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We study the normality of families of meromorphic functions concerning shared values. We
considerwhether a family ofmeromorphic functionsF is normal inD, if, for every pair of functions
f and g inF, f ′−af−n and g ′−ag−n share the value b, where a and b are two finite complex numbers
such that a/= 0, n is a positive integer. Some examples show that the conditions in our results are
best possible.

1. Introduction and Main Results

Let f(z) and g(z) be two nonconstant meromorphic functions in a domain D ⊆ C, and let a
be a finite complex value. We say that f and g share a CM (or IM) in D provided that f − a
and g − a have the same zeros counting (or ignoring) multiplicity in D. When a = ∞, the
zeros of f − a mean the poles of f (see [1]). It is assumed that the reader is familiar with the
standard notations and the basic results of Nevanlinna’s value-distribution theory ([2–4] or
[1]).

Bloch’s principle [5] states that every condition which reduces a meromorphic
function in the plane C to be a constant forces a family of meromorphic functions in a domain
D to be normal. Although the principle is false in general (see [6]), many authors proved
normality criterion for families of meromorphic functions corresponding to Liouville-Picard
type theorem (see [7] or [4]).

It is also more interesting to find normality criteria from the point of view of
shared values. In this area, Schwick [8] first proved an interesting result that a family of
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meromorphic functions in a domain is normal if every function shares three distinct finite
complex numbers with its first derivative. And later, more results about normality criteria
concerning shared values can be found, for instance, in [9–11] and so on. In recent years, this
subject has attracted the attention of many researchers worldwide.

We now first introduce a normality criterion related to a Hayman normal conjecture
[12].

Theorem 1.1. Let F be a family of holomorphic (meromorphic) functions defined in a domain D,
n ∈ N, a /= 0, b ∈ C. If f ′(z) + afn(z) − b /= 0 for each function f(z) ∈ F and n ≥ 2 (n ≥ 3), then F
is normal in D.

The results for the holomorphic case are due to Drasin [7] for n ≥ 3, Pang [13] for n = 3,
Chen and Fang [14] for n = 2, Ye [15] for n = 2, and Chen and Gu [16] for the generalized
result with a and b replaced by meromorphic functions. The results for the meromorphic case
are due to Li [17], Li [18] and Langley [19] for n ≥ 5, Pang [13] for n = 4, Chen and Fang [14]
for n = 3, and Zalcman [20] for n = 3, obtained independently.

When n = 2 andF is meromorphic, Theorem 1.1 is not valid in general. Fang and Yuan
[21] gave an example to this, and moreover a result added other conditions below.

Example 1.2. The family of meromorphic functions F = {fj(z) = jz/(
√
jz − 1)2 : j = 1, 2, . . . , }

is not normal in D = {z : |z| < 1}. This is deduced by f#
j (0) = j → ∞, as j → ∞ and Marty’s

criterion [2], although, for any fj(z) ∈ F, f ′
j + f2

j = j(
√
jz − 1)−4 /= 0.

Here f#(ξ) denotes the spherical derivative

f#(ξ) =

∣∣f ′(ξ)
∣∣

1 +
∣∣f(ξ)

∣∣2
. (1.1)

Theorem 1.3. Let F be a family of meromorphic functions in a domain D, and a/= 0, b ∈ C. If
f ′(z) + a(f(z))2 − b /= 0 and the poles of f(z) are of multiplicity ≥3 for each f(z) ∈ F, then F is
normal in D.

In 2008, by the ideas of shared values, Zhang [11] proved the following.

Theorem 1.4. Let F be a family of meromorphic (holomorphic) functions in D, n a positive integer,
and a, b two finite complex numbers such that a/= 0. If n ≥ 4 (n ≥ 2) and, for every pair of functions
f and g in F, f ′ − afn and g ′ − agn share the value b, then F is normal in D.

Example 1.5 (see [11]). The family of meromorphic functions F = {fj(z) = 1/(
√
j(z−(1/j))) :

j = 1, 2, . . . , } is not normal in D = {z : |z| < 1}. Obviously f ′
j − f3

j = −z/(√j(z − (1/j))3). So
for each pair m, j, f ′

j − f3
j and f ′

m − f3
m share the value 0 in D, but F is not normal at the point

z = 0, since f#
j (0) = 2(

√
j)3/(1 + j) → ∞, as j → ∞.

Remark 1.6. Example 1.5 shows that Theorem 1.4 is not valid when n = 3, and the condition
n = 4 is best possible for meromorphic case.
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In this paper, we will consider the similar relations and prove the following results.

Theorem 1.7. Let F be a family of meromorphic functions in D, n a positive integer, and a, b two
finite complex numbers such that a/= 0. If n ≥ 2 and, for every pair of functions f and g inF, f ′−af−n

and g ′ − ag−n share the value b, then F is normal in D.

