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We study the multiplicity of periodic solutions of nonautonomous delay differential equations
which are asymptotically linear both at zero and at infinity. By making use of a theorem of Benci,
some sufficient conditions are obtained to guarantee the existence of multiple periodic solutions.

1. Introduction

The existence and multiplicity of periodic solutions of delay differential equations have
received a great deal of attention. In 1962, Jones [1] firstly investigated the existence of
periodic solutions to the following scalar equation:

u′(t) = −au(t − 1)[1 + u(t)]. (1.1)

By making use of Browder fixed point theorem, the author showed that there exist periodic
solutions of (1.1) for each a > π/2. Since then, various fixed point theorems have been used
to study the existence of periodic solutions of delay differential equations (cf. [2]). As pointed
out in [3], by making change of variable 1 + u = ex, (1.1) turns into

x′(t) = −f(x(t − 1)). (1.2)

In 1974, Kaplan and Yorke [4] studied the following more general form of (1.2)

x′(t) = −f(x(t − 1)) − f(x(t − 2)) − · · · − f(x(t − n)). (1.3)
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They introduced a technique which translates the problem of the existence of periodic
solutions of a scalar delay differential equation to that of the existence of critical points of
an associated ordinary differential system. Using this method, they proved that (1.3) has
a periodic solution with minimal period 4 (resp., 6) when (1.3) has one delay (resp., two
delays). In this direction, Fei, Li and He did some excellent work and got some signification
results (cf. [5–8]).

Many other approaches, such as coincidence degree theory, the Hopf bifurcation
theorem, and the Poincaré-Bendixson theorem, have also been used to study the existence
of periodic solutions of delay differential equations (cf. [9, 10]). However, most of those
results are concerned with scalar delay equations. In 2005, Guo and Yu [3] studied vector
delay differential system (1.2). They built a variational structure for (1.2) on certain suitable
spaces. Then they reduced the existence of periodic solutions of (1.2) to that of critical
points of an associated variational functional. By making use of pseudoindex theory, they
obtained some sufficient conditions to guarantee the existence of multiple periodic solu-
tions.

In spite of so many papers on periodic solutions of delay differential equations, there
are a quite few researches on nonautonomous case (see for example [11]). The main goal of
this paper is to investigate the following nonautonomous system:

x′(t) = −f
(
t, x

(
t − π

2

))
. (1.4)

We assume that

(f1) there exists F ∈ C1([0, π/2]×�n ,�) such that f is the gradient of F with respect
to x, and

F(t, x) = F(t,−x), F
(
t +

π

2
, x

)
= F(t, x), ∀(t, x) ∈ � × �n , (1.5)

(f2) f(t, x) = B0(t)x + o(|x|) as |x| → 0 uniformly for t ∈ [0, π/2],

(f3) f(t, x) = B∞(t)x + o(|x|) as |x| → ∞ uniformly for t ∈ [0, π/2],

where B0, B∞ are n × n symmetric continuous π/2-periodic matrix functions.
Hypothesis (f3) is known as asymptotically linear condition at infinity. Hypothesis

(f2) is an asymptotically linear condition at zero, which implies that 0 is a trivial solution
of (1.4). We are interested in nontrivial periodic solutions of (1.4). Similar to [3], we
build a variational structure for (1.4) and convert the existence of periodic solutions to
that of critical points of variational functional. Since the asymptotically linear hypothesis
at infinity is given by a periodic loop of symmetric matrix, it will be more difficult to
deal with more than a constant matrix. However, we can prove the existence of multi-
ple periodic solutions by making use of a multiple critical points theorem of Benci (cf.
[12]).

The rest of this paper is organized as follows: in Section 2, we build the variational
functional and state some useful lemmas; in Section 3, the main results will be proved.
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2. Variational Tools

Denote S1 = �/(2π�). The spaceH = H1/2(S1,�n) has been introduced in [3]. The spaceH
can be equipped with inner product as follows:

〈
x, y

〉
= (a0, c0) +

∞∑
j=1

(
1 + j

)[(
aj , cj

)
+
(
bj , dj

)]
, (2.1)

where x = a0/
√
2π + 1/

√
π
∑∞

j=1(aj cos jt + bj sin jt), y = c0/
√
2π + 1/

√
π
∑∞

j=1(cj cos jt +
dj sin jt), a0, c0 ∈ �n , aj , cj , bj , dj ∈ �n , j ∈ �.

