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We construct a new type of q-Euler numbers and polynomials with weak weight α : E(α)
n,q , E

(α)
n,q(x),

respectively. Some interesting results and relationships are obtained. Also, we observe the behavior
of roots of the q-Euler numbers E

(α)
n,q and polynomials E

(α)
n,q(x) with weak weight α. By means of

numerical experiments, we demonstrate a remarkably regular structure of the complex roots of
q-Euler polynomials E(α)

n,q with weak weight α.

1. Introduction

The Euler numbers and polynomials possess many interesting properties are arising in many
areas of mathematics and physics. Recently, many mathematicians have studied the area of
the q-Euler numbers and polynomials (see [1–19]). In this paper, we construct a new type of
q-Euler numbers E(α)

n,q and polynomials E(α)
n,q(x)with weak weight α. The main purpose of this

paper is also to investigate the zeros of the q-Euler polynomials E(α)
n,q(x) with weak weight α.

Furthermore, we give a table for the zeros of the q-Euler numbers and polynomials E(α)
n,q(x)

with weak weight α.
Throughout this paper we use the following notations. By Zp we denote the ring of

p-adic rational integers, Qp denotes the field of p-adic rational numbers, Cp denotes the
completion of algebraic closure of Qp, N denotes the set of natural numbers, Z denotes
the ring of rational integers, Q denotes the field of rational numbers, C denotes the set of
complex numbers, and Z+ = N ∪ {0}. Let νp be the normalized exponential valuation of
Cp with |p|p = p−νp(p) = p−1. When one talks of q-extension, q is considered in many ways
such as an indeterminate, a complex number q ∈ C, or p-adic number q ∈ Cp. If q ∈ C one
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normally assume that |q| < 1. If q ∈ Cp, we normally assume that |q − 1|p < p−1/(p−1) so that
qx = exp(x log q) for |x|p ≤ 1. Throughout this paper we use the notation

[x]q =
1 − qx

1 − q
, [x]−q =

1 − (−q)x
1 + q

. (1.1)

(cf. [1–11, 15–18]). Hence, limq→ 1[x]q = x for any x with |x|p ≤ 1 in the present p-adic case.
For

g ∈ UD
(
Zp

)
=
{
g | g : Zp −→ Cp is uniformly differentiable function

}
, (1.2)

the fermionic p-adic q-integral on Zp is defined by Kim as follows:

I−q
(
g
)
=
∫

Zp

g(x)dμ−q(x) = lim
N→∞

1
[
pN
]
−q

pN−1∑

x=0

g(x)
(−q)x. (1.3)

(cf. [3–6]). If we take g1(x) = g(x + 1) in (1.3), then we easily see that

qI−q
(
g1
)
+ I−q

(
g
)
= [2]qg(0). (1.4)

From (1.4), we obtain

qnI−q
(
gn
)
+ (−1)n−1I−q

(
g
)
= [2]q

n−1∑

l=0

(−1)n−1−lqlg(l), (1.5)

where gn(x) = g(x + n) (cf. [3–6]).
As well-known definition, the Euler polynomials are defined by

F(t) =
2

et + 1
= eEt =

∞∑

n=0

En
tn

n!
,

F(t, x) =
2

et + 1
ext = eE(x)t =

∞∑

n=0

En(x)
tn

n!
,

(1.6)

with the usual convention of replacing En(x) by En(x). In the special case, x = 0, En(0) = En

are called the nth Euler numbers (cf. [1–11]).
Our aim in this paper is to define q-Euler numbers E(α)

n,q and polynomials E(α)
n,q(x) with

weak weight α. We investigate some properties which are related to q-Euler numbers E
(α)
n,q

and polynomials E
(α)
n,q(x) with weak weight α. We also derive the existence of a specific

interpolation function which interpolates q-Euler numbers E(α)
n,q and polynomials E(α)

n,q(x)with
weak weight α at negative integers. Finally, we investigate the behavior of roots of the q-Euler
polynomials E(α)

n,q with weak weight α.



