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A nondifferentiable multiobjective optimization problem with nonempty set constraints is consid-
ered, and the equivalence of weakly efficient solutions, the critical points for the nondifferentiable
multiobjective optimization problems, and solutions for vector variational-like inequalities is es-
tablished under some suitable conditions. Nonemptiness and compactness of the solutions set for
the nondifferentiable multiobjective optimization problems are proved by using the FKKM theo-
rem and a fixed-point theorem.

1. Introduction

The weak minimum (weakly efficient, weak Pareto) solution is an essential concept in math-
ematical models, economics, decision theory, optimal control, and game theory. For readers’
reference, we refer to [1–11] and the references therein.

In [5], Garzón et al. studied some relationships among the weakly efficient solutions,
the critical points of optimization problems, and the solutions of vector variational-like in-
equalities with differentiable functions. In [12], Mishra and Wang extended the work of
Garzón et al. [5] to nonsmooth case. In [9], Lee et al. investigated the existence of solutions
of vector optimization problems with differentiable functions. In [7], Kazmi considered the
relationship between the weakly efficient solutions of a vector optimization problem and
the solutions of a vector variational-like inequality with preinvex and Frechet differentiable
functions. For more related work in this interesting area, we refer to [4, 10].

Motivated and inspired by the works mentioned above, we consider nondifferentiable
multiobjective optimization problems (MOPs) with nonempty set constraints. The relation-
ship among weakly efficient solutions, critical points of (MOP), and solutions of the vector
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variational-like inequalities (for short, (VVLI)) is presented under subinvexity, strictly pseu-
dosubinvexity, and pseudosubinvexity conditions. By using the FKKM theorem and a fixed-
point theorem, we prove the nonemptiness and compactness of solutions set for (MOP). The
results presented in this paper extend the corresponding results of [5, 7, 9, 12, 13].

2. Preliminaries

Throughout this paper, without other specifications, let Rn be the n-dimensional Euclidean
space, and Rn

+ = {x = (x1, . . . , xn) : xl ≥ 0, l = 1, . . . , n}. Let K be a nonempty convex subset
of Rn, let H be a subset of K, and let intKH be the relative interior of H to K. Let f =
(f1, f2, ..., fn) : Rn → Rn, η : Rn × Rn → Rn, and let C : K → 2R

n
such that, for each

x ∈ K,C(x) is a closed convex cone,C(x)/=Rn, intC(x)/= ∅, andRn
+ ⊂ C(x). Themultiobjective

optimization problem (for short, (MOP)) is defined as follows:

min
x∈K

f(x). (MOP)

We first recall some definitions and lemmas which are needed in the main results of
this paper.

Definition 2.1. A point x ∈ K is said to be a weakly efficient (weak minimum) solution of
(MOP) if [f(K) − f(x)] ∩ (− intC(x)) = ∅.

Definition 2.2. A real-valued function h : Rn → R is said to be locally Lipschitz with respect
to η : Rn×Rn → Rn if, for each z0 ∈ Rn, there exist a neighborhoodN(z0) of z0 and a constant
k > 0 such that

∣
∣h(x) − h(y)∣∣ ≤ k∥∥η(x, y)∥∥, ∀x, y ∈N(z0). (2.1)

Remark 2.3. If η(x, y) = x − y, then the above definition reduces to that of local Lipschitz.

Definition 2.4. A set-valued function T : Rn → 2R
n
is said to be locally bounded at z0 ∈ Rn if

there exist a neighborhoodN(z0) of z0 and a constant k > 0 such that

‖w‖ < k, ∀z ∈N(z0), ∀w ∈ T(z). (2.2)

Definition 2.5. Let T : Rn → 2R
n
be a set-valued function. The graph of T is defined as

Gragh(T) =
{(

x, y
)

: x ∈ Rn, y ∈ T(x)}. (2.3)

The inverse T−1 of T is defined by x ∈ T−1(y) if and only if y ∈ T(x).

Definition 2.6. Let X be a nonempty subset of topological vector space E. A set-valued
mapping F : X → 2E is called a KKM mapping if, for every finite subset {x1, x2, . . . , xn}
of X, co{x1, x2, . . . , xn} ⊂ ⋃n

i=1 F(xi), where co denotes the convex hull.

Definition 2.7 (see [13]). A real-valued function h : Rn → R is said to be subinvex at z with
respect to η : Rn × Rn → Rn if there exists ζ ∈ Rn, such that h(x) − h(z) ≥ 〈ζ, η(x, z)〉, for any
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x ∈ Rn, where ζ is called the η-subgradient of h at z. The η-subdifferential of h at z, denoted
∂ηh(z), is the set of all ζ ∈ Rn such that

h(x) − h(z) ≥ 〈ζ, η(x, z)〉, ∀x ∈ Rn. (2.4)

Remark 2.8. If h is locally Lipschitz, then the subinvexity of hwith respect to η collapses to the
invexity of hwith respect to η in the sense of Clarke’s generalized directional derivative with
respect to η [1]. If η(x, y) = x − y for any x, y ∈ K, then the η-subdifferential ∂ηh(z) reduces
to the subdifferential ∂h(z) in the sense of convex analysis, where ∂h(z) = {ζ ∈ Rn : h(x) ≥
h(z) + 〈ζ, x − z〉, ∀x ∈ Rn}.
Definition 2.9. A vector-valued function g : Rn → Rn is called strictly pseudosubinvex with
respect to η if, for any x, u ∈ Rn and (ξ1, ξ2, . . . , ξn) ∈ ∂ηg(u),

g(x) − g(u) ∈ − intC(u) =⇒ (〈ξ1, η(x, u)〉, 〈ξ2, η(x, u)〉, . . . , 〈ξn, η(x, u)〉
) ∈ − intRn