Set

E = {x ∈ H | x(t + π) = −x(t), ∀t ∈ �}. (2.2)

Then E is a closed subspace ofH . If x ∈ E, it has Fourier expansion

x(t) =
1√
π

∞∑
j=1

[
aj cos

(
2j − 1

)
t + bj sin

(
2j − 1

)
t
]
. (2.3)

Let x ∈ L2(S1,�n). If for every z ∈ C∞(S1,�n)

∫2π

0

(
x(t), z′(t)

)
dt = −

∫2π

0

(
y(t), z(t)

)
dt, (2.4)

then y is called a weak derivative of x, denoted by ẋ.
The variational functional defined onH , corresponding to (1.4), is

J(x) =
∫2π

0

[
1
2

(
x
(
t +

π

2

)
, ẋ(t)

)
− F(t, x(t))

]
dt. (2.5)

Define a linear bounded operator A : H → H by setting

〈
Ax, y

〉
=
∫2π

0

(
x
(
t +

π

2

)
, ẏ(t)

)
dt. (2.6)

It is easy to prove that E is an invariant subspace ofH with respect to A and A is self-adjoint
if it is restricted to E.

Lemma 2.1 (see [3]). The essential spectrum of the operator A restricted to E is just {2,−2}.

Define

ϕ(x) = −
∫2π

0
F(t, x(t))dt, ∀x ∈H. (2.7)
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Then J can be rewritten as

J(x) =
1
2
〈Ax, x〉 + ϕ(x), ∀x ∈H. (2.8)

Similar to the argument as in [3], we can prove the following two basic lemmas.

Lemma 2.2. Assume that f satisfies (f1)–(f3). Then J is continuous differentiable onH and

〈
J ′(x), h

〉
=
∫2π

0

[
1
2

(
ẋ
(
t − π

2

)
− ẋ

(
t +

π

2

)
, h(t)

)
− (

f(t, x(t)), h(t)
)]
dt, ∀h ∈ H. (2.9)

Moreover, ϕ′ : H → H∗ is a compact mapping defined as follows:

〈
ϕ′(x), h

〉
= −

∫ 2π

0

(
f(t, x(t)), h(t)

)
dt, ∀x, h ∈ H. (2.10)

Lemma 2.3. The existence of 2π-periodic solutions of (1.4) belonging to E is equivalent to the
existence of critical points of functional J restricted to E.

Lemma 2.3 implies that we can restrict our discussion on space E. At the end of this
section, we recall a useful embedding theorem.

Lemma 2.4 (see [13]). For every p ∈ [1,+∞), H is compactly embedded into the Banach space
Lp(S1,�n). In particular, there is an αp such that

‖x‖Lp ≤ αp‖x‖, ∀x ∈ H. (2.11)

Remark 2.5. Here and hereafter, αp (p ∈ [1,∞)) denotes the real number satisfying (2.11).

3. Main Results

Let B(t) be an n×n symmetric continuous π/2-periodicmatrix function. We define a bounded
self-adjoint linear operator B ∈ L(E) by extending the bilinear forms

〈
Bx, y

〉
=
∫2π

0

(
B(t)x(t), y(t)

)
dt, ∀x, y ∈ E. (3.1)

It is well known that B is compact (cf. [14]).
Denote by B0, B∞ the operators defined by (3.1), corresponding to B0(t), B∞(t), respec-

tively. Set

n0 = dim Ker(A − B0), n∞ = dim Ker (A − B∞),

Gi(t, x) = F(t, x) − 1
2
(Bi(t)x, x), ψi(x) =

∫2π

0
Gi(t, x)dt, i = 0,∞.

(3.2)
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Then the functional J defined by (2.5) can be rewritten as

J(x) =
1
2
〈(A − Bi)x, x〉 − ψi(x), ∀x ∈ E, i = 0,∞. (3.3)

Lemma 3.1. Suppose that f satisfies (f1)–(f3). Then

lim
‖x‖→ 0

∥∥ψ ′
0(x)

∥∥
‖x‖ = 0, lim

‖x‖→+∞

∥∥ψ ′
∞(x)

∥∥
‖x‖ = 0. (3.4)

The proof uses the same arguments of [5].
In order to prove our results, we need an abstract theorem by Benci [12].

