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The interaction of mixed convection with thermal radiation of an optical dense viscous fluid
adjacent to an isothermal cone imbedded in a porous medium with Rosseland diffusion approx-
imation incorporating the variation of permeability and thermal conductivity is numerically
investigated. The transformed conservation laws are solved numerically for the case of variable
surface temperature conditions. Numerical results are given for the dimensionless temperature
profiles and the local Nusselt number for various values of the mixed convection parameter χ,
the cone angle parameter m, the radiation-conduction parameter Rd, and the surface temperature
parameterH.

1. Introduction

The problem of convective heat transfer in porous medium has attracted researchers
because of the several applications it incorporates. Examples include enhanced oil recovery,
nuclear waste disposal, geothermal reservoirs, and ceramic processing. This topic has
been extensively covered in literatures in connection with different geometries, boundary
conditions, and media. While most of the cases concern with convection along semi-
infinite vertical walls impeded in porous media (e.g., [1–5] and many others) several other
geometries were also considered including cylinders (e.g., [6, 7]), wedges (e.g., [8]), spheres
(e.g., [9], Huang et al., 1986), cones (e.g., [10]). The presence of thermal radiation was also
investigated for the case of truncated cone by Yih [11] and for the case of vertical wall by
Abbas et al. [12]. All these studies consider the permeability and conductivity of the medium
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as constant. However, porosity measurements by Schwartz and smith [13], Tierney et al. [14],
and Benenati and Brosilow [15] showed that the porosity in the vicinity of solid objects is
not usually constant. In other words, it varies from the wall to the interior of the porous
medium which results in variations in the permeability as well as the equivalent thermal
conductivity across the medium. Chandrasekhara et al. [16–18], and have incorporated
variable permeability when studying convection in porous media and reported its significant
impact on the velocity field and heat transfer.

The present paper considers the case of mixed convection and radiation about a cone
immersed in a porous medium. It is assumed that the immersion of the cone has caused
disturbances to the host porous medium domain resulting in the porosity, the permeability,
and the effective thermal conductivity of the neighboring region to vary. This scenario may
result during the underground disposal of the high-level nuclear waste contained in canisters
of conical shape. That is, the reprocessing of depleted nuclear reactor fuel elements usually
results in the formation of considerable quantities of high-level, long-lived radioactive waste.
These wastes are usually adopted and cast in metallic cylinders and are stored in canisters
which may lately be burred underground. The decay heat generated from the spent nuclear
fuel may last for decades and therefore might result in the temperature to be high enough so
as to make it important to include radiation heat transfer into consideration.

On the other hand, the inclusion of thermal radiation into the energy equation requires
that some care be taken. That is, unlike heat transfer by conduction and convection, thermal
radiation is a more complex process because of its spectral and directional dependence in
addition to the difficulty of determining accurate physical property values of the medium.
Since the energy equation describes a local balance of energy arriving by all modes of energy
transfer, internal energy stored, energy generated by sources, and energy leaving by all modes
of transfer, the net energy associated with radiative effects can be viewed in the energy
equation as a local energy source [19], that is,

ρcp
DT

Dτ
= βT

DP

Dτ
+∇ · (k∇T − qr

)
+ q′′′ + Φd, (1.1)

where D/Dτ is the substantial derivative, β is the thermal coefficient of volume expansion
of the fluid, qr is the radiant flux vector, q′′′ is some sort of volumetric energy source, and Φd

is the energy production by viscous dissipation. Hence an expression for ∇ · qr is needed in
terms of the temperature distribution.The Radiative Transfer Equation (RTE) describes the
variation of the spectral radiative intensity for an absorbing-emitting-scattering medium in a
given direction, s, in the solid angle dω about the s direction as

dIλ(s)
ds

= −aλ(s)Iλ(s) + aλ(s)Iλb(s) − σsλ(s)Iλ(s) +
∫4π

ω′=0
Iλ
(
s,ω′)ξλ

(
ω,ω′)dω′, (1.2)