+, (2.5)

where ∂ηg(u) = {(ξ1, ξ2, . . . , ξn) ∈ (Rn)n : gi(x) − gi(u) ≥ 〈ξi, η(x, u)〉, ∀x ∈ Rn}.
Definition 2.10. A vector-valued function g : Rn → Rn is called pseudosubinvex with respect
to η if, for any x, u ∈ Rn and (ξ1, ξ2, . . . , ξn) ∈ ∂ηg(u),

g(x) − g(u) ∈ − intC(u) =⇒ (〈ξ1, η(x, u)
〉

,
〈

ξ2, η(x, u)
〉

, . . . ,
〈

ξn, η(x, u)
〉) ∈ − intC(u),

(2.6)

where ∂ηg(u) = {(ξ1, ξ2, . . . , ξn) ∈ (Rn)n : gi(x) − gi(u) ≥ 〈ξi, η(x, u)〉, ∀x ∈ Rn}.

Remark 2.11. Since Rn
+ ⊂ C(x), it is clear that

(1) if g : Rn → Rn is strictly pseudosubinvex with respect to η, then it is pseudo-
subinvex with respect to η;

(2) if gi : Rn → R, i = 1, 2, . . . , n, are subinvex with respect to η, then g = (g1, g2, . . . , gn)
is pseudosubinvex with respect to η.

Definition 2.12. A point y ∈ K is called a critical point of (MOP) if there exists λ = (λ1,
λ2, . . . , λn) ∈ Rn

+, with λi > 0 for some i ∈ {1, 2, . . . , n}, such that

n∑

i=1

λiξi = 0, ∀ξ = (ξ1, ξ2, . . . , ξn) ∈ ∂ηf
(

y
)

. (2.7)

Lemma 2.13 (see [14](FKKM theorem)). Let Q be a nonempty subset of Hausdorff topological
vector space X. Let G : Q → 2X be a KKM mapping such that for any x ∈ Q,G(x) is closed and
G(x0) is compact for some x0 ∈ Q, then there exists x∗ ∈ Q such that x∗ ∈ G(y) for all y ∈ Q, that
is,
⋂

x∈Q G(x)/= ∅.
Lemma 2.14 (see [13]). LetX be a nonempty and convex subset of Hausdorff topological vector space
E, and let S, T : X → 2X be two set-valued maps such that, for each x ∈ X, coS(x) ⊂
T(x), S(x)/= ∅, X =

⋃{intXS−1(z) : z ∈ X}. If there exist a nonempty compact convex set B ⊂ X
and a nonempty compact set D ⊂ X such that, for each z ∈ X \ D, there exists x ∈ B, such that
z ∈ intXS−1(x), then there exists z ∈ X such that z ∈ T(z).
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We consider the following vector variational-like inequality (for short, (VVLI)): find
x ∈ K such that for any x ∈ K, there exists ξ = (ξ1, ξ2, . . . , ξn) ∈ ∂ηf(x) such that

(〈

ξ1, η(x, x)
〉

,
〈

ξ2, η(x, x)
〉

, . . . ,
〈

ξn, η(x, x)
〉)

/∈ − intC(x). (2.8)

3. Relationships between (MOP) and (VVLI)

In this section, we will investigate the properties of η-subdifferential ∂ηh of the function h :
Rn → R, and the relationships among weakly efficient solutions, critical points of (MOP),
and the solutions of (VVILP).

Theorem 3.1. Let h : Rn → R be subinvex with respect to η, then the following statements are true:

(i) for each z ∈ Rn, ∂ηh(z) is a nonempty closed-convex subset of Rn,

(ii) if for each x, z ∈ Rn, η(x, z) + η(z, x) = 0, then ∂ηh is η-monotone, that is, for any
x1, x2 ∈ Rn,

〈

ζ − ξ, η(x1, x2)
〉 ≥ 0, ∀ζ ∈ ∂ηh(x1), ξ ∈ ∂ηh(x2), (3.1)

(iii) if h is locally Lipschitz with respect to η, η is continuous in the second argument, and
η(x, x) = 0, for any x ∈ Rn, then Graph(∂ηh) is closed, and ∂ηh(·) is upper semicontinu-
ous,

(iv) if η is an open map, η(x, x) = 0 for any x ∈ Rn, and h is locally Lipschitz with respect to η,
then ∂ηh(·) is locally bounded on Rn.

Proof. Assertions (i), (ii), and (iv) are shown in [13]. We only need to prove assertion (iii). Let
(xn, yn) ∈ Graph(∂ηh), with xn → x0 and yn → y0. Since

∂ηh
(

xj
) .=
{

ζ ∈ Rn : h(x) − h(xj
) ≥ 〈ζ, η(x, xj

)〉

, ∀x ∈ Rn}, i = 1, 2, . . . , n, (3.2)

and h is locally Lipschitz with respect to η, there exist a neighborhood N(x0) of x0 and
a constant k > 0 such that

|h(x) − h(z)| ≤ k∥∥η(x, z)∥∥, ∀x, z ∈N(x0). (3.3)

Then there exists n0 such that xn ∈N(x0) for all n > n0, and so

|h(x0) − h(xn)| ≤ k
∥
∥η(x0, xn)

∥
∥. (3.4)

Consequently, we have h(xn) → h(x0) as n → ∞. It follows from

h(x) − h(xn) ≥
〈

yn, η(x, xn)
〉

, ∀x ∈ Rn (3.5)

that

h(x) − h(x0) ≥ 〈y0, η(x, x0)〉, ∀x ∈ Rn, (3.6)
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that is, y0 ∈ ∂ηh(x0). Hence, (x0, y0) ∈ Graph(∂ηh). In view of (i), we have that ∂ηh(·) is upper
semicontinuous. This completes the proof.