Journal of Applied Mathematics 3

2. Basic Properties for q-Euler Numbers and Polynomials with
Weak Weight α

Our primary goal of this section is to define q-Euler numbers E(α)
n,q and polynomials E(α)

n,q(x)

with weak weight α. We also find generating functions of q-Euler numbers E
(α)
n,q and

polynomials E(α)
n,q(x)with weak weight α.

For α ∈ Z and q ∈ Cp with |1 − q|p ≤ 1, q-Euler numbers E(α)
n,q are defined by

E
(α)
n,q =

∫

Zp

[x]nqdμ−qα(x). (2.1)

By using p-adic q-integral on Zp, we obtain

∫

Zp

[x]nqdμ−qα(x) = lim
N→∞

1
[
pN
]
−qα

pN−1∑

x=0
[x]nq

(−qα)x

= [2]qα
(

1
1 − q

)n n∑

l=0

(
n

l

)

(−1)l 1
1 + qα+l

= [2]qα
∞∑

m=0
(−1)mqαm[m]nq .

(2.2)

By (2.1), we have

E
(α)
n,q = [2]qα

(
1

1 − q

)n n∑

l=0

(
n

l

)

(−1)l 1
1 + qα+l

= [2]qα
∞∑

m=0
(−1)mqαm[m]nq .

(2.3)

We set

F
(α)
q (t) =

∞∑

n=0

E
(α)
n,q

tn

n!
. (2.4)

By using above equation and (2.2), we have

F
(α)
q (t) =

∞∑

n=0

E
(α)
n,q

tn

n!

= [2]qα
∞∑

n=0

((
1

1 − q

)n n∑

l=0

(
n

l

)

(−1)l 1
1 + qα+l

)
tn

n!

= [2]qα
∞∑

m=0
(−1)mqαme[m]qt.

(2.5)



4 Journal of Applied Mathematics

Thus q-Euler numbers with weak weight α, E(α)
n,q are defined by means of the generating

function

F
(α)
q (t) = [2]qα

∞∑

m=0
(−1)mqαme[m]qt. (2.6)

By using (2.1), we have

∞∑

n=0

E
(α)
n,q

tn

n!
=

∞∑

n=0

∫

Zp

[x]nqdμ−qα(x)
tn

n!

=
∫

Zp

e[x]qtdμ−qα(x).

(2.7)

By (2.5), (2.7), we have

∫

Zp

e[x]qtdμ−qα(x) = [2]qα
∞∑

m=0
(−1)mqαme[m]qt. (2.8)

Next, we introduce q-Euler polynomials E
(α)
n,q(x) with weak weight α. The q-Euler

polynomials E(α)
n,q(x)with weak weight α are defined by

E
(α)
n,q(x) =

∫

Zp

[
x + y

]n
qdμ−qα

(
y
)
. (2.9)

By using p-adic q-integral, we obtain

E
(α)
n,q(x) = [2]qα

(
1

1 − q

)n n∑

l=0

(
n

l

)

(−1)lqxl 1
1 + qα+l

. (2.10)

We set

F
(α)
q (t, x) =

∞∑

n=0

E
(α)
n,q(x)

tn

n!
. (2.11)

By using (2.10) and (2.11), we obtain

F
(α)
q (t, x) =

∞∑

n=0

E
(α)
n,q(x)

tn

n!
= [2]qα

∞∑

m=0
(−1)mqαme[m+x]qt. (2.12)

Obverse that if q → 1, then F
(α)
q (t, x) → F(t, x) and F

(α)
q (t) → F(t).
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Since [x + y]q = [x]q + qx[y]q, we easily obtain that

E
(α)
n,q(x) =

∫

Zp

[
x + y

]n
qdμ−qα

(
y
)

=
n∑

l=0

(
n

l

)

[x]n−lq qxlE
(α)
l,q

=
(
[x]q + qxE

(α)
q

)n

= [2]qα
∞∑

m=0
(−1)mqαm[x +m]nq .

(2.13)

Observe that if q → 1, then E
(α)
n,q → En and E

(α)
n,q(x) → En(x).

By (2.10), we have the following complement relation.