Proposition 3.2. Let χ ∈ C1(E,�) satisfy the following:

(J1) χ(x) = 1/2〈Lx, x〉 + ω(x), where L is a bounded linear self-adjoint operator and ω′ is
compact, where ω′ denotes the Frechét derivative of ω;

(J2) every sequence {xj} such that χ(xj) → c < ϕ(0) and ‖χ′(xj)‖ → 0 as j → +∞ has a
convergent subsequence;

(J3) ω(x) = ω(−x), x ∈ E;
(J4) there are two closed subspaces of E, E+, and E−, and some constant c0, c∞, ρ with c0 < c∞ <

ω(0) and ρ > 0 such that

(a) χ(x) > c0 for x ∈ E+,
(b) χ(x) < c∞ < ω(0) for u ∈ E− ∩ Sρ(Sρ = {u ∈ E‖x‖ = ρ}).

Then the number of pairs of nontrivial critical points of χ is greater than or equal to dim(E+ ∩ E−) −
codim(E− + E+). Moreover, the corresponding critical values belong to [c0, c∞].

Definition 3.3. Let B1(t) and B2(t) be symmetric matrices function in �n , continuous and π/2-
periodic in t. A index I of B1(t) and B2(t) is defined as follows:

I(B1(t), B2(t)) = dim
(
M+(A − B1)

⋂
M−(A − B2)

)

− dim
[(
M−(A − B1) ⊕M0(A − B1)

)⋂ (
M+(A − B2) ⊕M0(A − B2)

)]
,

(3.5)

where Bi (i = 1, 2) are the operators, defined by (3.1), corresponding to Bi(t) (i = 1, 2) and
M+(A − Bi) (resp.,M−(A −Bi(t)),M0(A − Bi)) denotes the subspace of E on which A − Bi is
positive definite (resp., negative definite, null).

Lemma 3.4. If f satisfies (f1)–(f3), then J , defined by (2.8), satisfies (J1), (J3) and (J4).

Proof. Hypothesis (f1), (2.8), and Lemma 2.2 imply both (J1) and (J3). By definition of ψ0 and
Lemma 3.1, we have

ψ0(x) = −ϕ(0) + o
(
‖x‖2

)
, for ‖x‖ −→ 0. (3.6)
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Since B0 and B∞ are compact operators from E to E, it follows from Lemma 2.1 and a well-
known theorem (cf. [15]) that the essential spectrum of A − B0 and A − B∞ is {2,−2}. Thus 0
is either an isolated eigenvalue of finite multiplicity or it belongs to the resolvent. Hence, we
decompose E as follows:

E = M+(A − B0) ⊕M0(A − B0) ⊕M−(A − B0) = M+(A − B∞) ⊕M0(A − B∞) ⊕M−(A − B∞).
(3.7)

Setting E+ = M+(A − B∞), E− =M−(A − B0), there exists positive constant α, β such that

〈(A − B0)x, x〉 ≤ −α‖x‖2, ∀x ∈ E−, 〈(A − B∞)x, x〉 ≥ β‖x‖2, ∀x ∈ E+. (3.8)

It follows that, for any x ∈ E−, it is

J(x) ≤ −α
2
‖x‖2 + ϕ(0) − o

(
‖x‖2

)
, as ‖x‖ −→ 0. (3.9)

Then there exist constants ρ > 0 and γ > 0 such that

J(x) < −γ + ϕ(0), ∀x ∈ E− ∩ Sρ. (3.10)

Setting c∞ = −γ/2 + ϕ(0), (J4)(b) is satisfied.
By (f3), there exists R0 > 0 such that

G∞(t, x) ≤
β

4α22
|x|2, ∀|x| > R0. (3.11)

Since G∞(t, x) is continuous with respect to (t, x), denote byM = max0≤t≤π/2,|x|=R0{G∞(t, x)}.
ThenM is finite. Thus

∣∣ψ∞(x)
∣∣ ≤

∫2π

0
|G∞(t, x)|dt ≤

∫2π

0

[
β

4α22
|x|2 +M

]
dt ≤ β

4
‖x‖2 + 2πM. (3.12)

Then, for every x ∈ E+,

J(x) =
1
2
〈(A − B∞)x, x〉 − ψ∞(x) ≥

β

2
‖x‖2 − ∣∣ψ∞(x)

∣∣ ≥ β

4
‖x‖2 − 2πM. (3.13)

Thus J is bounded from below on E+. Setting

c0 = inf
x∈E+

J(x) −ω (3.14)

with ω > 0 such that c0 < c∞, then (J4)(a) is satisfied.