Theorem 3.2. Let f be pseudosubinvex with respect to η. If y ∈ K is a solution of (VVLI), then y is
a weakly efficient solution of (MOP).

Proof. Let y ∈ K be a solution of (VVLI). If y is not a weakly efficient solution of (MOP), then
there exists x ∈ K such that

f(x) − f(y) ∈ − intC
(

y
)

. (3.7)

Since f is pseudosubinvex with respect to η, we have

(〈

ξ1η
(

x, y
)〉

,
〈

ξ2, η
(

x, y
)〉

, . . . ,
〈

ξn, η
(

x, y
)〉) ∈ − intC

(

y
)

, ∀(ξ1, ξ2, . . . , ξn) ∈ ∂ηf
(

y
)

,
(3.8)

which contradicts the assumption. This completes the proof.

Corollary 3.3. Let fi, i = 1, 2, . . . , n be subinvex with respect to η. If y ∈ K is a solution of (VVLI),
then y is a weakly efficient solution of (MOP).

Theorem 3.4. Let η be an open map, and continuous and affine in the first argument, let η(x, y) +
η(y, x) = 0, for any x, y ∈ K. Let fi, i = 1, 2, . . . , n be subinvex and locally Lipschitz with respect to
η. If y ∈ K is a weakly efficient solution of (MOP), then y is a solution of (VVLI).

Proof. Let y ∈ K be a weakly efficient solution of (MOP). If y is not a solution of (VVLI), then

y /∈ {y ∈ K : ∀x ∈ K, ∃ξi ∈ ∂ηfi
(

y
)

,
(〈

ξ1, η
(

x, y
)〉

, . . . ,
〈

ξ1, η
(

x, y
)〉)

/∈ − intC
(

y
)}

. (3.9)

We assert that

{

y ∈ K : ∀x ∈ K, ∃ξi ∈ ∂ηfi
(

y
)

,
(〈

ξ1, η
(

x, y
)〉

, . . . ,
〈

ξn, η
(

x, y
)〉)

/∈ − intC
(

y
)}

=
{

y ∈ K : ∀x ∈ K, ∀μi ∈ ∂ηfi(x),
(〈

μ1, η
(

x, y
)〉

, . . . ,
〈

μn, η
(

x, y
)〉)

/∈ − intC
(

y
)}

.

(3.10)

Let

z ∈ {y ∈ K : ∀x ∈ K, ∃ξi ∈ ∂ηfi
(

y
)

,
(〈

ξ1, η
(

x, y
)〉

, . . . ,
〈

ξn, η
(

x, y
)〉)

/∈} − intC
(

y
)}

. (3.11)

Suppose to the contrary that

z /∈ {y ∈ K : ∀x ∈ K, ∀μi ∈ ∂ηfi(x),
(〈

μ1, η
(

x, y
)〉

, ...,
〈

μn, η
(

x, y
)〉)

/∈ − intC
(

y
)}

, (3.12)

then there exist x̂ ∈ K and μ̂i ∈ ∂ηfi(x̂) such that

(〈

μ̂1, η(x̂, z)
〉

, . . . ,
〈

μ̂n, η(x̂, z)
〉) ∈ − intC(z). (3.13)
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Since ∂ηfi is η-monotone, we have

〈

μi − ξi, η(x̂, z)
〉 ≥ 0, ∀μi ∈ ∂ηfi(x̂), ξi ∈ ∂ηfi(z), (3.14)

that is,

〈

μi, η(x̂, z)
〉 − 〈ξi, η(x̂, z)

〉 ∈ R+, i = 1, 2, . . . , n. (3.15)

As a consequence,

(〈

μ̂1, η(x̂, z)
〉

, . . . ,
〈

μ̂n, η(x̂, z)
〉) − (〈ξ1, η(x̂, z)

〉

, . . . ,
〈

ξn, η(x̂, z)
〉) ∈ Rn

+, (3.16)

and it follows that

(〈

ξ1, η(x̂, z)
〉

, . . . ,
〈

ξn, η(x̂, z)
〉) ∈ (〈μ̂1, η(x̂, z)

〉

, . . . ,
〈

μ̂n, η(x̂, z)
〉) − Rn

+

⊂ − intC(z) − Rn
+ ⊂ − intC(z),

(3.17)

which contradicts the assumption.
On the other hand, let

y′ ∈ {y ∈ K : ∀x ∈ K, ∀μi ∈ ∂ηfi(x),
(〈

μ1, η
(

x, y
)〉

, . . . ,
〈

μn, η
(

x, y
)〉)

/∈ − intC
(

y
)}

,
(3.18)

and let rm ∈ (0, 1] such that rm → 0. For any given x ∈ K, set xm = (1 − rm)y′ + rmx, for any
x ∈ K. Then xm → y′ as m → ∞. Since η is affine in the first argument, and η(x, x) = 0, we
have

