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Both the forward and backward kinematics of the Gough-Stewart mechanism exhibit nonlinear
behavior. It is critically important to take account of this nonlinearity in some applications such
as path control in parallel kinematics machine tools. The nonlinearity of inverse kinematics is
straightforward and has been first studied in this paper. However the nonlinearity of forward
kinematics is more challenging to be considered as there is no analytic solution to the forward
kinematic solution of the mechanism. A statistical approach including the Bates and Watts
measures of nonlinearity has been employed to investigate the nonlinearity of the forward
kinematics. The concept of standard sphere has been used to check the significance of the
nonlinearity of themechanism. It is demonstrated that the length of the region, defined as the linear
approximation of the lifted line, has a significant impact on the nonlinearity of the mechanism.

1. Introduction

The Gough-Stewart platform mechanism (GSPM), introduced by Gough and Whitehall [1]
and Stewart [2], was originally used as a universal six degree of freedom (6-DOF)mechanism
in a tire test machine and a flight simulator. Later on, the mechanism found various
applications in many industries like aviation, entertainment, health, surgery, and most
recently machine tools. The Stewart platform is a six-degree of freedom parallel mechanism
which most commonly comprises a moving platform (referred to as upper platform here)
and a fixed platform (referred to as lower platform), six pods, six spherical joints, and six
universal joints as shown in Figure 1.

Determination of the lengths of pods and the first and second rate of change in these
lengths forms basis of the inverse kinematics analysis of the mechanism. This is done by
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Figure 2: kinematic chain of GSPM.

using the position and orientation, translational and angular velocities, and translational and
angular accelerations of the upper platform.

The kinematic chain of the mechanism is illustrated in Figure 2. The ith pod is
represented by vector Li in global coordinate system, connecting the nominal position of the
ith universal joint to the nominal position of the ith spherical joint. The nominal positions of
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the ith spherical and universal joints in global coordinate system are defined by vectors Si

and Ui, respectively.
The inverse kinematics problem of the mechanism is fairly simple as discussed

exhaustively by Harib and Srinivasan [3], Karimi et al. [4], and Karimi and Nategh [5].
On the contrary, the problem of the forward kinematics is not straightforward. Forward
kinematics analysis is concerned with the problem of finding the position/orientation of the
upper platform when the lengths of pods are available.

Various methods have already been applied to solve the forward displacement
problem of the general Stewart mechanism. Raghavan [6] numerically proved that there
are at most 40 possible solutions in the complex domain. Zhang and Song [7] presented
closed-form solution to this problem, but without achieving rigorous solutions. Husty [8]
produced a 40th-degree univariate polynomial by finding the greatest common divisor of the
intermediate polynomials of degree 320. Innocenti [9] obtained a solution from the two 56th-
degree univariate equations that are obtained from respective 45 × 45 matrices. Wampler
conducted the forward kinematic analysis of the mechanism using Soma coordinates [10].
Dhingra et al. [11] used the Gröbner-Sylvester hybrid method to obtain a 40th-degree
polynomial from the 68 × 68 Sylvester’s matrix formed by 68 equations of calculated Gröbner
basis. Lee and Shim [12] developed an elimination method to derive directly a univariate
polynomial of degree 40 from a 28 × 28 matrix. Later on, they improved the dialytic
elimination algorithm [13], with which the size of the Sylvester’s matrix leading to a 40th-
degree univariate equation has been reduced to 15 × 15. Huang et al. presented a concise
algebraic elimination algorithm to solve the closed-form forward kinematics of the Stewart
platform. Based on the presented algebraic method, the forward kinematics problem was
reduced to solve a univariate polynomial equation of degree at most 14. The 14th degree
univariate polynomial is derived from the determinant of the 15 × 15 Sylvester’s matrix,
which is relatively small in size, without factoring out or deriving the greatest common
divisor [14]. Gan et al. presented an algorithm to directly obtain a 40th degree univariate
equation from a constructed 13 × 13 Sylvester’s matrix without factoring out or deriving the
greatest common divisor [15]. Hui et al. presented a multivariate polynomial equations set
with respect to the moving platform’s position and orientation parameters [16].

Although it is known that at most 40 possible solutions exist for the forward kinematic
problem of a general GSPM, only one solution corresponds to the actual pose of a physical
machine [3]. Two most common approaches to find directly the actual solution are (i) to use
an iterative numerical procedure or (ii) to use extra sensors. Harib employed a numerical
iterative technique, based on the Newton-Raphson method [3]. Bonev and Ryu presented a
method to solve direct kinematics problem of a general GSPM using three linear extra sensors
[17].