Journal of Applied Mathematics 7

Remark 3.5. Supposing that 0 /∈ σe(A − B∞), any bounded sequence has a convergent subse-
quence (cf. [12]).

Theorem 3.6. Suppose that f satisfies (f1)–(f3), and n0 = n∞ = 0, then (1.4) has at least |I(B∞, B0)|
pairs of nonconstant 2π−periodic solutions if |I(B∞, B0)| > 0.

Proof. Since n∞ = 0, dim M0(A − B∞) = 0. By Proposition 3.2 and Lemma 3.4, we only need
to check (J2). Let {xj} be a sequence such that

J ′
(
xj
) → 0, J

(
xj
) −→ c, (3.15)

where c ∈ �, c < ϕ(0). Suppose to the contrary that we can choose ‖xj‖ → +∞ as j → +∞.
Clearly, xj can be written as xj = x+j + x

−
j ∈ M+(A − B∞) ⊕M−(A − B∞). On one hand,

∣∣∣
〈
J ′
(
xj
)
, x+j − x−j

〉∣∣∣
∣∣〈xj , xj

〉∣∣ ≤
∥∥J ′(xj

)∥∥∥∥xj
∥∥

∥∥xj
∥∥2 , (3.16)

then we have

0 ≤ lim sup
j→+∞

∣∣∣
〈
J ′
(
xj
)
, x+j − x−j

〉∣∣∣
∣∣〈xj , xj

〉∣∣ ≤ lim sup
j→+∞

∥∥J ′(xj
)∥∥∥∥xj

∥∥
∥∥xj

∥∥2 = 0. (3.17)

Thus

lim sup
j→+∞

∣∣∣
〈
J ′
(
xj
)
, x+j − x−j

〉∣∣∣
∣∣〈xj , xj

〉∣∣ = 0. (3.18)

On the other hand,

〈
J ′
(
xj
)
, x+j − x−j

〉
=
〈
(A − B∞)xj , x+j − x−j

〉
−
〈
ψ ′
∞
(
t, xj

)
, x+j − x−j

〉
. (3.19)

Since

∣∣∣
〈
ψ ′
∞
(
xj
)
, x+j − x−j

〉∣∣∣
∣∣〈xj , xj

〉∣∣ ≤
∥∥ψ ′

∞
(
xj
)∥∥∥∥xj

∥∥
∥∥xj

∥∥2 =

∥∥ψ ′
∞
(
xj
)∥∥

∥∥xj
∥∥ , (3.20)

it follows by Lemma 3.1 that

lim
j→+∞

∣∣∣
〈
ψ ′
∞
(
xj
)
, x+j − x−j

〉∣∣∣
∣∣〈xj, xj

〉∣∣ = 0. (3.21)
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Using a similar discussion as (3.8), there exists β0 > 0 such that 〈(A − B∞)x, x〉 ≤ −β0‖x‖2 for
all x ∈M−(A − B∞). Choosing β′ = min(β, β0) > 0, we have

〈
(A − B∞)xj , x+j − x−j

〉
=
〈
(A − B∞)x+j , x

+
j

〉
−
〈
(A − B∞)x−j , x

−
j

〉
≥ β′‖x‖2. (3.22)

Thus,

lim inf
j→+∞

∣∣∣
〈
J ′
(
xj
)
, x+j − x−j

〉∣∣∣
∣∣〈xj, xj

〉∣∣ = lim inf
j→+∞

∣∣∣
〈
(A − B∞)xj , x+j − x−j

〉
−
〈
g ′
∞
(
xj
)
, x+j − x−j

〉∣∣∣
∣∣〈xj , xj

〉∣∣

= lim inf
j→+∞

∣∣∣
〈
(A − B∞)xj , x+j − x−j

〉∣∣∣
∣∣〈xj , xj

〉∣∣ ≥ β′ > 0

(3.23)

which contradicts (3.18). This proves (J2). By Lemma 3.1, (1.4) has at least dim (E+ ∩ E−) −
codim(E− + E+) = I(B∞, B0) pairs of nontrivial solutions if I(B∞, B0) > 0. Since the Sobolev
space E does not contain �n as its subspace, all nontrivial periodic solutions are nonconstant
periodic solutions.

