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After reducing a system of higher-order regular Lagrangian into first-order singular Lagrangian
using constrained auxiliary description, the Hamilton-Jacobi function is constructed. Besides, the
quantization of the system is investigated using the canonical path integral approximation.

1. Introduction

The efforts to quantize systems with constraints started with the work of Dirac [1, 2], who
first set up a formalism for treating singular systems and the constraints involved for the
purpose of quantizing his field, with special emphasis on the gravitational field. In Dirac’s
canonical quantization method, the Poisson brackets of classical mechanics are replaced with
quantum commutators.

A new formalism for investigating first-order singular systems-, the canonical-, was
developed by Rabei and Guler [3]. These authors obtained a set of Hamilton-Jacobi partial
differential equations (HJPDEs) for singular systems using Caratheodory’s equivalent-
Lagrangian method [4]. In this formalism, the equations of motion are obtained as total
differential equations and the set of HJPDEs was determined. Recently, the formalism has
been extended to second- and higher-order Lagrangians [5, 6]. Depending on this method,
the path-integral quantization of first-and higher-order constrained Lagrangian systems has
been applied [7–10].

Moreover, the quantization of constrained systems has been studied for first-order
singular Lagrangians using theWKB approximation [11]. The HJPDEs for these systems have
been constructed using the canonical method; the Hamilton-Jacobi functions have then been
obtained by solving these equations.

The Hamiltonian formulation for systems with higher-order regular Lagrangians was
first developed by Ostrogradski [12]. This led to Euler’s and Hamilton’s equations of motion.
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However, in Ostrogradski’s construction the structure of phase space and in particular of
its local simplistic geometry is not immediately transparent which leads to confusion when
considering canonical path integral quantization.

In Ostrogradski’s construction, this problem can be resolved within the well-
established context of constrained systems [13] described by Lagrangians depending on
coordinates and velocities only. Therefore, higher-order systems can be set in the form of
ordinary constrained systems [14]. These new systems will be functions only of first-order
time derivative of the degrees of freedom and coordinates which can be treated using the
theory of constrained systems [1–11].

The purpose of the present paper is to study the canonical path integral quantization
for singular systems with arbitrary higher-order Lagrangian. In fact, this work is a
continuation of the previous work [15], where the path integral for certain kinds of higher-
order Lagrangian systems has been obtained.

The present work is organized as follows: in Section 2, a review of the canonical
method is introduced. In Section 3, Ostrogradski’s formalism of higher-order Lagrangians
is discussed. In Section 4, the formulation of the canonical Hamiltonian is reviewed briefly.
In Section 5, the canonical path integral quantization of the extended Lagrangian is applied.
In Section 6, two illustrative examples are investigated in detail. The work closes with some
concluding remarks in Section 7.

2. Review of the Canonical Method

The starting point is a singular Lagrangian L = L(qi, q̇i), i = 1, 2, . . . ,N, with the Hessian
matrix ∂2L/∂q̇i∂q̇j of rank N-R, R < N.

The canonical formulation [3] gives the set of the Hamilton-Jacobi partial differential
equations as

H ′
0 = p0 +H0 ≡ ∂S

∂t
+H0

(
qβ, qa, pa =

∂S

∂qa

)
= 0,

H ′
μ = pμ +Hμ ≡ ∂S

∂qμ
+Hμ

(
qβ, qa, pa =

∂S

∂qa

)
= 0,

a = 1, . . . ,N − R, μ = N − R + 1, . . . ,N,

(2.1)

where p0 and qμ are the momenta conjugate to t and qμ, respectively,

p0 =
∂S
(
qi, t
)

∂t
, pμ =

∂S
(
qi, t
)

∂qμ
. (2.2)

The canonical Hamiltonian H0 is given by

H0 = paq̇a + pμq̇μ − L. (2.3)
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The equations of motion are obtained as total differential equations in many variables as
follows:

dqa =
∂H ′

0

∂pa
dt +

∂H ′
μ

∂pa
dqμ,

dpi = −∂H
′
0

∂qi
dt −

∂H ′
μ

∂qi
dqμ,

(2.4)

dz = −H0dt −Hμdqμ + pa
∂H ′

0

∂pa
dt + pa

∂H ′
μ

∂pa
dqμ, (2.5)

where z = S(t, qa, qμ). The set of equations (2.4) and (2.5) is integrable if and only if

dH ′
0 = 0, ∂H ′

μ = 0 (2.6)

are identically satisfied. If they are not, one could consider them as new constraints and again
should test the consistency conditions. Thus, in repeating this procedure one may obtain a
new set of conditions. Equations (2.4) then can be solved to obtain the coordinates qa and
momenta pi as functions of qμ and t.