(〈

μm1 , η
(

xm, y
′)〉, . . . ,

〈

μmn , η
(

xm, y
′)〉) = rm

(〈

μm1 , η
(

x, y′)〉, . . . , 〈μmn , η
(

x, y′)〉)

/∈ − intC
(

y′), ∀μmi ∈ ∂ηfi(xm),
(3.19)

that is,

(〈

μm1 , η
(

x, y′)〉, . . . ,
〈

μmn , η
(

x, y′)〉) /∈ − intC
(

y′). (3.20)

Since ∂ηfi is locally bounded, there exist a neighborhoodN(y′) of y′, and k > 0 such that for
any z ∈N(y′), and ψi ∈ ∂ηfi(z), we have

∥
∥ψi
∥
∥ ≤ k, i = 1, 2, . . . , n. (3.21)

Then there existsm0, such that xm ∈N(y′) for anym ≥ m0, and so

∥
∥μmi

∥
∥ ≤ k, i = 1, 2, . . . , n. (3.22)
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Consequently, {μmi } has a convergent subsequence. Without loss of generality, let μmi → μ′
i.

By Theorem 3.1 (iii), we have μ′
i ∈ ∂ηfi(y′). Since Rn \ intC(y′) is closed, it follows that

y′ ∈ {y ∈ K : ∀x ∈ K, ∃ξi ∈ ∂ηfi
(

y
)

,
(〈

ξ1, η
(

x, y
)〉

, . . . ,
〈

ξn, η
(

x, y
)〉)

/∈ − intC
(

y
)}

. (3.23)

Thus, it follows from (3.9) that

y /∈ {y ∈ K : ∀x ∈ K, ∀μi ∈ ∂ηfi(x),
(〈

μ1, η
(

x, y
)〉

, ...,
〈

μn, η
(

x, y
)〉)

/∈ − intC
(

y
)}

, (3.24)

that is, there exist x ∈ K and ζi ∈ ∂ηfi(x) such that

(〈

ζ1, η
(

x, y
)〉

, . . . ,
〈

ζn, η
(

x, y
)〉) ∈ − intC

(

y
)

. (3.25)

Since

fi
(

y
) − fi(x) ≥

〈

ζi, η
(

y, x
)〉

, η
(

y, x
)

+ η
(

x, y
)

= 0, (3.26)

we have

(

f1(x) − f1
(

y
)

, . . . , fn(x) − fn
(

y
)) −

(〈

ζ1, η
(

x, y
)〉

, . . . ,
〈

ζn, η
(

x, y
)〉) ∈ −Rn

+. (3.27)

Thus,

f(x) − f(y) ∈ −Rn
+ − intC

(

y
) ⊂ − intC

(

y
)

, (3.28)

that is,

f(x) − f(y) ∈ − intC
(

y
)

, (3.29)

which contradicts the assumption. This completes the proof.

Theorem 3.5. Let fi, i = 1, 2, . . . , n be subinvex with respect to η, and let f be strictly pseudosubin-
vex with respect to η. If y ∈ K is a critical point of (MOP), then y is a weakly efficient solution of
(MOP).

Proof. Let y ∈ K be a critical point of (MOP). If y is not the weakly efficient solution of (MOP),
then there exists x ∈ K such that

f(x) − f(y) ∈ − intC
(

y
)

. (3.30)

By the strict pseudosubinvexity of f with respect to η, one has

〈

ξ, η
(

x, y
)〉 ∈ − intRn

+, ∀ξ = (ξ1, ξ2, . . . , ξn) ∈ ∂ηf
(

y
)

, (3.31)
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that is,

(〈

ξ1, η
(

x, y
)〉

, . . . ,
〈

ξn, η
(

x, y
)〉) ∈ − intRn

+. (3.32)

Thus, we have

〈

ξi, η
(

x, y
)〉

< 0, i = 1, 2, . . . , n. (3.33)

Since y ∈ K is a critical point of (MOP), there is λ = (λ1, λ2, . . . , λn), i ∈ 1, 2, . . . , n, with λi > 0
for some i ∈ {1, 2, . . . , n}, such that

n∑

i=1

λiξi = 0. (3.34)

Set Sλ =
∑n

i=1 λi > 0, then

n∑

i=1

λi
Sλ

= 1,
n∑

i=1

λi
Sλ
ξi = 0, (3.35)

and so

0 =

〈
n∑

i=1

λi
Sλ
ξi, η
(

x, y
)

〉

< 0, i = 1, 2, . . . , n, (3.36)

which is a contradiction. This completes the proof.

Remark 3.6. If for each y ∈ K,C(y) = Rn
+, then the following statements are true in the sense

of Clarke’s generalized directional derivative [12]:

(1) all critical points of (MOP) are weakly efficient solutions of (MOP) if and only if f
is strictly pseudoinvex with respect to η;

(2) if f is strictly pseudoinvex with respect to η, and locally Lipschitz, then the critical
points, the weakly efficient solutions of (MOP), and the solutions of (VVLI) are
equivalent.

4. Existence of Weakly Efficient Solutions for (MOP)

In this section, we present several existence theorems for (MOP), by using the FKKM theorem
and a fixed-point theorem.