If I(B∞, B0) < 0, then I(B0, B∞) = −I(B∞, B0) > 0. In this case, we replace J by −J
and let E+ = M−(A − B0) and E− = M+(A − B∞). It is easy to see that (J1)–(J4) are satisfied.
Similarly, we can show that (1.4) has at least I(B0, B∞) pairs of nonconstant solutions.

Remark 3.7. When Theorem 3.6 is applied to autonomous delay differential equations, we
obtain the same number of periodic solutions as that in [3].

Theorem 3.8. Suppose f satisfies (f1)–(f3) and

(f4) G′
∞(t, x) is bounded, where G

′
∞ denotes the derivative of G∞ with respect to x,

(f5)± G∞(t, x) → ±∞ as |x| → +∞, uniformly for t ∈ [0, π/2].

Then (1.4) has at least I(B∞, B0) pairs of nonconstant 2π-periodic solutions provided I(B∞, B0) > 0.

Proof. By Proposition 3.2 and Lemma 3.4, it suffices to check condition (J2). Let {xj} be a
sequence satisfying (3.15). Suppose to the contrary that {xj} is unbounded. Clearly, xj can be
written as xj = x+j + x0j + x

−
j ∈ M+(A − B∞) ⊕M0(A − B∞) ⊕M−(A − B∞). Since J ′(xj) → 0,

for j large enough, we get

∣∣∣∣∣
〈
(A − B∞)xj, x+j

〉
−
∫2π

0

(
G′

∞
(
t, xj

)
, x+j

)
dt

∣∣∣∣∣ ≤
∥∥∥x+j

∥∥∥. (3.24)

By (f4), there exists c1 > 0 such that |G′
∞(t, x)| ≤ c1. Then the above inequality and (3.8) imply

β
∥∥∥x+j

∥∥∥
2 ≤

∣∣∣
〈
(A − B∞)xj , x+j

〉∣∣∣ ≤
∥∥∥x+j

∥∥∥ + c1α2
√
2π

∥∥∥x+j
∥∥∥. (3.25)
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This gives a uniform bound for {x+j }. In the same manner, one gets a uniform bound for {x−j }.
Since {J(xj)} is convergent, it is bounded and there exist positive constants c2, c3, c4 such that

c2 ≤ J
(
xj
) ≤ −ψ∞

(
xj
)
+
1
2
∣∣〈(A − B∞)xj, xj

〉∣∣

≤ −ψ∞
(
x0j

)
+
(
ψ∞

(
x0j

)
− ψ∞

(
xj
))

+ c3

≤ −ψ∞
(
x0j

)
+ c1

∫2π

0

∣∣∣x0j − xj
∣∣∣dt + c3

≤ −ψ∞
(
x0j

)
+ c4.

(3.26)

Therefore, ψ∞(x0j ) is bounded from above. (f5)+ implies that ‖x0j ‖ is bounded. Otherwise,

since the kernel of A − B∞ is a finite dimensional space, thus ψ∞(x0j ) =
∫2π
0 G∞(t, x0j )dt → ∞

as j → ∞, which contradicts to (3.26).
If (f5)− holds, we replace (3.26) by

c2 ≥ J
(
xj
) ≥ −ψ∞

(
xj
) − ∣∣〈(A − B∞)xj , xj

〉∣∣. (3.27)

Arguing as above, we can get a contradiction and complete our proof.

Theorem 3.9. Suppose that f satisfies (f1)–(f3) and

(f6) there exist constants r > 0, p ∈ (1, 2), a1 > 0, and a2 > 0 such that

pG∞(t, x) ≥
(
x,G′

∞(t, x)
)
> 0 for |x| ≥ r, t ∈

[
0,
π

2

]
;

G∞(t, x) ≥ a1|x|p − a2, ∀x ∈ �n , t ∈
[
0,
π

2

]
.

(3.28)

Then (1.4) has at least I(B∞, B0) pairs of nonconstant 2π-periodic solutions provided I(B∞, B0) > 0.

Proof. Let {xj} be a sequence satisfying (3.15). We want to show that {xj} is a bounded
sequence in E. Decompose xj as xj = x+j +x

0
j +x

−
j ∈ M+(A−B∞)⊕M0(A−B∞)⊕M−(A−B∞).