Example 1.8. The family of holomorphic functions F = {fj(z) =
√
j(z − (1/j)) : j = 1, 2, . . . , }

is not normal in D = {z : |z| < 1}. This is deduced by f#
j (0) = j

√
j/(j + 1) → ∞, as j → ∞

and Marty’s criterion [2], although, for any fj(z) ∈ F, f ′
j + f−1

j = j
√
jz/(jz − 1).

Remark 1.9. Example 1.8 shows that the condition that added n ≥ 2 in Theorem 1.7 is best
possible. In Theorem 1.7 taking b = 0 we get Corollary 1.10 obtained by Zhang [22].

Corollary 1.10. Let F be a family of meromorphic functions inD, n ≥ 2, and let a be a nonzero finite
complex number. If, for every pair of functions f and g in F, fnf ′ and gng ′ share the value a, then F
is normal in D.

A natural problem is what conditions are added such that Theorem 1.7 holds when
n = 1. Next we give an answer.

Theorem 1.11. LetF be a family of meromorphic functions inD, and let a and b be two finite complex
numbers such that a/= 0. Suppose that all of zeros are multiple for each f(z) ∈ F. If, for every pair of
functions f and g in F, f ′ − af−1 and g ′ − ag−1 share the value b, then F is normal in D.

Remark 1.12. Example 1.8 shows that the condition that all of zeros are multiple for each
f(z) ∈ F added in Theorem 1.7 is best possible. In Theorem 1.11 taking b = 0 we get
Corollary 1.13.

Corollary 1.13. LetF be a family of meromorphic functions inD, and let a be a nonzero finite complex
number. Suppose that all of zeros are multiple for each f(z) ∈ F. If, for every pair of functions f and
g in F, ff ′ and gg ′ share the value a, then F is normal in D.

From the proof of Theorem 1.7 we know that the following corollary holds.

Corollary 1.14. Let F be a family of meromorphic functions in D, n be a positive integer and a, b
be two finite complex numbers such that a/= 0. If for each function f in F, f ′ − af−n /= b, then F is
normal in D.

2. Preliminary Lemmas

In order to prove our result, we need the following lemmas. The first one extends a famous
result by Zalcman [23] concerning normal families.

Lemma 2.1 (see [24]). Let F be a family of meromorphic functions on the unit disc satisfying all
zeros of functions in F that have multiplicity ≥ p and all poles of functions in F that have multiplicity
≥ q. Let α be a real number satisfying −q < α < p. Then F is not normal at 0 if and only if there exist

(a) a number 0 < r < 1;

(b) points zn with |zn| < r;
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(c) functions fn ∈ F;
(d) positive numbers ρn → 0

such that gn(ζ) := ρ−αfn(zn + ρnζ) converges spherically uniformly on each compact subset of C to
a nonconstant meromorphic function g(ζ), whose all zeros have multiplicity ≥ p and all poles have
multiplicity ≥ q and order is at most 2.

Remark 2.2. If F is a family of holomorphic functions on the unit disc in Lemma 2.1, then g(ζ)
is a nonconstant entire function whose order is at most 1.

The order of g is defined by using Nevanlinna’s characteristic function T(r, g):

ρ
(
g
)
= lim

r→∞
sup

log T
(
r, g

)

log r
. (2.1)

Lemma 2.3 (see [25] or [26]). Let f(z) be a meromorphic function and c ∈ C \ {0}. If f(z) has
neither simple zero nor simple pole, and f ′(z)/= c, then f(z) is constant.

Lemma 2.4 (see [27]). Let f(z) be a transcendental meromorphic function of finite order in C and
have no simple zero, then f ′(z) assumes every nonzero finite value infinitely often.

3. Proof of the Results

Proof of Theorem 1.7. Suppose that F is not normal inD. Then there exists at least one point z0
such that F is not normal at the point z0. Without loss of generality we assume that z0 = 0. By
Lemma 2.1, there exist points zj → 0, positive numbers ρj → 0, and functions fj ∈ F such
that

gj(ξ) = ρ
−1/(n+1)
j fj

(
zj + ρjξ

)
=⇒ g(ξ) (3.1)

locally uniformly with respect to the spherical metric, where g is a nonconstant meromorphic
function in C. Moreover, the order of g is ≤ 2.