Both the inverse and forward kinematics of GSPM exhibit nonlinear behavior. In the
inverse kinematics the pods’ lengths do not change linearly with a linear path travelled
by the upper platform. In the forward kinematics, when pods are actuated linearly the
upper platform moves along a nonlinear path. This makes the path control and interpolation
functions in Stewart-based machine tools become more complex than in conventional
machine tools. Zheng et al. [18] investigated path control for a novel 5-DOF parallel
machine tool. They demonstrated the nonlinearity of both inverse and forward kinematics
of the parallel machine tool. Based on the error introduced by the kinematic nonlinearity
of the mechanism, they proposed a novel interpolation algorithm, however they did not
elaborate the nonlinearity of the mechanism. Beale made the first serious attempt to measure
nonlinearity. He proposed four measures of nonlinearity [19]. This problem has been tackled
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in several research works. Guttman andMeeter showed that Beale’s measures tend to predict
that a model will behave linearly even when considerable nonlinearity is present [20]. Box
presented a formula for estimating the bias in the LS estimators [21]. Using simulation
studies, Gillis and Ratkowsky [22] found that this formula not only predicted bias to the
correct order of magnitude in yield-density models, but also gave a good indication of the
extent of nonlinear behavior of the model. Bates and Watts developed new measures of
nonlinearity based on the geometric concept of curvature [23]. They used the maximum
relative intrinsic and parameter-effects curvatures of the solution locus for estimating the
extent of nonlinearity. They showed that the projections of the straight and equispaced
parametric lines in the parameter space onto the plane tangent to the solution locus are,
in general, neither straight, nor equispaced. They established a relationship between their
measures of nonlinearity and those of Beale and Box’s bias expressions. They explained that
since Beale’s measures yield the average nonlinearity, they tend to underestimate the true
nonlinearity. Bates and Watts’s measures of nonlinearity have found various applications in
studying nonlinearities.

To the extent that the authors of the present paper are aware, little attention has
been paid to the nonlinearity analysis of GSPM. This is especially important for the
hexapod machine tools where nonlinearity of the mechanism considerably adds to the
interpolation algorithms requiring an insightful analysis. The problem of path control in
parallel mechanisms has recently been tackled in some studies, for example [20, 24]. As a
continuation of their studies on the hexapod machine tools, the authors have investigated
the nonlinearity of the GSPM mechanism employing the Bates and Watts measures of
nonlinearity.

2. Kinematics of GSPM

A concise formulation of the inverse and forward kinematics of GSPM is presented in this
section for subsequent use in the analysis of nonlinearity. The vector Li in Figure 2, and the
ith pod’s length can be written as follows:

Li = X + RSi −Ui, (2.1)

li = ‖Li‖, (2.2)

where X is the vector representing the position of the center point of the upper platform; Si is
the position vector of the ith spherical joint defined in the local coordinate system, which is
transformed into the global coordinate system by using the rotation matrix R being defined
by Euler angles designated by α, β, and γ ; Ui is the position vector of the ith universal joint
defined in the global coordinate system. Figure 3 illustrates the local coordinate system and
is employed here to demonstrate the Euler angles.

As illustrated in Figure 3, xyz coordinate system is rotated around x-axis by the angle
of α, thus obtained x′y′z′. The latter coordinate system is rotated around y′ by the angle of β
to produce x′′y′′z′′. The rotation of x′′y′′z′′ around z′′ by the angle of γ produces the x′′′y′′′z′′′

coordinate system.
The position and orientation of the upper platform can be represented by a 6D vector

P =
[
x y z α β γ

]T
. The velocity of the ith pod in inverse kinematics can be obtained by
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Figure 3: Local coordinate system.

differentiating (2.1) with respect to time and multiplying both sides by ni (the unit vector
of the ith pod), as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l̇1

l̇2

l̇3

l̇4

l̇5

l̇6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

nT
1 {RS1 × n1}T

nT
2 {RS2 × n2}T

nT
3 {RS3 × n3}T

nT
4 {RS4 × n4}T

nT
5 {RS5 × n5}T

nT
6 {RS6 × n6}T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ẋ

Ω

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.3)

where Ω =
[
wx wy wz

]T
and Ẋ =

[
ẋ ẏ ż

]T
are the angular and linear velocity of the upper

platform defined in global coordinate system, respectively. Local angular velocities defined
as the rate of change of Euler angles can be transformed into the global coordinate system
using the following transformation matrix:

⎡
⎢⎢⎣

wx

wy

wz

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 sin
(
β
)

0 cos(α) − sin(α) cos
(
β
)

0 sin(α) cos(α) cos
(
β
)

⎤
⎥⎥⎦

⎡
⎢⎢⎣

α̇

β̇

γ̇

⎤
⎥⎥⎦. (2.4)

It is useful to represent (2.3) as follows:

l̇ = Jv × Ṗ, (2.5)
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where

l̇ =
[
l̇1 · · · l̇6

]T
,

Jv =

⎡
⎢⎢⎢⎣

nT
1 {RS1 × n1}T
...

...

nT
6 {RS6 × n6}T

⎤
⎥⎥⎥⎦ ×

⎡
⎢⎢⎢⎢⎢⎣

I3×3 03×3

1 0 sin
(
β
)

03×3 0 cos(α) − sin(α) cos
(
β
)

0 sin(α) cos(α) cos
(
β
)

⎤
⎥⎥⎥⎥⎥⎦
,

Ṗ =
[
ẋ ẏ ż α̇ β̇ γ̇

]T
,

(2.6)

where Jv is the velocity Jacobian matrix. The time derivative of the velocity Jacobian matrix in
the inverse kinematics will be employed later in this paper for nonlinearity analysis of GSPM.
It can be derived as follows:

J̇v =

⎡
⎢⎢⎢⎢⎢⎣

[ω1 × n1]T [(Ω × RS1) × n1 + RS1 × (ω6 × n1)]T

·
·

[ω6 × n6]T

·
·

[(Ω × RS6) × n6 + RS6 × (ω6 × n6)]T

⎤
⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎣

I3×3 03×3

1 0 sin
(
β
)

03×3 0 cos(α) − sin(α) cos
(
β
)

0 sin(α) cos(α) cos
(
β
)

⎤
⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎣

nT
1 {RS1 × n1}T
...

...

nT
6 {RS6 × n6}T

⎤
⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎣

03×3 03×3

0 0 β̇ cos
(
β
)

03×3 0 α̇ sin(α) −α̇ cos(α) cos(β) + β̇ sin(α) sin
(
β
)

0 α̇ cos(α) −α̇ sin(α) cos(β) − β̇ cos(α) sin
(
β
)

⎤
⎥⎥⎥⎥⎥⎦
,

(2.7)

where ωi is the angular velocity vector of ith pod defined in global coordinate system.
In forward kinematics, the problem of determining the position/orientation of the

upper platform from the lengths of pods leads to solving a set of nonlinear equations. These
equations can be solved by using the Newton-Raphson numerical iterative method. The
translational/angular velocity of the upper platform in forward kinematics can be obtained
from the change rate of the pods’ lengths. It can be written from (2.5) as

Ṗ = JI l̇, (2.8)

where

JI = J−1v . (2.9)
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The time derivative J̇I being used in the nonlinearity analysis can be obtained as follows:

JvJI = JIJv = I,

d

dt
(JvJI) = 0 =⇒ J̇vJI + Jv J̇I = 0 =⇒ JI J̇vJI + J̇I = 0

=⇒ J̇I = −IJI J̇vJI .

(2.10)

3. Kinematics Nonlinearity

3.1. Nonlinearity of Inverse Kinematics

It is illustrated in this section that both the inverse and forward kinematics of GSPM
are nonlinear. The nonlinearity of the inverse kinematics can be readily verified as
follows.

The inverse kinematics of SPM is said to be nonlinear if and only if a linear relationship
in the vector space of the upper platform is transformed into a nonlinear relationship in the
vector space of the joints. The upper platform’s center point is assumed to follow a linear
path as follows:

X = Ẋt + X0. (3.1)

Replacing X into (2.2) yields

li =
√
(ẋt + x0 + sxi − uxi)2 +

(
ẏt + y0 + syi − uyi

)2 + (żt + z0 + szi − uzi)2, (3.2)

where sxi, syi, szi are the components of the ith spherical joint vector along x, y, and z

axes of the global coordinate system, respectively; and uxi, uyi, and uzi are the components
of the ith universal joint vectors along x, y, and z axes of the global coordinate system,
respectively.