Theorem 2.1 (property of complement). One has

E
(α)
n,q−1(1 − x) = (−1)nqnE(α)

n,q(x). (2.14)

By (2.10), we have the following distribution relation.

Theorem 2.2 (distribution relation). For any positive integerm(=odd), one has

E
(α)
n,q(x) =

[2]qα

[2]qαm
[m]nq

m−1∑

i=0
(−1)iqαiE(α)

n,qm

(
i + x

m

)
, n ∈ Z+. (2.15)

By (1.5), (2.1), and (2.9), we easily see that

[2]qα
n−1∑

l=0

(−1)n−1−lqαl[l]mq = qαnE
(α)
m,q(n) + (−1)n−1E(α)

m,q. (2.16)

Hence, we have the following theorem.

Theorem 2.3. Letm ∈ Z+. If n ≡ 0(mod 2), then

qαnE
(α)
m,q(n) − E

(α)
m,q = [2]qα

n−1∑

l=0

(−1)l+1qαl[l]mq . (2.17)

If n ≡ 1(mod 2), then

qαnE
(α)
m,q(n) + E

(α)
m,q = [2]qα

n−1∑

l=0

(−1)lqαl[l]mq . (2.18)
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From (1.4), one notes that

[2]qα = qα
∫

Zp

e[x+1]qtdμ−qα(x) +
∫

Zp

e[x]qtdμ−qα(x)

=
∞∑

n=0

(

qα
∫

Zp

[x + 1]nqdμ−qα(x) +
∫

Zp

[x]nqdμ−qα(x)

)
tn

n!

=
∞∑

n=0

(
qαE

(α)
n,q(1) + E

(α)
n,q

) tn

n!
.

(2.19)

Therefore, we obtain the following theorem.

Theorem 2.4. For n ∈ Z+, one has

qαE
(α)
n,q(1) + E

(α)
n,q =

⎧
⎨

⎩

[2]qα , if n = 0,

0, if n > 0.
(2.20)

By Theorem 2.4 and (2.13), we have the following corollary.

Corollary 2.5. For n ∈ Z+, one has

qα
(
qE

(α)
q + 1

)n
+ E

(α)
n,q =

⎧
⎨

⎩

[2]qα , if n = 0,

0, if n > 0,
(2.21)

with the usual convention of replacing (E(α)
q )n by E(α)

n,q .
By (2.12), one has

∞∑

n=0

(
qαE

(α)
n,q(x + 1) + E

(α)
n,q(x)

) tn

n!

= [2]qαq
α

∞∑

m=0
(−1)mqαme[m+1+x]qt + [2]qα

∞∑

m=0
(−1)mqαme[m+x]qt

= [2]qαe
[x]qt

= [2]qα
∞∑

n=0
[x]nq

tn

n!
.

(2.22)

Hence we have the following difference equation.

Theorem 2.6 (difference equation). For n ∈ Z+, one has

qαE
(α)
n,q(x + 1) + E

(α)
n,q(x) = [2]qα[x]

n
q . (2.23)
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Using q-Euler numbers and polynomials with weak weight α, q-Euler zeta function
with weak weight α and Hurwitz q-Euler zeta functions with weak weight α are defined.
These functions interpolate the q-Euler numbers and q-Euler polynomials with weak weight
α, respectively. In this section we assume that q ∈ C with |q| < 1. From (2.6), we note that

dk

dtk
F
(α)
q (t)

∣
∣
∣
∣
∣
t=0

= [2]qα
∞∑

n=1

(−1)nqαn[n]kq , (k ∈ N). (2.24)

Using the above equation, we are now ready to define q-Euler zeta functions.

Definition 2.7. Let s ∈ C.

ζ
(α)
q (s) = [2]qα

∞∑

n=1

(−1)nqαn
[n]sq

. (2.25)

Note that ζ(α)q (s) is a meromorphic function on C. Note that, if q → 1, then ζ
(α)
q (s) =

ζ(s) which is the Euler zeta functions. Relation between ζ
(α)
q (s) and E

(α)
k,q

is given by the
following theorem.