Then

〈
J ′
(
xj
)
, x+j

〉
=
〈
(A − B∞)x+j , x

+
j

〉
−
〈
ψ ′
∞
(
xj
)
, x+j

〉
≥ β

∥∥∥x+j
∥∥∥
2 − ∥∥ψ ′

∞
(
xj
)∥∥ ·

∥∥∥x+j
∥∥∥. (3.29)

Combining the above inequality with (3.15) and Lemma 3.1, we have

∥∥∥x+j
∥∥∥

∥∥xj
∥∥ → 0, as j → ∞. (3.30)



10 Journal of Applied Mathematics

Similarly, we have

∥∥∥x−j
∥∥∥

∥∥xj
∥∥ −→ 0, as j −→ ∞. (3.31)

Then by (3.30) and (3.31), there exists a positive integer j0 such that for j ≥ j0
∥∥∥x0j

∥∥∥ ≥
∥∥∥x+j + x−j

∥∥∥. (3.32)

It follows that

∥∥xj
∥∥ =

∥∥∥x+j + x−j + x0j
∥∥∥ ≤

∥∥∥x+j + x−j
∥∥∥ +

∥∥∥x0j
∥∥∥ ≤ 2

∥∥∥x0j
∥∥∥. (3.33)

By (f6), there exist positive constantsM1,M2,M3,M4 such that for j large

M1 +
1
2
∥∥xj

∥∥ ≥ 1
2
〈
J ′
(
xj
)
, xj

〉 − J(xj
)
=
∫2π

0

[
G∞

(
t, xj

) − 1
2
(
G′

∞
(
t, xj

)
, xj

)]
dt

≥
(
1 − p

2

)∫2π

0
G∞

(
t, xj

)
dt −M2

≥ M3
∥∥xj

∥∥p
Lp

−M4.

(3.34)

Let q be such that p−1 + q−1 = 1. Since E ⊂ Lq(S1,�n), the embedding being continuous, the
dual space E∗ of E, contains Lp(S1,�n) with continuous embedding. Therefore, by (3.34)

M5
(
1 +

∥∥xj
∥∥) ≥ ∥∥xj

∥∥p
E∗ . (3.35)

Since ‖xj‖E∗ = sup‖w‖E≤1(xj,w)
L2 = sup‖w‖E≤1[(x

0
j , w

0)
L2
+ (x−j , w

−)
L2
+ (x+j , w

+)
L2
], taking w =

x0j /‖x0j ‖E, it follows that

∥∥xj
∥∥
E∗ ≥

1∥∥∥x0j
∥∥∥
E

∥∥∥x0j
∥∥∥
2

L2
. (3.36)

Owing to the fact that M0(A − B∞) is a finite dimensional subspace of E, there exist two
positive constants c1 and c2 such that

c1‖x0j ‖E ≤ ‖x0j ‖L2 ≤ c2‖x0j ‖E. (3.37)

Therefore by (3.35), (3.36), and (3.37),

M6
(
1 +

∥∥xj
∥∥) ≥

∥∥∥x0j
∥∥∥
p
. (3.38)
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Both (3.33) and (3.38) imply that there existsM8 > 0 such that

M7

(
1 +

∥∥∥x0j
∥∥∥
)
≥
∥∥∥x0j

∥∥∥
p

(3.39)

which yields a bound for ‖x0j ‖ and hence xj via (3.33). Thus (J2) holds.

Theorem 3.10. Suppose that f satisfies (f1)–(f3) and
(f7)± there exist positive constants c1, c2 > 0 such that

±[2G∞(t, x) −
(
G′

∞(t, x), x
)] ≥ c1|x| − c2 ∀x ∈ �n , t ∈

[
0,
π

2

]
. (3.40)

Then (1.4) has at least I(B∞, B0) pairs of nonconstant 2π-periodic solutions provided I(B∞, B0) > 0.

Proof. Let {xj} be a sequence satisfying (3.15). We want to prove that {xj} is bounded in
E. Suppose, to the contrary, {xj} is unbounded in E. Decompose xj as xj = x+j + x0j + x

−
j ∈

M+(A − B∞) ⊕M0(A − B∞) ⊕M−(A − B∞). Clearly, (3.30)–(3.33) still hold.
Assume that (f7)

+ holds. SinceM0(A − B∞) is a finite dimensional subspace of E, we
have

〈
J ′
(
xj
)
, xj

〉 − 2J
(
xj
)
=
∫2π

0

[
2G∞

(
t, xj

) − (
G′

∞
(
t, xj

)
, xj

)]
dt

≥ c1
∫2π

0

∣∣xj
∣∣dt − 2πc2

≥ c1
∫2π

0

∣∣∣x0j
∣∣∣dt − c1

∫2π

0

(∣∣∣x+j
∣∣∣ +

∣∣∣x−j
∣∣∣
)
dt − 2πc2

≥ c3
∥∥∥x0j

∥∥∥ − c4
(∥∥∥x+j

∥∥∥ +
∥∥∥x−j

∥∥∥ + 1
)
.