where Iλ(s) is the spectral intensity of the radiation, Iλb is the blackbody intensity, s is
the optical coordinate, and ξλ(ω,ω′) is the scattering phase function which represents the
distribution of energy after it is scattered. The first term in the right hand side of the above
equation represents the loss in spectral radiation intensity by absorption (includes induced
emission), the second term represents the gain by spontaneous emission, the third term
represents scattering loss, and the last term represents the gain by scattering into s direction.
It is apparent that solutions to the above-given system of equations may not be possible,
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however, certain simplification may be imposed that makes this system amenable to solution.
One of these simplifications may be the assumption of optically thick medium in which
radiation travels only a short distance before being scattered or absorbed. In this case the
local radiation intensity at a point is assumed to only emerge within the neighborhood of
that point. For this situation, it is possible to transform the relation of radiative energy into a
diffusion-like relationship [19].

2. Analysis

Consider the radiative mixed convection along the surface of a cone immersed in a fluid-
saturated porous medium whose properties are assumed to be functions of space (following
[16]). Figure 1 describes the physical domain and the coordinate system. The governing
equations for this problem may be given as

∂ru

∂x
+
∂rv

∂y
= 0, (2.1)

u = −K
μ

(
∂p

∂x
+ ρgx

)
, (2.2)
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μ
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, (2.3)
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∂qr
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ρ = ρ∞
[
1 − β(T − T∞)

]
, (2.5)

K = Ko

(
1 + ζe−y/Y

)
, (2.6)

ε = εo
(
1 + ζ∗e−y/Y

)
, (2.7)

Subject to
y = 0 : v = 0, T = Tw,

y −→ ∞, u = u∞, T = T∞,
(2.8)

where u and v are the velocity components in the x and y-directions, respectively, T , T∞, and
Tw are the temperatures of the fluid, the ambient medium, and the cone surface, respectively,
(ρ∞Cp)f is the product of density and specific heat of the fluid, p is the pressure, K0 and ε0
are the permeability and porosity at the edge of the boundary layer, respectively, ζ and ζ∗

are some constants whose values are taken as 3.0 and 1.5, respectively, (see [16]), β, μ, and ρ
are the thermal expansion coefficient, the viscosity, and the density of the fluid, respectively,
and g is the acceleration due to gravity, αx, αy are the components of the thermal diffusivity
in x and y directions, respectively. The quantity qr in the right hand side of (2.4) represents
the radiative heat flux in the y-direction. The radiative heat flux term is simplified by the
Rosseland approximation (cf. [20]) and is taken as follows:

qr = − 4σ
3ω

∂T4

∂y
, (2.9)
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Figure 1: Schematic diagram of the problem.

where σ and ω are the Stefan-Boltzmann constant and the mean absorption coefficient. The
radiative heat flux in the x-direction is considered negligible in comparison with that in the
y-direction [20]. The normal component of the velocity near the boundary is small compared
with the other component of the velocity, and the derivatives of any quantity in the normal
direction are large compared with derivatives of the quantity in direction of the wall. Under
these assumptions, and by cross differentiation of (2.2) and (2.3) and subtracting, the above
system of equations reduces to

∂ru

∂x
+
∂rv

∂y
= 0, (2.10)
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∂y
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Noting that the thermal diffusivity term is defined by α(y) = λm(y)/(ρ∞Cp)f , where λm is the
effective thermal conductivity of the saturated porous medium. Likewise, α(y) also varies in
the y-direction since it is related to the effective thermal conductivity of the saturated porous
medium λm(y), which is defined as λm = λfε+(1−ε)λs, where λf(y) and λs(y) are the thermal
conductivity of the fluid and solid, respectively. Therefore, α(y)may be defined as

α
(
y
)
= α0

[
ε0
(
1 + ζ∗e−y/Y

)
+ σ∗

{
1 − ε0

(
1 + ζ∗e−y/Y

)}]
, (2.13)

where, α0 = λf/(ρ0Cp)f is the value of diffusivity at the edge of the boundary layer and
σ∗ = λs/λf is the ratio of the thermal conductivity of the solid to the conductivity of the fluid.
The term 16σ/3ω(ρ0CP )f can be considered as the radiative conductivity.