3. Ostrogradski’s Formalism of Higher-Order Lagrangians

Consider a higher-order Lagrangian system ofN generalized coordinates qn(t):

L0

(
qn, q̇n, . . . , q

(m)
n

)
, m ≥ 1, (3.1)

where q(s)n = dsqn/dt
s, s = 0, 1, . . . , m and n = 1, . . . ,N.

The Euler-Lagrange equations of motion are obtained as [12]

m∑
s=0

(−1)s d
s

dts

(
∂L0

∂q
(s)
n

)
= 0. (3.2)

Theories with higher derivatives, which have been first developed by Ostrogradski
[12], treat the derivatives q

(s)
n (s = 0, . . . , m − 1) as independent coordinates. Therefore, we

will indicate this by writing them as q
(s)
n = qn,s. In Ostrogradski’s formalism, the momenta

conjugated, respectively, to qn,m−1 and qn,s−1, (s = 1, . . . , m − 1) read as

pn,m−1 ≡ ∂L0

∂q
(m)
n

,

pn,s−1 ≡ ∂L0

∂q
(s)
n

− ṗn,s, s = 1, . . . , m − 1.

(3.3)

Therefore, the canonical Hamiltonian is given by

H0
(
qn,0, . . . , qn,m−1; pn,0, . . . , pn,m−1

)
=

m−2∑
s=0

pn,sqn,s+1 + pn,m−1q̇n,m−1 − L0
(
qn,0, . . . , qn,m−1, q̇n,m−1

)
.

(3.4)



4 Journal of Applied Mathematics

Hamilton’s equations of motion are written using Poisson bracket as [5, 6]

q̇n,s =
∂H0

∂pn,s
=
{
qn,s,H0

}
, (3.5)

ṗn,s =
∂H0

∂qn,s
=
{
pn,s,H0

}
, (3.6)

where { , } is the Poisson bracket defined as

{A,B} =
m−1∑
s=0

∂A

∂qn,s

∂B

∂pn,s
− ∂B

∂qn,s

∂A

∂pn,s
. (3.7)

The fundamental Poisson brackets are

{
qn,spn′,s′

}
= δnn′δss′ ,

{
qn,s, qn′,s′

}
=
{
pn,s, pn′,s′

}
= 0, (3.8)

where n, n′ = 1, . . . ,N, and s, s′ = 0, . . . , m − 1.
With this procedure, the phase space, described in terms of the canonical variables

qn,s and pn,s, is obeying the equations of motion that are given by (3.5) and (3.6), which are
first-order differential equations.

4. Formulation of the Canonical Hamiltonian

Recall the higher-order Lagrangian given in (3.1), and let us introduce new independent
variables (qn,m−1, qn,i, i = 0, 1, . . . , m − 2) such that the following recursion relations would
hold [13, 14]:

q̇n,i = qn,i+1. (4.1)

Clearly, the variables (qn,m−1, qn,i), would then correspond to the time derivatives (q(m−1)
n , q

(i)
n )

respectively, that is,

q
(0)
n = qn,0, q̇n = qn,1, . . . , q

(m−1)
n = qn,m−1, q

(m)
n = q̇n,m−1. (4.2)

Equation (4.1) represents relations between the new variables. In order to enforce these
relations for independent variables (qn,m−1, qn,i), additional Lagrange multipliers λn,i(t) are
introduced [14]. The variables (qn,m−1, qn,i, λn,i), thus, determine the set of independent
degrees of freedom of the extended Lagrangian system. The extended Lagrangian of this
auxiliary description of the system is given by