It is obvious that (3.2) is a nonlinear relation in terms of t, implying that nonlinear
transformation should be expected through the inverse kinematics of GSPM.

3.2. Nonlinearity of Forward Kinematics

The nonlinearity of forward kinematics is not however as straightforwardly clear. The Bates
and Watts measures of nonlinearity are used to study the nonlinearity of the forward
kinematics in this section.

Bates and Watts introduced the concept of relative curvature and illustrated that
the relative curvature can be decomposed into intrinsic curvature and parameter-effects
curvature [23]. Seber and Wild showed that since their measures are scale free, they can
be used for different scales of data and parameters [25]. Their methodology is suitable
for the consideration of the nonlinearity of regression models in the vicinity of a point on
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expectation surface, thus validating the linear approximation of the model. To test the linear
approximation validity, they suggested to compare both the intrinsic and parameter-effects
curvatures to 1/

√
Fa
p,n−p in the 100(1 − a)% confidence region where a is the statistical

significance level and p and n − p are the degrees of freedom of numerator and denominator
in the F distribution table.

The methodology proposed by Bates and Watts applies well to the nonlinearity
analysis of the forward kinematics of GSPM since forward kinematics maps a linear relation
in parameter space (known here as joints space, l ∈ τ , a subspace of R6) into a nonlinear
relation in solution space (known here as upper platform space, P ∈ η, a subspace of
R6). Although no model is present for the forward kinematics of GSPM, it will be shown
that its first and second derivatives can be obtained by using the forward kinematics
relations.

The forward kinematic relation is mathematically represented as follows:

P = f(l), (3.3)

where l =
[
l1 ··· l6

]T
is the length vector, and f =

[
f1(l) ··· f6(l)

]T
. It is assumed that P is well

apart from the singular points and, therefore, f is continuous and twice differentiable in
the vicinity of l. It is worthy of mention that the singularity analysis of GSPM has attracted
the attention of many researchers over decades. There is a finite number of singular points
in the workspace of the mechanism where Jv is irreversible and JI does not exist so the
kinematics does not produce a nontrivial solution. In that case, f is neither continuous nor
differentiable in a singular point. The function f can be approximated in the vicinity of
any set of pod lengths designated by l̂ using the first two terms of the Taylor series, as
follows:

P − P̂ ≈ Ḟ
(
l − l̂

)
+
1
2

(
l − l̂

)
F̈
(
l − l̂

)
= Ḟδ +

1
2
δT F̈δ, (3.4)

where δT is the transpose of δ and

Ḟ6×6 =
(
∂f
∂l

)∣∣∣∣
l=l̂
,

F̈6×6×6 =
∂2f
∂lT∂l

.

(3.5)

The kinematics relations discussed earlier are used to derive Ḟ and F̈. Differentiation (3.3)
with respect to time gives

Ṗ =
df
dt

=
∂f
∂l

× dl
dt

. (3.6)
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Comparing (3.6) with (2.8) reveals that

Ḟ = JI ,

F̈i.. =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂2fi
∂l1∂l1

· · · ∂2fi
∂l1∂l6

...
. . .

...

∂2fi
∂l6∂l1

...
∂2fi
∂l6∂l6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

d

dt

(
∂fi
∂l1

)
dt

dl1
· · · d

dt

(
∂fi
∂l1

)
dt

dl6
...

. . .
...

d

dt

(
∂fi
∂l6

)
dt

dl1

...
d

dt

(
∂fi
∂l6

)
dt

dl6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

J̇Ii1

l̇1
· · · J̇Ii1

l̇6
...

. . .
...

J̇Ii6

l̇1

...
J̇Ii6

l̇6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

F̈ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

J̇I11

l̇1
· · · J̇I11

l̇6
...

. . .
...

J̇I16

l̇1

...
J̇I16

l̇6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
· · ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

J̇I61

l̇1
· · · J̇I61

l̇6
...

. . .
...

J̇I66

l̇1

...
J̇I66

l̇6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

(3.7)

where J̇Iij is an element of J̇I located in the ith row and jth column of matrix J̇I . J̇I can be
calculated at any point from (2.10). Now consider a linear relationship in τ (defined as joints
space, l ∈ τ , a subspace of R6), as follows:

l(t) = l̂(t) + td, (3.8)

where

d =
l̇∥∥l̇∥∥ . (3.9)

Mapping l onto the expectation surface gives a curve called lifted line as follows [25]:

Pd(l) = Pd

(
l̂ + td

)
. (3.10)

Bates and Watts [26] considered reparametrizing the model and then rotating the axes of the
sample space using an orthogonal matrix obtained by theQR decomposition of matrix Ḟ. This
way, they introduced the formulation of the components of curvature. They further suggested
an algorithm to maximize the curvature and evaluate the nonlinearity by comparing it with
the curvature of the so-called standard sphere [25]. Their algorithm is presented in the
appendix.