Theorem 2.8. For k ∈ N, one has

ζ
(α)
q (−k) = E

(α)
k,q . (2.26)

Observe that ζ(α)q (s) function interpolates E
(α)
k,q

numbers at nonnegative integers. By using
(2.12), we note that

dk

dtk
F
(α)
q (t, x)

∣∣∣∣∣
t=0

= [2]qα
∞∑

n=0
(−1)nqαn[n + x]kq , (k ∈ N), (2.27)

(
d

dt

)k
( ∞∑

n=0

E
(α)
n,q(x)

tn

n!

)∣∣∣∣∣
t=0

= E
(α)
k,q(x), for k ∈ N. (2.28)

By (2.27) and (2.28), we are now ready to define the Hurwitz q-Euler zeta functions.

Definition 2.9. Let s ∈ C. Then, one has

ζ
(α)
q (s, x) = [2]qα

∞∑

n=0

(−1)nqαn
[n + x]sq

. (2.29)

Note that ζ(α)q (s, x) is a meromorphic function on C. Obverse that, if q → 1, then

ζ
(α)
q (s, x) = ζ(s, x) which is the Hurwitz Euler zeta functions. Relation between ζ

(α)
q (s, x) and

E
(α)
k,q

(x) is given by the following theorem.
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Figure 1: Zeros of E(3)
n,1/2(x).

Theorem 2.10. For k ∈ N, one has

ζ
(α)
q (−k, x) = E

(α)
k,q(x). (2.30)

Observe that ζ(α)q (−k, x) function interpolates E(α)
k,q(x) numbers at nonnegative integers.

3. Distribution and Structure of the Zeros

In this section, we assume that α ∈ N and q ∈ C, with |q| < 1. We observe the behavior of roots
of the q-Euler polynomials E(α)

n,q(x). We display the shapes of the q-Euler polynomials E(α)
n,q(x),

and we investigate the zeros of the q-Euler polynomials E(α)
n,q(x). We plot the zeros of the q-

Euler polynomials E(α)
n,q(x) for n = 10, 20, 30, 40 and x ∈ C (Figure 1). In Figure 1 (top-left), we
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Figure 2: Zeros of E(α)
n,q(x).

choose n = 10, q = 1/2, and α = 3. In Figure 1 (top-right), we choose n = 20, q = 1/2, and
α = 3. In Figure 1 (bottom-left), we choose n = 30, q = 1/2, and α = 3. In Figure 1 (bottom-
right), we choose n = 40, q = 1/2, and α = 3.

In order to understand zeros behavior better, we present Figures 2 and 3. We plot the
zeros of E(α)

n,q(x) (Figure 2).
In Figure 2 (top-left), we choose n = 30, q = 1/5, and α = 3. In Figure 2 (top-right), we

choose n = 30, q = 1/4, and α = 3. In Figure 2 (bottom-left), we choose n = 30, q = 1/3, and
α = 3. In Figure 2 (bottom-right), we choose n = 30, q = 1/2, and α = 3.

We plot the zeros of the q-Euler polynomials E(α)
n,q(x) for n = 30, q = 1/2, α = 5, 7, 9, 11

and x ∈ C (Figure 3).
In Figure 3 (top-left), we choose n = 30, q = 1/2, and α = 5. In Figure 3 (top-right), we

choose n = 30, q = 1/2, and α = 7. In Figure 3 (bottom-left), we choose n = 30, q = 1/2, and
α = 9. In Figure 3 (bottom-right), we choose n = 30, q = 1/2, and α = 11.
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Figure 3: Zeros of E30,1/2(x) for α = 5, 7, 9, 11.

Our numerical results for approximate solutions of real zeros of the q-Euler
polynomials E(α)

n,q(x), q = 1/2, are displayed (Tables 1 and 2).
Next, we calculated an approximate solution satisfying the q-Euler polynomials

E
(α)
n,q(x). The results are given in Table 2.