From (3.1) we know

g ′
j(ξ) = ρ

n/(n+1)
j f ′

j

(
zj + ρjξ

)
=⇒ g ′(ξ),

ρ
n/(n+1)
j

(
f ′
j

(
zj + ρjξ

) − af−n
j

(
zj + ρjξ

) − b
)
= g ′

j(ξ) − ag−n
j (ξ) − ρ

n/(n+1)
j b =⇒ g ′(ξ) − ag−n(ξ)

(3.2)

in C \ S locally uniformly with respect to the spherical metric, where S is the set of all poles
of g(ξ).

If g ′gn −a ≡ 0, then −1/(n+1)gn+1 ≡ aξ+ c, where c is a constant. This contradicts with
g being a meromorphic function. So g ′gn − a/≡ 0.

If g ′gn − a/= 0, by Lemma 2.3, then g is also a constant which is a contradiction with g
being a nonconstant. Hence, g ′gn − a is a nonconstant meromorphic function and has at least
one zero.
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Next we prove that g ′gn−a has just a unique zero. On the contrary, let ξ0 and ξ∗0 be two
distinct zeros of g ′gn − a, and choose δ(> 0) small enough such that D(ξ0, δ) ∩ D(ξ∗0, δ) = φ,
where D(ξ0, δ) = {ξ : |ξ − ξ0| < δ} and D(ξ∗0, δ) = {ξ : |ξ − ξ∗0| < δ}. From (3.2), by Hurwitz′s
theorem, there exist points ξj ∈ D(ξ0, δ), ξ∗j ∈ D(ξ∗0, δ) such that for sufficiently large j

f ′
j

(
zj + ρjξj

) − af−n
j

(
zj + ρjξj

) − b = 0,

f ′
j

(
zj + ρjξ

∗
j

)
− af−n

j

(
zj + ρjξ

∗
j

)
− b = 0.

(3.3)

By the hypothesis that, for each pair of functions f and g in F, f ′ − af−n and g ′ − ag−n

share b in D, we know that for any positive integer m

f ′
m

(
zj + ρjξj

) − af−n
m

(
zj + ρjξj

) − b = 0,

f ′
m

(
zj + ρjξ

∗
j

)
− af−n

m

(
zj + ρjξ

∗
j

)
− b = 0.

(3.4)

Fixm, take j → ∞, and note zj + ρjξj → 0, zj + ρjξ
∗
j → 0, then f ′

m(0)−af−n
m (0)− b = 0.

Since the zeros of f ′
m − af−n

m − b have no accumulation point, so

zj + ρjξj = 0, zj + ρjξ
∗
j = 0. (3.5)

Hence, ξj = −zj/ρj , ξ∗j = −zj/ρj . This contradicts with ξj ∈ D(ξ0, δ), ξ∗j ∈ D(ξ∗0, δ), and
D(ξ0, δ) ∩ D(ξ∗0, δ) = φ. So g ′gn − a has just a unique zero, which can be denoted by ξ0. By
Lemma 2.4, g is not any transcendental function.

If g is a nonconstant polynomial, then g ′gn − a = A(ξ − ξ0)
l, where A is a nonzero

constant, l is a positive integer, because l ≥ n ≥ 3. Set φ = (1/(n+1))gn+1, then φ′ = A(ξ−ξ0)l+a
and φ′′ = Al(ξ− ξ0)l−1. Note that the zeros of φ are of multiplicity ≥ 4. But φ′′ has only one zero
ξ0, so φ has only the same zero ξ0 too. Hence, φ′(ξ0) = 0 which contradicts with φ′(ξ0) = a/= 0.
Therefore, g and φ are rational functions which are not polynomials, and φ′ − a has just a
unique zero ξ0.

Next we prove that there exists no rational function such as φ. Noting that φ = (1/(n+
1))gn+1, we can set

φ(ξ) = A
(ξ − ξ1)

m1(ξ − ξ2)
m2 · · · (ξ − ξs)

ms

(
ξ − η1

)n1
(
ξ − η2

)n2 · · · (ξ − ηt
)nt

, (3.6)

where A is a nonzero constant, s ≥ 1, t ≥ 1, mi ≥ n + 1 ≥ 3 (i = 1, 2, . . . , s), nj ≥ n + 1 ≥ 3 (j =
1, 2, . . . , t). For stating briefly, denote

m = m1 +m2 + · · · +ms ≥ 3s, N = n1 + n2 + · · · + nt ≥ 3t. (3.7)
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From (3.6),

φ′(ξ) =
A(ξ − ξ1)

m1−1(ξ − ξ2)
m2−1 · · · (ξ − ξs)

ms−1h(ξ)
(
ξ − η1

)n1+1(ξ − η2
)n2+1 · · · (ξ − ηt

)nt+1
=

p1(ξ)
q1(ξ)