Journal of Applied Mathematics 5

Introducing the stream function, ψ, such that ru = ∂ψ/∂y and rv = −∂ψ/∂x, the
continuity equation is automatically satisfied. Following Yih [10], we define the following
transformations:

η =
(y
x

)
Pe1/2x χ−1, χ−1 = 1 +

(
Rax
Pex

)1/2

, ψ = α0rPe1/2x χ−1f
(
χ, η

)
,

θ =
(T − T∞)
(Tw − T∞) , Pex =

u∞x
α0

, Rax =
ρ0K0gβ(Tw − T∞)x cos γ

α0μ
.

(2.14)

Moreover, it is assumed that u∞ = Bxm defines the velocity of the potential cone flow outside
the boundary layer, wherem = γ(π − γ) is the cone angle parameter, γ is half the cone angle,
and B is constant. The tabulated values of γ and m are given by Hess and Faulkner [21]. The
cone angle of 15, 30, 45, 60, and 750 are discussed in this paper, therefore, m is 0.0316314,
0.1156458, 0.2450773, 0.4241237, and 0.6667277, respectively. Furthermore, we choose Y =
xPe−1/2x χ such that K(y) and α(y) are purely functions of η only. Substituting into (2.10) to
(2.12), we obtain the following transformed governing equations:

f ′′ =
(
1 − χ)2(1 + ζe−η)θ′ − (

1 − χ)2ζe−ηθ +
(
1 − χ)2ζNe−η, (2.15)
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)
,

(2.16)

whereN = 1/β(TW − T∞), α∗(η) = {ε0 + σ∗(1 − ε0) + ε0ζ∗e−η(1 − σ∗)}, Rd = 4σT3
∞/(kω) is the

radiation parameter, andH = Tw/T∞ is the surface temperature parameter.
The boundary conditions become

(
1 +mχ

)
f
(
χ, 0

)
+mχ

(
1 − χ)∂f
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(
χ, 0

)
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(
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(2.17)

The Darcian velocity components may be defined as

u = u∞χ−2f
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χ, η

)
,
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(2.18)

We note that χ = 0 and 1 correspond to pure free and forced convection cases, respectively.
Between these limits, it represents combined free and forced convection cases. The heat flux
qw at the surface of the cone is

q w = −
([

k +
16σT3

3(ar + σs)

]
∂T

∂y

)

y=0

. (2.19)
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Figure 2: Comparison of values Nux/(Ra
1/2
x + Pe1/2x ) for m and χ with Rd = 0.1 and H = 1.1 for both UP

and VP cases.

For practical applications, it is usually the local Nusselt number that is of interest. This can
be expressed as

Nux =
hx

k
=

qwx

k(Tw − T∞) , (2.20)

where h denotes the local heat transfer coefficient and k represents the thermal conductivity.
Substituting (2.6), and (2.19) into (2.20), we obtain

Nux
Ra1/2x + Pe1/2x

= −
(

1 +
4RdH

3

3

)

θ′
(
χ, 0

)
. (2.21)

Primes in the above equations denote differentiation with respect to η, fχ = ∂f/∂χ and θχ =
∂θ/∂χ.

