if
√
2 − 1 < δ ≤ 1

2
,

(3.8)

so that

ϕ(δ)d(x, Tx) ≤ d
(
x, y
)
=⇒ d

(
Tx, Ty

) ≤ δ
(
d(x, Tx) + d

(
y, Ty

))
, ∀x, y ∈ X. (3.9)

This can be addressed with (2.1) as follows. Take α/= 0 and 1/2 > δ = δi1 /= 0(i = 1, 2)
and all the remaining constants in (2.1) being zero by defining

ϕ(δ) =
δ

1 − α(ε) − δ
=

⎧
⎪⎨

⎪⎩

1, if 0 ≤ δ < δ0,

1 − δ + ε, if δ0 < δ ≤ 1
2
,

(3.10)

where δ0 =
√
2 − 1 subject to the constraints δ ∈ (0, 1/2), and

α = 1 − 2δ if 0 ≤ δ <
√
2 − 1, (3.11)

α = α(ε) = 1 − δ0 +
δ0 + ε − 1

δ0
if δ0 < δ ≤ 1

2
with ε ≥ 1 − δ0(2 − δ0). (3.12)

(9) If p ≥ 2, μi ∈ [0, 1) and ωi = 1 − μi,∀i ∈ p, then the contractive condition is a p-cyclic
contractive condition, [3–7].

Remark 3.3. An important property of Kannan mappings on a metric space (X, d) is that it is
complete if and only if every Kannan mapping on X has a fixed point, [12, 19, 20].

The first property of the following result follows directly from the contractive con-
dition (2.1) and Remark 3.2.7 by using the fixed point result of [19]. The second part follows
directly from Theorem 3.1 by taking the particular condition for Kannan p(≥ 2)p-cyclic
mappings which are simultaneously contractive (see Remarks 3.2.4 and 3.2.8).

Theorem 3.4. The following properties hold.
(i) Let T be a self-mapping on a complete metric space (X, d) and that (3.9)–(3.12) hold for

all x, y ∈ X with α > 0 and 1/2 > δ > 0(i = 1, 2). Then, T has a fixed point x ∈ X satisfying
x = limn→∞Tnx, ∀x ∈ X.

(ii) Let T :
⋃

i∈p Ai →
⋃

i∈p Ai be a p(≥ 2)-cyclic self-mapping, satisfying T(Ai) ⊆ Ai+1, ∀i ∈
p, with p being nonempty closed subsets Ai of X, such that (X, d) is a complete metric space and
Apj+� ≡ A� ,∀� ∈ p − 1, which all intersect, ∀i ∈ p satisfying the following particular contractive
condition in (2.1): αi > 0; 1/2 > δi = δji /= 0 (j = 1, 2; i ∈ p) and the remaining constants are zero
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with Ki := 2δi/(1 − αi − δi) < 1/3. Then, T :
⋃

i∈p Ai → ⋃
i∈p Ai is simultaneously a contractive

and Kannan p-cyclic self-mapping which has a unique fixed point x = limn→∞Tnx in
⋂

i∈p Ai, ∀x ∈
⋃

i∈p Ai.
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