LT

(
qn,i, qn,m−1, q̇n,i, q̇n,m−1, λn,i

)
= L0

(
qn,i, qn,m−1, q̇n,m−1

)
+

m−2∑
i=0

λn,i
(
q̇n,i − qn,i+1

)
. (4.3)

The new Lagrangian in (4.3) is singular, and one can use the standard methods of singular
systems like Dirac’s method or the canonical approach to investigate this Lagrangian.
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Upon introducing the canonical momenta:

pn,m−1 =
∂LT

∂q̇n,m−1
, (4.4)

pn,i =
∂LT

∂q̇n,i
= λn,i = −Hn,i, (4.5)

πn,i =
∂LT

∂λ̇n,i
= 0 = −Φn,i, (4.6)

the canonical Hamiltonian can be obtained as

H0
(
qn,i, qn,m−1, pn,m−1, λn,i

)

= pn,m−1q̇n,m−1 +
m−2∑
i=0

pn,iq̇n,i +
m−2∑
i=0

πn,iλ̇n,i − LT

(
qn,i, qn,m−1, q̇n,i, q̇n,m−1, λn,i

)
,

(4.7)

Equations (4.5) and (4.6) represent primary constraints [1, 2]. Their Hamilton-Jacobi partial
differential equations can be obtained as

H ′
0 = p0 +H0

(
qn,i, qn,m−1, pn,m−1, λn,i

)
= 0, (4.8)

Φ′
n,i = πn,i = 0, (4.9)

H ′
n,i = pn,i − λn,i = 0. (4.10)

The equations of motion can be written as total differential equations in many variables as
follows:

dqn,j = dqn,j , (4.11)

dqn,m−1 =
∂H ′

0

∂pn,m−1
dt, (4.12)

dpn,j = − ∂H ′
0

∂qn,j
dt,

dpn,m−1 = − ∂H ′
0

∂qn,m−1
dt,

dλn,j = dλn,j ,

dπn,j = − ∂H ′
0

∂λn,j
dt + dqn,j , j = 0, 1, . . . , m − 2.

(4.13)

The total differential equations are integrable if and only if

dH ′
0 = dp0 − dH0 = 0,

dH ′
n,j = dpn,j − dλn,j = 0,

dΦ′
n,j = dπn,j = 0.

(4.14)
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5. The Canonical Path Integral Quantization

If the coordinates t, qn,i, λn,i are denoted by tα, that is,

tα = t, qn,i, λn,i, (5.1)

then the set of primary constraints (4.8), (4.9), and (4.10) can be written in a compact form as

H ′
α = 0, (5.2)

where

H ′
α = H ′

0,H
′
n,i,Φ

′
n,i. (5.3)

Making use of [7], the canonical path integral for the extended Lagrangians can be obtained
as

K
(
q′n,m−1, q

′
n,i, λ

′
n,i, t

′; qn,m−1, qn,i, λn,i, t
)

=
∫q′n,m−1

qn,m−1

N∏
n=1

(
Dqn,m−1Dpn,m−1

)
exp

[
i

�

∫ t′α

tα

(
−Hα + pn,m−1

∂H ′
α

∂pn,m−1

)
dtα

]
,

n = 1, . . . ,N, i = 0, . . . , m − 2.

(5.4)

Note that (4.12) gives

∂H ′
α

∂pn,m−1
dtα =

∂H ′
0

∂pn,m−1
dt +

∂Φ′
n,i

∂pn,m−1
dλn,i +

∂H ′
n,i

∂pn,m−1
dqn,i = dqn,m−1. (5.5)

Therefore, (5.4) can be written as

K
(
q′n,m−1, q

′
n,i, λ

′
n,i, t

′; qn,m−1, qn,i, λn,i, t
)

=
∫q′n,m−1

qn,m−1

N∏
n=1

(
Dqn,m−1Dpn,m−1

)
exp

[
i

�

∫ t′α

tα

(
−Hαdtα + pn,m−1dqn,m−1

)]
.