Theorem 4.1. Let K ⊂ Rn be nonempty convex. Suppose that the following conditions are satisfied:

(i) η(x, x) = 0 for any x ∈ K,

(ii) x �→ η(x, ·) is affine, y �→ η(·, y) is continuous,
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(iii) the set-valued functionW : K → 2R
n
is given byW(x) = Rn\(− intC(x)) for any x ∈ K

such that Graph(W) is closed,

(iv) fi : Rn → R, i = 1, 2, . . . , n are subinvex and locally Lipschitz with respect to η,

(v) there exists a nonempty closed bounded setD ⊂ K such that, for each y ∈ K\D, there exists
x ∈ D, and for any ζi ∈ ∂ηfi(y), i ∈ {1, 2, . . . , n}, such that

(〈

ζ1, η
(

x, y
)〉

,
〈

ζ2, η
(

x, y
)〉

, . . . ,
〈

ζ1, η
(

x, y
)〉) ∈ − intC

(

y
)

, (4.1)

then the solutions set of (MOP) is nonempty compact.

Proof. Define a set-valued mapping G : K → 2D by

G(z) =
{

y ∈ D : ∃ξi ∈ ∂ηfi
(

y
)

,
(〈

ξ1, η
(

z, y
)〉

,
〈

ξ2, η
(

z, y
)〉

, . . . ,
〈

ξn, η
(

z, y
)〉)

/∈ − intC
(

y
)}

, ∀z ∈ K.
(4.2)

For any finite set {y1, y2, . . . , yn} ⊂ K, let N .= co(D ∪ {y1, y2, . . . , yn}), then N ⊂ K is
a compact convex set. Define another set-valued mapping F :N → 2N by,

F(z) =
{

y ∈N : ∃ξi ∈ ∂ηfi
(

y
)

,
(〈

ξ1, η
(

z, y
)〉

,
〈

ξ2, η
(

z, y
)〉

, . . . ,
〈

ξn, η
(

z, y
)〉)

/∈ − intC
(

y
)}

, ∀z ∈N.
(4.3)

Obviously, z ∈ F(z) for any z ∈N, that is, F(z) is nonempty. Let {yλ}λ∈Δ ⊂ F(z) be a net such
that

yλ −→ y0 ∈N, ξλi ∈ ∂ηfi
(

yλ
)

. (4.4)

From Theorem 3.1(iii), we conclude that Graph(∂ηfi) is closed. Therefore, there exists ξ0i ∈
∂ηfi(y0), such that ξλi → ξ0i , i = 1, 2, . . . , n. It follows from the closedness of Graph(∂ηfi) that

(〈

ξ01 , η
(

z, y0
)〉

,
〈

ξ02 , η
(

z, y0
)〉

, . . . ,
〈

ξ0n, η
(

z, y0
)〉)

/∈ − intC
(

y0
)

. (4.5)

Thus, y0 ∈ F(z), that is, F(z) is closed, and so F(z) is compact, sinceN is compact.
It is easy to prove that, for any finite set {u1, u2, . . . , um} ⊂ N, co{u1, u2, . . . , um} ⊂

⋃m
i=1 F(ui). In fact, if there exists λi ≥ 0, i = 1, 2, . . . , m, with Σm

i=1λi = 1 such that

u =
m∑

i=1

λiui /∈
m⋃

i=1

F(ui), (4.6)

then for any ζi ∈ ∂ηfi(u),
(〈

ζ1, η(ui, u)
〉

,
〈

ζ2, η(ui, u)
〉

, . . . ,
〈

ζn, η(ui, u)
〉) ∈ − intC(u). (4.7)
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By the convexity of C,

m∑

i=1

λi
(〈ζ1, η(ui, u)〉, 〈ζ2, η(ui, u)〉, ..., 〈ζn, η(ui, u)〉

) ∈ − intC(u). (4.8)

Since η is affine in the first argument, we have

(〈

ζ1, η

(
m∑

i=1

λiui, u

)〉

,

〈

ζ2, η

(
m∑

i=1

λiui, u

)〉

, . . . ,

〈

ζn, η

(
m∑

i=1

λiui, u

)〉)

∈ − intC(u).

(4.9)

Now from the assumption that η(x, x) = 0 for any x ∈ K, we get 0 ∈ − intC(u), which is
a contradiction. Therefore, F is a KKM mapping. By Lemma 2.13, there exists z0 ∈ N such
that

z0 ∈
⋂

z∈N
F(z), (4.10)

that is,

∀z ∈N, ∃ξi ∈ ∂ηfi(z0),
(〈

ξ1, η(z, z0)
〉

,
〈

ξ2, η(z, z0)
〉

, . . . ,
〈

ξn, η(z, z0)
〉)

/∈ − intC(z0). (4.11)

From assumptions, we have z0 ∈ D, and moreover, z0 ∈
⋂n
i=1G(yi), that is, {G(y)}y∈K has the

finite intersection property. Consequently, {G(y)}y∈K /= ∅, that is, there exists y ∈ K such that

for any x ∈ K, there exists ξi ∈ ∂ηfi(y), i = 1, 2, . . . , n, such that

(〈

ξ1, η
(

x, y
)〉

,
〈

ξ2, η
(

x, y
)〉

, . . . ,
〈

ξn, η
(

x, y
)〉)

/∈ − intC
(

y
)

. (4.12)