We observe a remarkably regular structure of the complex roots of the q-Euler
polynomials E(α)

n,q(x). We hope to verify a remarkably regular structure of the complex roots of

the q-Euler polynomials E(α)
n,q(x) (Table 1). This numerical investigation is especially exciting

because we can obtain an interesting phenomenon of scattering of the zeros of the q-Euler
polynomials E

(α)
n,q(x). These results are used not only in pure mathematics and applied

mathematics, but also in mathematical physics and other areas.
Stacks of zeros of E(3)

n,q(x) for q = 1/2, 1 ≤ n ≤ 30 from a 3D structure are presented
(Figure 4).
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Table 1: Numbers of real and complex zeros of E(α)
n,q(x).

α = 3 α = 5

Degree n Real zeros Complex zeros Real zeros Complex zeros

1 1 0 1 0
2 2 0 2 0
3 1 2 1 2
4 2 2 2 2
5 3 2 1 4
6 2 4 2 4
7 3 4 3 4
8 2 6 2 6
9 3 6 3 6
10 2 8 2 8
11 3 8 3 8
12 4 8 2 10
13 3 10 3 10

Table 2: Approximate solutions of E(3)
n,q(x) = 0, q = 1/2, x ∈ R.

Degree n x

1 0.0824622
2 −0.176174, 0.301704
3 0.513012
4 −0.220226, 0.701301
5 −0.306596, −0.132473, 0.868839
6 0.0191767, 1.01918
7 −0.41178, 0.155365, 1.15534
8 0.279948, 1.27971
...

...

0

1

0

10

20

30

n

0
1

2
3

−1
40

Re (x)

Im (x)

Figure 4: Stacks of zeros of E(3)
n,q(x), 1 ≤ n ≤ 40.
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Figure 5: Zeros of E(3)
n,30(x).
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We present the distribution of real zeros of the q-Euler polynomials E
(α)
n,q(x) for q =

1/2, 1 ≤ n ≤ 30 (Figure 5).
In Figure 5 (left), we choose α = 3. In Figure 3 (right), we choose α = 5.
The plot above shows E(α)

n,q(x) for real 1/10 ≤ q ≤ 9/10 and −2 ≤ x ≤ 2, with the zero
contour indicated in black (Figure 6). In Figure 6 (top-left), we choose n = 1 and α = 3. In
Figure 6 (top-right), we choose n = 2 and α = 3. In Figure 6 (bottom-left), we choose n = 3
and α = 3. In Figure 6 (bottom-right), we choose n = 4 and α = 3.

4. Direction for Further Research

We observe the behavior of complex roots of the q-Euler polynomials E(α)
n,q(x), using numerical

investigation. How many roots does E
(α)
n,q(x) have in general? This is an open problem.

Prove or disprove: E(α)
n,q(x) has n distinct solutions, that is, all the zeros are nondegenerate.

Find the numbers of complex zeros C
E
(α)
n,q(x)

of E(α)
n,q(x), Im(x)/= 0. Since n is the degree of the

polynomial E(α)
n,q(x), the number of real zeros R

E
(α)
n,q(x)

lying on the real plane Im(x) = 0 is then
R

E
(α)
n,q(x)

= n −C
E
(α)
n,q(x)

, where C
E
(α)
n,q(x)

denotes complex zeros. See Table 1 for tabulated values of

R
E
(α)
n,q(x)

and C
E
(α)
n,q(x)

. We prove that E(α)
n,q(x), x ∈ C, has Im(x) = 0 reflection symmetry analytic

complex functions. If E(α)
n,q(x) = 0, then E

(h)
n,q(x∗) = 0, where ∗ denotes complex conjugate (see

Figures 1, 2, and 3). The theoretical prediction on the zeros of E(α)
n,q(x) requires further study.

In order to study the q-Euler polynomials E(α)
n,q(x), we must understand the structure of the

q-Euler polynomials E
(α)
n,q(x). Therefore, using computer, in a realistic study for the q-Euler

polynomials E
(α)
n,q(x) play an important part. The authors have no doubt that investigation

along this line will lead to a new approach employing numerical method in the field of
research of the q-Euler polynomials E(α)

n,q(x) to appear in mathematics and physics. For related
topics the interested reader is referred to [16].
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