The maximum curvature of the solution locus in a GSPM is dependent on the position
and orientation of the upper platform. It is noteworthy that both Ḟ and F̈ are calculated from
Jacobian and its derivative, both of which are functions of position and orientation of the
upper platform.

In order to investigate the nonlinearity of the mechanism throughout its workspace,
different regions in the solution locus are considered. Region is defined as the linear
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Table 1: Levels of Ps and ζ.

Levels X (mm) O (degree) ζ (mm)

Level 1
[
−87 −80 775

]T [
8 1 0

]T 0.05

Level 2
[
50 −75 800

]T [
2 5 8

]T 0.08

Level 3
[
−60 80 600

]T [
1 0 5

]T 0.1

Level 4
[
40 90 650

]T [
3 4 1

] 0.5

Level 5
[
−10 5 700

] [
4 3 4

] 1

Level 6
[
5 −60 750

] [
0 6 2

] 10

Level 7
[
100 25 630

] [
5 2 3

] 50

Level 8
[
120 50 710

] [
7 8 6

]
100

Lifted line

Region

Kinematic error

ζ

X
Y

Z

Ps

Figure 4: Region and lifted line. Kinematic error is due to the nonlinear behavior of the forward kinematics.

approximation of the lifted line. The difference between a point on the lifted line and that
of the region produces the so-called kinematics error which roots in nonlinear behavior of
the forward kinematics of GSPM. Regions are different in the position/orientation of the
upper platform, together with their sizes and directions. A typical region can be embodied
by position/orientation vector of the upper platform at the beginning, designated by Ps, its
length designated by ζ, and its direction as shown in Figure 4. For the sake of simplicity the
upper platform is assumed to have the same orientation as Ps all along the region.

To study the effect of Ps and ζ on the curvature, different levels are chosen for them
as is presented in Table 1. For the sake of simplicity, the position and orientation of the
upper platform, both of which are included in Ps, are separated and designated by X and
O, respectively.

The maximum curvature is obtained for any permutation of X, O, and ζ levels as
illustrated Figure 5.
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Figure 5: Surface plot of curvature versusO and ζ levels for different levels of X. Levels are listed in Table 1.
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Figure 6: Interaction plots of (a) ζ and orientation (b) ζ and location on curvature.

It is apparent that ζ has the greatest impact on the curvature. As it increases the cur-
vature also increases. However there is a clear interaction between the position, orientation,
and ζ.

Bates andWatts suggested comparing the maximum parameters-effect curvature with
the curvature of 100(1 − a)% confidence region obtained by 1/

√
Fa
p,n−p. Here the data in

Figure 5 are determined for p = 6 and n = 20. Therefore,

1√
F0.05
6,14

= 0.5923, (3.11)

which suggests that linearity assumption should be rejected at 0.05 level of significance, if the
curvature in Figure 5 exceed 0.5923.

To elaborate effects of X,O, and ζ on the curvature, plots of main effect and interaction
effects are illustrated in Figure 6. Main effect plot of ζ is shown in Figure 7.

Figure 7 illustrates the mean values of the curvature for levels of ζ, which can be an
indicator of the mean effect of ζ on the curvature. As it can be seen from this figure, curvature
increases rapidly as the ζ grows, especially for ζ > 1mm. To check the Bates and Watts
measure of nonlinearity, Figure 7 is zoomed around the value of the radius of standard sphere
as illustrated in Figure 7.

Figure 8 reveals the fact that for ζ < 0.5mm, the curvature is less than the radius of
standard sphere which correspondingly implies that nonlinearity becomes significant for ζ >
0.5 (mm) the mechanism exhibits nonlinear behavior. Whereas for ζ < 0.5 it can be roughly
stated that the mechanism behaves linearly. Interaction plot of location and orientation with
ζ is shown as follows.