3. Results and Discussion

Numerical results for the governing (2.8)-(2.9) and the boundary conditions (2.10) are
nonlinear partial differential equations depending on the mixed convection parameter χ, the
radiation-condition parameter Rd, and the surface temperature parameterH for both UP and
VP cases. Numerical results are presented for themixed convection parameter χ ranging from
0 to 1.0, the cone angle parameter m ranging from 0.03163 to 0.66672, the radiation parameter
Rd ranging from 0 to 1, and the surface temperature parameter H from 1.1 to 3.0 for both
uniform permeability (UP), that is, d = d∗ = 0 and variable permeability (VP), that is, d,
d∗ /= 0 cases. For the purpose of numerical integration we have assumed that d = 3, d∗ = 1.5
and ε0 = 0.4 (Christopher and Middleman [22]).
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Figures 2–4 display results for the Nusselt number for various values of m, Rd, χ and
H for two cases UP and VP cases. From Figure 2, it is noteworthy that for pure free convection
(χ = 0), there is no effect of the parameter m on the heat transfer rate on the surface, while
for the pure forced convection (χ = 1), the parameter m enhances the heat transfer rate at the
surface. It is observed from Figure 3 that the parameterH enhances the heat transfer rate, and
Figure 4 shows that the parameter Rd enhances the heat transfer rate too. From Figures 2–4, it
is interesting to note that the heat transfer rate at χ tends to 0 or 1 (i.e., at pure free and pure
forced convection) and has the highest values.



8 Journal of Applied Mathematics

Nomenclature

ar : Rosseland mean extinction coefficient
B: Constant
Cp: Specific heat at constant pressure
d: Constant defined in(2.5)
d∗: Constant defined in(2.5)
f : Nondimensionless stream function
g: Acceleration due to gravity
h: Heat transfer coefficient
K(y): Permeability of the porous medium
kr : Thermal conductivity
K0: Permeability at the edge of the boundary layer
m: Cone angle parameter
Nux: Local Nusselt number
Pex: Local Peclet number
qr : The rate of heat transfer
qw: Surface heat flux
r: Local radius of the cone
Rax: Local Rayleigh number
Rd: Radiation parameter
T : Fluid temperature
Tw: Wall temperature
T∞: Free stream temperature
u, v: Darcian velocity in the x and y directions
u∞: Free stream velocity
x, y: Coordinate axes along and perpendicular to the plate
α(y): Thermal diffusivity
α∗: Ratio of viscosities
α0: Thermal diffusivity at the edge of the boundary layer
β: Volumetric coefficient of thermal expansion
γ : Half angle of the cone
ε(y): Porosity of the saturated porous medium
ε0: Porosity at the edge of the boundary layer
η: Dimensionless distance
θ: Dimensionless temperature
λ: Constant in(2.2)
λm: Effective thermal conductivity of the porous medium
μ: Viscosity of porous medium
ν: Kinematics viscosity of the fluid
ψ: Stream function
ρ: Density of fluid
χ: Mixed convection parameter
σ∗: Ratio of thermal conductivity of the solid to the liquid
σ: Permeability parameter
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Subscripts

w: Surface conditions
∞: Condition far away from surface.
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Wärme- und Stoffubertragung, vol. 18, no. 1, pp. 17–23, 1984.

[18] B. C. Chandrasekhara and P. M. S. Namboodiri, “Influence of variable permeability on combined free
and forced convection about inclined surfaces in porous media,” International Journal of Heat and Mass
Transfer, vol. 28, no. 1, pp. 199–206, 1985.

[19] R. Howell and J. R. Siegel, Thermal Radiation Heat Transfer, Taylor & Francis INC, Pa, USA, Sol edition
edition, 2002.

[20] E. M. Sparrow and R. D. Cess, Radiation Heat Transfer, Hemisphere Publ Crop., DC, USA, Augmented
Edition edition, 1978.



10 Journal of Applied Mathematics

[21] J. L. Hess and S. Faulkner, “Accurate values of the exponent governing potential flow about semi-
infinite cone,” AIAA Journal, vol. 3, pp. 767–774, 1965.

[22] R. H. Christopher and S. Middleman, “Power-law flow through a paced tube,” Industrial &
Engineering Chemistry Fundamentals, vol. 4, pp. 422–426, 1983.