, (3.8)

where

h(ξ) = (m −N − t)ξs+t−1 + as+t−2ξs+t−2 + · · · + a0,

p1(ξ) = A(ξ − ξ1)
m1−1(ξ − ξ2)

m2−1 · · · (ξ − ξs)
ms−1h(ξ),

q1(ξ) =
(
ξ − η1

)n1+1(ξ − η2
)n2+1 · · · (ξ − ηt

)nt+1

(3.9)

are polynomials. Since φ′(ξ) + a has only a unique zero ξ0, set

φ′(ξ) + a =
B(ξ − ξ0)

l

(
ξ − η1

)n1+1(ξ − η2
)n2+1 · · · (ξ − ηt

)nt+1
, (3.10)

where B is a nonzero constant, so

φ′′(ξ) =
(ξ − ξ0)

l−1p2(ξ)
(
ξ − η1

)n1+2(ξ − η2
)n2+2 · · · (ξ − ηt

)nt+2
, (3.11)

where p2(ξ) = B(l −N − 2t)ξt + bt−1ξt−1 + · · · + b0 is a polynomial. From (3.8) we also have

φ′′(ξ) =
(ξ − ξ1)

m1−2(ξ − ξ2)
m2−2 · · · (ξ − ξs)

ms−2p3(ξ)
(
ξ − η1

)n1+2(ξ − η2
)n2+2 · · · (ξ − ηt

)nt+2
, (3.12)

where p3(ξ) is also a polynomial.
Let deg(p) denote the degree of a polynomial p(ξ).
From (3.8) and (3.9),

deg(h) ≤ s + t − 1, deg
(
p1
) ≤ m + t − 1, deg

(
q1
)
= N + t. (3.13)

Similarly from (3.11), (3.12) and noting (3.13),

deg
(
p2
) ≤ t, (3.14)

deg
(
p3
) ≤ deg

(
p1
)
+ t − 1 − (m − 2s) ≤ 2t + 2s − 2. (3.15)

Note that mi ≥ 3 (i = 1, 2, . . . , s), it follows from (3.8) and (3.10) that φ′(ξi) = 0 (i =
1, 2, . . . , s) and φ′(ξ0) = a/= 0. Thus, ξ0 /= ξi (i = 1, 2, . . . , s), and then (ξ − ξ0)

l−1 is a factor of
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p3(ξ). Hence, we get that l − 1 ≤ deg(p3). Combining (3.11) and (3.12) we also have m − 2s =
deg(p2) + l − 1 − deg(p3) ≤ deg(p2). By (3.14) we obtain

m − 2s ≤ deg
(
p2
) ≤ t. (3.16)

Since m ≥ 3s, we know by (3.16) that

s ≤ t. (3.17)

If l ≥ N + t, by (3.15), then

4t − 1 ≤ N + t − 1 ≤ l − 1 ≤ deg
(
p3
) ≤ 2t + 2s − 2. (3.18)

Noting (3.17), we obtain 1 ≤ 0; a contradiction.
If l < N+ t, from (3.8) and (3.10), then deg(p1) = deg(q1). Noting that deg(h) ≤ s+ t−1,

deg(p1) ≤ m+ t− 1, and deg(q1) = N + t, hencem ≥ N + 1 ≥ 3t+ 1. By (3.16), 2t+ 1 ≤ 2s. From
(3.17), we obtain 1 ≤ 0; a contradiction.

The proof of Theorem 1.7 is complete.

Proof of Theorem 1.11. The proof of this theorem is the same as the proof of Theorem 1.7, some
different places are stated as follows.

The zeros of g are multiple;

l ≥ 2n + 1 = 3. (3.19)

The zeros of φ are of multiplicity ≥4:

mi ≥ 2(n + 1) = 4 (i = 1, 2, . . . , s), nj ≥ n + 1 = 2
(
j = 1, 2, . . . , t

)
; (3.20)

m = m1 +m2 + · · · +ms ≥ 4s, N = n1 + n2 + · · · + nt ≥ 2t. (3.7)′

Notingm ≥ 4s, by (3.16) we have

2s ≤ t. (3.17)′

If l ≥ N + t, by (3.15), then

3t − 1 ≤ N + t − 1 ≤ l − 1 ≤ deg
(
p3
) ≤ 2t + 2s − 2. (3.21)

Noting (3.17), we obtain 1 ≤ 0; a contradiction.
If l < N+ t, from (3.8) and (3.10), then deg(p1) = deg(q1). Noting that deg(h) ≤ s+ t−1,

deg(p1) ≤ m + t − 1, and deg(q1) = N + t, hence m ≥ N + 1 ≥ 2t + 1. By (3.16), 2t + 1 ≤ 2s + t.
From (3.17)′, we obtain 1 ≤ 0; a contradiction.

The proof of Theorem 1.11 is complete.
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