(5.6)

However, according to (4.6) and (4.7), we get

Hn,i = −λn,i

Φn,i = 0,
(5.7)

so, it can bee found that

Hαdtα = H0dt +Hn,idqn,i + Φn,idλn,i = H0dt − λn,idqn,i. (5.8)
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Then the transition amplitude can be written in the final form as

K
(
q′n,m−1, q

′
n,i, λ

′
n,i, t

′; qn,m−1, qn,i, λn,i, t
)

=
∫q′n,m−1

qn,m−1

N∏
n=1

(
Dqn,m−1Dpn,m−1

)
exp

[
i

�

∫ t′α

tα

(
−H0dt + λn,idqn,i + pn,m−1dqn,m−1

)]
.

(5.9)

Equation (5.9) represents the canonical path integral quantization of higher-order regular
Lagrangians as first-order singular Lagrangians.

6. Examples

In this section, the procedure described throughout this paper will be illustrated by the
following two examples.

6.1. Example 1

As a first example, let us consider a one-dimensional second-order regular lagrangian of the
form:

L0 =
1
2

(
q̈21 − q̇21 − q21

)
. (6.1)

If (4.2) is used, we can write

q
(0)
1 = q10,

q̇1 = q11,

q̈1 = q̇11,

(6.2)

Hence, the Lagrangian (6.1) becomes

L0 =
1
2

(
q̇211 − q211 − q210

)
. (6.3)

Upon using (4.1), the recursion relation is q̇10 = q11. And with the aid of (4.3), the extended
Lagrangian is simply

LT =
1
2

(
q̇211 − q211 − q210

)
+ λ10

(
q̇10 − q11

)
. (6.4)

The conjugate momenta can be obtained as

P11 =
∂LT

∂q̇11
= q̇11, P10 =

∂LT

∂q̇10
= λ10, π10 =

∂LT

∂λ̇10
0. (6.5)

It is obvious that the second and third equations are constraints. Therefore, the coordinates
q10 and λ10 represent the restricted coordinates.
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Using (4.4), the canonical Hamiltonian takes the form:

H0 =
1
2

(
P 2
11 + q210 + q211

)
+ λ10q11. (6.6)

Accordingly, the set of HJPDE’s can be written as

H ′
0 = P0 +H0 = 0,

H ′
10 = P10 − λ10 = 0,

Φ′
10 = π10 = 0.

(6.7)

From (5.9), the canonical path integral quantization for this system is

K
(
q′11, q

′
10, λ

′
10, t

′; q11, q10, λ10, t
)
=
∫
Dq11Dp11 exp

[
i

�

∫(−H0dt + p11dq11 + λ10dq10
)]
, (6.8)

where Dq11 = limk→∞
∏k−1

j=1dq11j ; Dp11 = limk→∞
∏k−1

j=0 (dp11/2π�).

K =
∫
Dq11Dp11 exp

[
i

�

∫((
−1
2

(
P 2
11 + q210 + q211

)
− λ10q11

)
dt + p11dq11 + λ10dq10

)]
. (6.9)

Equation (6.9) can be written in a compact form as

K =
∫
Dq11Dp11 exp

[
i

�

∫(
−1
2

(
P 2
11 + q210 + q211

)
− λ10q11 + p11q̇11 + λ10q̇10

)
dt

]
. (6.10)

Upon changing the integration over dt to summation, we have

K =
∫
Dq11

k−1∏
j=0

(
dp11j

2π�

)
exp

⎡
⎣ iε

�

k−1∑
j=0

⎛
⎝−

p211j

2
−
q210j

2
−
q211j

2
+ p11j q̇11j + λ10j

(
q̇10j − q11j

)
⎞
⎠
⎤
⎦.

(6.11)

The p11j-integration can be performed using the Gaussian integral:

K =
∫
Dq11

1

(2π�)k

(
2π�

iε

)k/2

exp

⎡
⎣ iε

�

k−1∑
j=0

⎛
⎝ q̇211j

2
−
q210j

2
−
q211j

2
+ λ10j

(
q̇10j − q11j

)
⎞
⎠
⎤
⎦

=
(

1
2π�iε

)k/2 ∫
Dq11 exp

[
i

�

∫(
q̇211
2

− q210
2

− q211
2

+ λ10
(
q̇10 − q11

))
dt

]

=
(

1
2π�iε

)k/2 ∫
Dq11 exp

[
i

�

∫
LTdt

]
.