From Theorem 3.1, y is a weakly efficient solution of (MOP).
Denote the solutions set of (MOP) by J . Let {xm} ⊂ J , such that xm → x0, then for any

x ∈ K, there exists ξmi ∈ ∂ηfi(xm), i = 1, 2, . . . , n, such that

(〈

ξm1 , η(x, xm)
〉

,
〈

ξm2 , η(x, xm)
〉

, . . . ,
〈

ξmn , η(x, xm)
〉)

/∈ − intC(xm). (4.13)

From Theorem 3.1, we have that ∂ηfi(·) is locally bounded on Rn and Graph(∂ηfi) is closed.
Thus, there exists ξ0i ∈ ∂ηfi(x0) such that ξml

i → ξ0i , where {ξml

i } ⊂ {ξmi }. Since η is continuous
in the second argument and Graph(W) is closed, we have

(〈

ξ01 , η(x, x0)
〉

,
〈

ξ02 , η(x, x0)
〉

, . . . ,
〈

ξ0n, η(x, x0)
〉)

/∈ − intC(x0). (4.14)

Thus, x0 ∈ J , that is, J is closed. From assumptions, we get J ⊂ D, and so J is compact. This
completes the proof.
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Example 4.2. Let n = 2, K = [0,+∞)× [0, 1], η(x, y) = (x1 −y1, 0), and f(x) = (x1, x1) for any
x, y ∈ K, and C(x) ≡ R2

+ for any x ∈ K, where x = (x1, x2), y = (y1, y2). Let D = [0, 1] × [0, 1].
For each y ∈ (0,+∞) × [0, 1],

f1(x) − f1
(

y
)

= x1 − y1 ≥
〈

ζ1, η
(

x, y
)〉

= ζ11
(

x1 − y1
)

, ∀ζ1 =
(

ζ11, ζ
2
1

)

∈ ∂ηf1
(

y
)

, (4.15)

then

(

1 − ζ11
)(

x1 − y1
) ≥ 0, (4.16)

and so ζ11 = 1. Since

f2(x) − f2
(

y
)

= x1 − y1 ≥ 〈ζ2, η
(

x, y
)〉 = ζ12

(

x1 − y1
)

, ∀ζ2 =
(

ζ12, ζ
2
2

)

∈ ∂ηf2
(

y
)

, (4.17)

we have ζ12 = 1. Therefore,

∂ηf
(

y
)

= {ζ = (ζ1, ζ2) : ζ1 = (1, a), ζ2 = (1, b), ∀a, b ∈ R}. (4.18)

Similarly, one has

∂ηf(0) = {ζ = (ζ1, ζ2) : ζ1 = (c, a), ζ2 = (d, b), c ≤ 1, d ≤ 1, ∀a, b ∈ R}. (4.19)

Consequently, for any y ∈ K \D, x ∈ D, ζ ∈ ∂ηf(y) such that

(〈

ζ1, η
(

x, y
)〉

,
〈

ζ2, η
(

x, y
)〉)

=
(

x1 − y1, x1 − y1
) ∈ − intC

(

y
)

. (4.20)

Then it is easy to check that all assumptions in Theorem 4.1 hold and J = {(0, v) : 0 ≤ v ≤ 1}.

Corollary 4.3 (see [9]). Let fi, i = 1, 2, . . . , n be invex in the sense of Clarke’s generalized directional
derivative with respect to η and locally Lipschitz. Suppose that other conditions are the same as in
Theorem 4.1, then the solutions set of (MOP) is nonempty compact.

Corollary 4.4. Let K ⊂ Rn be nonempty convex. Suppose that the following conditions are satisfied:

(i) η(x, x) = 0 for any x ∈ K,

(ii) x �→ η(x, ·) is affine and y �→ η(·, y) is continuous,
(iii) the set-valued functionW : K → 2R

n
is given byW(x) = Rn\(− intC(x)) for any x ∈ K

such that Graph(W) is closed,

(iv) fi : Rn → R, i = 1, 2, . . . , n are subinvex and locally Lipschitz with respect to η,

(v) there exists y0 ∈ K, such that {x ∈ K : ∃ζi ∈ ∂ηfi(x), i = 1, 2, . . . , n,
(〈ζ1, η(y0, y)〉, 〈ζ2, η(y0, y)〉, . . . , 〈ζn, η(y0, y)〉) /∈ − intC(x)} is closed and bounded,
then the solutions set of (MOP) is nonempty compact.
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Proof. Let

D =
{

x ∈ K : ∃ζi ∈ ∂ηfi(x), i = 1, 2, . . . , n,
(〈

ζ1, η
(

y0, x
)〉

, . . . ,
〈

ζn, η
(

y0, x
)〉)

/∈ − intC(x)
}

.
(4.21)

Obviously, y0 ∈ D, and moreover, D is nonempty closed bounded. Therefore, for any y ∈
K \D, there exists y0 ∈ D such that for any ζi ∈ ∂ηfi(y), i = 1, 2, . . . , n,

(〈

ζ1, η
(

y0, y
)〉

,
〈

ζ2, η
(

y0, y
)〉

, . . . , 〈ζn, η
(

y0, y
)〉) ∈ − intC

(

y
)

. (4.22)

By Theorem 4.1, the solutions set of (MOP) is nonempty compact. This completes the proof.