Figure 9 indicates that for ζ < 0.5mm the nonlinear behavior of the mechanism can
be overlooked for all levels of location and orientation based on Bates and Watts measure of
nonlinearity.
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Figure 7: Main effect plot of ζ on curvature.
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Figure 8: Mean values of curvature versus ζ levels—zoomed around the value of standard sphere.
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Figure 9: Interaction plot of (a) orientation and ζ and (b) location and ζ on curvature.
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The above discussion leads to the following statement as a rule of thumb that for
values of ζ < 0.5mm the mechanism, shown in Figure 1, exhibits linear behavior.

4. Conclusion

Nonlinearity analysis of GSPM forward and inverse kinematics was presented and
considered in this investigation. To quantitatively consider the nonlinearity of the mechanism
Bates and Watts measure of nonlinearity was employed. Bates and Watts formulation was
developed for the forward kinematics of the mechanism. It was implied that the most
significant effect on the nonlinearity of the mechanism is that of the size of the region in
the solution locus and it was shown that the nonlinearity of the mechanism is negligible
if this size does not exceed 0.5 (mm). Such a conclusion is of significant importance in the
interpolation of curves in hexapod machine tool. It was demonstrated that the nonlinear
behavior of the mechanism is attributed to the parameter-effect curvature as Bates and Watts
classified.

Appendix

Bates and Watts Measures of Nonlinearity

Bates et al. proposed a new algorithm for calculation of intrinsic and parameter-effects
curvatures [25, 27]. This algorithm [25] is adopted here as the basis for the nonlinearity
analysis of GSPM’s forward kinematics. They demonstrated that reparametrization of the
model using an orthogonal matrix obtained by the QR decomposition of matrix Ḟ reduces
the formula which is summarized in the following:

Ḟ = Q6R11, K = R−1
11 , Ġ = Q6,

G̈ = KT F̈K, At =
[
QT

6

][
G̈
]
, Γtd = ρ

∥∥∥dTAtd
∥∥∥,

(A.1)

where ρ = 2.449s and s is the standard deviation of the sample points. Superscript t indicates
the tangential direction in the present analysis. Γtd is the parameter-effects curvature in the
direction of d. Bates and Watts suggested an algorithm to maximize Γtd with respect to d,
which is briefly presented as follows.

According to this algorithm, Ḟ and F̈ are calculated. Then, F̈ is arranged in symmetric
storage mode (ssm), which includes the nonredundant elements. It should be noted that

[Fssm]6×21 = (f11, f12, f22, f13, f23, f33, . . . , f66). (A.2)

The matrix D is defined as follows:

D =
(
Ḟ,Fssm

)
(A.3)
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which is subsequently rescaled by dividing each element by ρ.QR decomposition ofDmatrix
and pivoting in Fssm reducesD to an upper triangular form. The components of the Rmatrix,
R11 and R12 matrices are calculated as follows:

R11 = QT
1

(
Ḟ
)
,

[
R12 R22 0

]T = QT
1FssmΠ1,

(A.4)

where Π1 is permutation matrix. Then K = R−1
11 is calculated and mrs, Mssm and At

ssm are
formed as follows:

mrs =

⎛
⎜⎜⎜⎜⎜⎜⎝

k1rk1s

k1rk2s + k2rk1s

...

k6rk6s

⎞
⎟⎟⎟⎟⎟⎟⎠

=⇒ [Mssm]6×21 = (m11,m12, . . . ,m66),

At
ssm = R12ΠT

1Mssm.

(A.5)

Finally, γtmax, which is obtained by maximizing Γtd with respect to the directional vector, is
calculated as follows:

γtmax =
∥∥∥dTAtd

∥∥∥
d=d0

= ‖Assmcd‖d=d0
, (A.6)

where d0 is the unit vector in the direction of which Γtd is maximized. cd is calculated as
follows:

cTd =
[
d2
1, 2d1d2, d

2
2, 2d1d3, 2d2d3, d

2
3, . . . , d

2
6

]
. (A.7)

In order to find d0 and maximize Γtd with respect to d in (A.6), Seber and Wild
suggested the following algorithm [25]. For an initial value arbitrarily chosen for d(a),
r(a) = r(d(a)) is calculated as follows:

r(d) =
6∑
i=1

(
dTAid

)
Aid. (A.8)

If r̃(a)
T
d(a) > 0.95 (r̃(a) = r(a)/‖r(a)‖) then d(a+1) is calculated as follows:

d(a+1) =
3r̃(a) + d(a)

∥∥3r̃(a) + d(a)
∥∥ . (A.9)

And the procedure is repeated; otherwise d0 = d(a) is used to calculate γtmax.
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