(6.12)
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6.2. Example 2

As a second example, consider the three-dimensional second-order regular lagrangian:

L0 =
1
2

(
q̈21 + q̈22 + q̈23

)
− 1
2

(
q̇21 + q̇23

)
. (6.13)

If we put

q
(0)
1 = q10, q

(0)
2 = q20, q

(0)
3 = q30,

q̇1 = q11, q̇2 = q21, q̇3 = q31,

q̈1 = q̇11, q̈2 = q̇21, q̈3 = q̇31.

(6.14)

then the above Lagrangian can be written as

L0 =
1
2

(
q̇211 + q̇221 + q̇231

)
− 1
2

(
q211 + q231

)
. (6.15)

Here the recursion relations are

q̇10 = q11; q̇20 = q21, q̇30 = q31. (6.16)

Accordingly, the extended Lagrangian can be given as:

LT =
1
2

(
q̇211 + q̇221 + q̇231

)
− 1
2

(
q211 + q231

)
+ λ10

(
q̇10 − q11

)
+ λ20

(
q̇20 − q21

)
+ λ30

(
q̇30 − q31

)
.

(6.17)

The corresponding momenta are calculated as

p11 = q̇11, p10 = λ10, π10 = 0,

p21 = q̇21, p20 = λ20, π20 = 0,

p31 = q̇31, p30 = λ30, π30 = 0

(6.18)

Therefore, the canonical Hamiltonian reads

H0 =
p211
2

+
p221
2

+
p231
2

+
1
2

(
q211 + q231

)
+ λ10q11 + λ20q21 + λ30q31. (6.19)
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Thus, the set of HJPDE’s can be written as

H ′
0 = P0 +H0 = 0,

Φ′
10 = π10 = 0,

Φ′
20 = π20 = 0,

Φ′
30 = π30 = 0,

H ′
10 = p10 − λ10 = 0,

H ′
20 = p20 − λ20 = 0,

H ′
30 = p30 − λ30 = 0.

(6.20)

Then, the canonical path integral quantization for this system is constructed as

K
(
q′n1, q

′
n0, λ

′
n0, t

′; qn1, qn0, λn0, t
)

=
∫ 3∏

n=1

(
Dqn1Dpn1

)
exp
[
i

�

∫(−H0dt + λn0dqn0 + pn1dqn1
)]
,

(6.21)

where n = 1, 2, 3.

K =
∫ 3∏

n=1

(
Dqn1Dpn1

)
exp

[
i

�

∫(
−p

2
n1

2
− q211

2
− q231

2
+ λn0

(
q̇n0 − qn1

)
+ pn1q̇n1

)
dt

]
. (6.22)

Changing the integration over dt to summation and integrating over p11,p21 and p31 k times
we get

K =
(

1
2π�iε

)3k/2 ∫ 3∏
n=1

Dqn1 exp

[
i

�

∫(
q̇2n1
2

− q211
2

− q231
2

+ λn0
(
q̇n0 − qn1

))
dt

]

=
(

1
2π�iε

)3k/2 ∫
Dq11Dq21Dq31 exp

[
i

�

∫
LTdt

]
.

(6.23)

7. Conclusion

In this work, we have investigated the canonical path integral quantization of higher-order
regular Lagrangians. Where the higher-order regular Lagrangians are first treated as first-
order singular Lagrangians, this means that each velocity term q̇n,i is replaced by a new
function qn,i+1, which is led to a constraint equation, qn,i+1−q̇n,i = 0, that is added to the original
Lagrangian. The same procedure is repeated for the second and other higher order terms of
velocities. Every time, a new constraint is obtained and added to the original Lagrangian.
As a result to this procedure, the new constructed Lagrangian is the extended first-order
Lagrangian.
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Once the extended Lagrangian is obtained, it is treated using the well-known
Hamilton-Jacobi method which enables us to obtain the equations of motion. Besides, the
action integral can be derived and the quantization of the system may be investigated using
the canonical path integral approximation.

In this treatment, we believe that the local structure of phase space and its local
simplistic geometry is more transparent than in Ostrogradski’s approach. In Ostrogradski’s
approach, the structure of phase space leads to confusion when considering canonical path
integral quantization.
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