Theorem 4.5. Let K ⊂ Rn be a nonempty convex set. Suppose that the following conditions are
satisfied:

(i) η(y, x) + η(x, y) = 0 for any x, y ∈ K,

(ii) x �→ η(x, ·) is affine and y �→ η(·, y) is continuous,
(iii) the set-valued functionW : K → 2R

n
is given byW(x) = Rn\(− intC(x)) for any x ∈ K

such that Graph(W) is closed,

(iv) fi : Rn → R, i = 1, 2, . . . , n are subinvex and locally Lipschitz with respect to η,

(v) there exists y0 ∈ K such that for any x ∈ K and ζi ∈ ∂ηfi(x), i = 1, 2, . . . , n, such that

lim
‖x‖→∞

〈

ζi, η
(

y0, x
)〉

< 0, i = 1, 2, . . . , n, (4.23)

then the solutions set of (MOP) is nonempty compact.

Proof. Since there exists y0 ∈ K, such that for any ζi ∈ ∂ηfi(x), i = 1, 2, . . . , n, and x ∈ K such
that

lim
‖x‖→∞

〈

ζi, η
(

y0, x
)〉

< 0, i = 1, 2, . . . , n, (4.24)

there exists ci > 0, i = 1, 2, . . . , n, such that for each x ∈ K, with ‖x‖ > ci, such that

〈

ζi, η
(

y0, x
)〉

< 0, i = 1, 2, . . . , n. (4.25)

Taking d = max{c1 + ε, c2 + ε, . . . , cn + ε, ‖y0‖ + ε}, where ε > 0, and let D = {x ∈ K : ‖x‖ ≤ d}.
Clearly, D is closed bounded. Then for any x ∈ K \ D, there exists y0 ∈ D, and for any
ζi ∈ ∂ηfi(x), i = 1, 2, . . . , n, such that

(〈

ζ1, η
(

y0, x
)〉

, . . . ,
〈

ζn, η
(

y0, x
)〉) ∈ − intRn

+ ⊂ − intC(x). (4.26)

By Theorem 4.1, the solutions set of (MOP) is nonempty compact. This completes the proof.



Journal of Applied Mathematics 13

Theorem 4.6. Let K ⊂ Rn be nonempty convex. Suppose that the following conditions are satisfied:

(i) η(y, x) + η(x, y) = 0 for any x, y ∈ K,

(ii) η is an open mapping, x �→ η(x, ·) is affine, and y �→ η(·, y) is continuous,
(iii) the set-valued functionW : K → 2R

n
is given byW(x) = Rn\(− intC(x)) for any x ∈ K

such that Graph(W) is closed,

(iv) fi : Rn → R, i = 1, 2, . . . , n are subinvex and locally Lipschitz with respect to η,

(v) there exist a nonempty closed bounded set B ⊂ K and a nonempty bounded closed set
D ⊂ K such that, for each y ∈ K\D, there exist x ∈ B and ζi ∈ ∂ηfi(y), i ∈ {1, 2, . . . , n}
such that

(〈

ζ1, η
(

x, y
)〉

, . . . ,
〈

ζn, η
(

x, y
)〉) ∈ − intC

(

y
)

(4.27)

then the solutions set of (MOP) is nonempty compact.

Proof. Define set-valued mapping G : K → 2K by

G(x) =
{

y ∈ K : ∀ζi ∈ ∂ηfi(x),
(〈

ζ1, η
(

x, y
)〉

, . . . ,
〈

ζn, η
(

x, y
)〉)

/∈ − intC
(

y
)}

, ∀x ∈ K.
(4.28)

Obviously, x ∈ G(x) for any x ∈ K, that is, G(x)/= ∅.
For any net {yλ}λ∈Δ ⊂ G(x), with yλ → y0, we have, for any ζi ∈ ∂ηfi(x),

(〈

ζ1, η
(

x, yλ
)〉

, . . . ,
〈

ζn, η
(

x, yλ
)〉)

/∈ − intC
(

yλ
)

, (4.29)

that is,

(〈

ζ1, η
(

x, yλ
)〉

, . . . ,
〈

ζn, η
(

x, yλ
)〉) ∈W(yλ

)

. (4.30)

In view of the continuity of η with respect to the second argument and closedness of
Graph(W), we obtain

(〈

ζ1, η
(

x, y0
)〉

, . . . ,
〈

ζn, η
(

x, y0
)〉) ∈W(y0

)

, (4.31)

and so

(〈

ζ1, η
(

x, y0
)〉

, . . . ,
〈

ζn, η
(

x, y0
)〉)

/∈ − intC
(

y0
)

. (4.32)

Consequently, y0 ∈ G(x), that is, G(x) is closed. By Theorem 3.4, we only need to prove that
(VVLI) has a solution.

Suppose to the contrary that (VVLI) has no solution, then

{

y ∈ K : ∀x ∈ K, ∃ξi ∈ ∂ηfi
(

y
)

,
(〈

ξ1, η
(

x, y
)〉

, . . . ,
〈

ξn, η
(

x, y
)〉)

/∈ − intC
(

y
)}

= ∅. (4.33)
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From the proof of Theorem 3.4, we have

{

y ∈ K : ∀x ∈ K, ∀μi ∈ ∂ηfi(x),
(〈

μ1, η
(

x, y
)〉

, ...,
〈

μn, η
(

x, y
)〉)

/∈ − intC
(

y
)}

= ∅. (4.34)

Therefore, for each y ∈ K, {x ∈ K : y /∈ G(x)}/= ∅.
Define set-valued mappings F1, F2 : K → 2K by, respectively,

F1
(

y
)

=
{

x ∈ K : ∃ζi ∈ ∂ηfi(x),
(〈

ζ1, η
(

x, y
)〉

, . . . ,
〈

ζn, η
(

x, y
)〉) ∈ − intC

(

y
)}

, ∀y ∈ K,
F2
(

y
)

=
{

x ∈ K : ∀ξi ∈ ∂ηfi
(

y
)

,
(〈

ξ1, η
(

x, y
)〉

, . . . ,
〈

ξn, η
(

x, y
)〉) ∈ − intC

(

y
)}

, ∀y ∈ K.
(4.35)

Obviously, for each y ∈ K,F1(y)/= ∅.
For any finite set {x1, x2, . . . , xm} ⊂ F1(y), there exist ζji ∈ ∂ηfi(xj), j = 1, 2, . . . , m, i =

1, 2, . . . , n such that

(〈

ζ
j

1, η
(

xj , y
)〉

,
〈

ζ
j

2, η
(

xj , y
)〉

, . . . ,
〈

ζ
j
n, η
(

xj , y
)〉) ∈ − intC

(

y
)

. (4.36)

By the η-monotonicity of ∂ηfi, we have, for each j ∈ {1, 2, . . . , m},
〈

ζ
j

i , η
(

xj , y
)〉 − 〈ξi, η

(

xj , y
)〉 ≥ 0, ∀ξi ∈ ∂ηfi

(

y
)

. (4.37)

It follows that

(〈

ζ
j

1, η
(

xj , y
)〉

, . . . ,
〈

ζ
j
n, η
(

xj , y
)〉) − (〈ξ1, η

(

xj , y
)〉

, . . . ,
〈

ξn, η
(

xj , y
)〉) ∈ Rn

+ ⊂ C(y).
(4.38)

Since η(x, y) + η(y, x) = 0, for any x, y ∈ K, we get

(〈

ξ1, η
(

y, xj
)〉

, . . . ,
〈

ξn, η
(

y, xj
)〉) −

(〈

ζ
j

1, η
(

y, xj
)〉

, . . . ,
〈

ζ
j
n, η
(

y, xj
)〉) ∈ C(y), (4.39)

that is,

(〈

ξ1, η
(

y, xj
)〉

, . . . ,
〈

ξn, η
(

y, xj
)〉) ∈

(〈

ζ
j

1, η
(

y, xj
)〉

, . . . ,
〈

ζ
j
n, η
(

y, xj
)〉)

+ C
(

y
)

⊂ intC
(

y
)

+ C
(

y
) ⊂ intC

(

y
)

.

(4.40)

Therefore, for any αj ≥ 0,Σm
j=1αj = 1,Σm

j=1αj(〈ξ1, η(y, xj)〉, . . . , 〈ξn, η(y, xj)〉) ∈ intC(y), and
thus

⎛

⎝

〈

ξ1,
m∑

j=1

αjη
(

xj , y
)

〉

, . . . ,

〈

ξn,
m∑

j=1

αjη
(

xj , y
)

〉
⎞

⎠ ∈ − intC
(

y
)

. (4.41)
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Since η is affine in the first argument, it follows that

⎛

⎝

〈

ξ1, η

⎛

⎝

m∑

j=1

αjxj , y

⎞

⎠

〉

, . . . ,

〈

ξn, η

⎛

⎝

m∑

j=1

αjxj , y

⎞

⎠

〉
⎞

⎠ ∈ − intC
(

y
)

. (4.42)

We have Σm
j=1αjxj ∈ F2(y), that is, co(F1(y)) ⊂ F2(y) for any y ∈ K. In view of the closedness

of G(x), one has F−1
1 (x) = K \G(x) as an open set inK. Therefore, intKF−1

1 (x) = F−1
1 (x). From

(4.34), we have

⋃

x∈K

{

y ∈ K : ∃ζi ∈ ∂ηfi(x),
(〈

ζ1, η
(

x, y
)〉

, . . . ,
〈

ζn, η
(

x, y
)〉) ∈ − intC

(

y
)}

= K, (4.43)

that is,

⋃

x∈K
F−1
1 (x) = K. (4.44)

Furthermore,

K =
⋃

x∈K
F−1
1 (x) =

⋃

x∈K
intKF−1

1 (x). (4.45)

From assumption (v), one has

y ∈ F−1
1 (x) = intKF−1

1 (x). (4.46)

By Lemma 2.14, there exists y ∈ K such that y ∈ F2(y). Since η(x, y) + η(y, x) = 0 for any
x, y ∈ K, we have η(y, y) = 0. Thus,

∀ξi ∈ ∂ηfi
(

y
)

,
(〈

ξ1, η
(

y, y
)〉

, . . . ,
〈

ξn, η
(

y, y
)〉) ∈ − intC

(

y
)

, (4.47)

that is, 0 ∈ − intC(y), which is a contradiction. Therefore, (VVILP) has a solution. From
Theorems 3.2 and 3.4, (MOP) has a weakly efficient solution.

Similarly, we can show that J is compact.This completes the proof.

Remark 4.7. As previously mentioned, the results presented in this paper extend some cor-
responding results in [5, 7, 9, 12, 13]. For instance, Theorems 4.1 and 4.6 extended the
corresponding results given by Kazmi [7], and Lee et al. [13], Lee et al. [9] from preinvex
functions to subinvex functions. Corollaries 4.3 and 4.4 generalized the results given by Lee
et al. [13] from differentiable functions to nondifferentiable functions.
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