(3.41)

Combining the above inequality with (3.30), (3.31), we have

∥∥∥x0j
∥∥∥

∥∥xj
∥∥ −→ 0 as j −→ ∞. (3.42)

But this implies the following contradiction:

1 =

∥∥xj
∥∥

∥∥xj
∥∥ =

∥∥∥x0j
∥∥∥ +

∥∥∥x−j
∥∥∥ +

∥∥∥x+j
∥∥∥

∥∥xj
∥∥ −→ 0 as j −→ +∞, (3.43)

therefore, {xj}must be a bounded sequence.
If (f7)

− holds, using a similar argument, we can get a contradiction which completes
our proof.
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Theorem 3.11. Suppose that f satisfies (f1)–(f3) and

(f8)± there exist constants 1 ≤ γ < 2, 0 < δ < γ/2, and b1, b2, L > 0 such that

∣∣G′
∞(t, x)

∣∣ ≤ b1|x|δ, ±G∞(t, x) ≥ b2|x|γ , ∀|x| ≥ L, t ∈
[
0,
π

2

]
. (3.44)

Then (1.4) has at least I(B∞, B0) pairs of nonconstant 2π-periodic solutions provided I(B∞, B0) > 0.

Proof. Let {xj} be a sequence satisfying (3.15). Suppose, to the contrary, ‖xj‖ → +∞ as j →
+∞. Decompose xj as xj = x+j + x

0
j + x

−
j ∈ M+(A −B∞)⊕M0(A−B∞)⊕M−(A −B∞). First, we

show that for j large enough

∥∥∥x+j + x−j
∥∥∥ ≤ b3

∥∥∥x0j
∥∥∥
δ
+ η, (3.45)

where b3 > 0 and η > 0 are constants independent of j. Since |xj | ≥ L for sufficiently large j,
therefore, |G′

∞(t, xj)| ≤ b1|xj |δ, and we have

∣∣G′
∞
(
t, xj

)∣∣2 ≤ b21
∣∣xj

∣∣2δ + b4;

∣∣〈ψ ′
∞
(
xj
)
, y

〉∣∣ ≤
∫2π

0

∣∣G′
∞
(
t, xj

)∣∣∣∣y∣∣dt ≤
(∫2π

0

∣∣G′
∞
(
t, xj

)∣∣2dt
)1/2∥∥y∥∥

L2

≤ α2
[
b21(2π)

1−δα2δ2
∥∥xj

∥∥2δ + 2πb4
]1/2∥∥y∥∥, for any y ∈ E.

(3.46)

This implies that for j large enough

∥∥ψ ′
∞
(
xj
)∥∥

∥∥xj
∥∥δ ≤ b5. (3.47)

By (3.15), (3.22), (3.33) and (3.47), for j large enough, we have

∣∣∣
〈
J ′
(
xj
)
, x+j − x−j

〉∣∣∣ =
∣∣∣
〈
(A − B∞)xj, x+j − x−j

〉
−
〈
ψ ′
∞
(
xj
)
, x+j − x−j

〉∣∣∣

≥ β′
∥∥∥x+j + x−j

∥∥∥
2
− b5

∥∥xj
∥∥δ

∥∥∥x+j − x−j
∥∥∥

≥ β′
∥∥∥x+j + x−j

∥∥∥
2 − b52δ

∥∥∥x0j
∥∥∥
δ∥∥∥x+j − x−j

∥∥∥.

(3.48)

Therefore, for sufficiently large j,

∥∥J ′(xj
)∥∥ ≥ β′

∥∥∥x+j + x−j
∥∥∥ − b52δ

∥∥∥x0j
∥∥∥
δ
. (3.49)

This implies that (3.45) holds, where b3 = b52δ/β′.
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By (3.15) and (3.45), for j large enough, there exist positive constants b6, b7, b′7, b8 such
that

ψ∞
(
xj
)
=
1
2

〈
(A − B∞)

(
x+j + x

−
j

)
, x+j + x

−
j

〉
− J(xj

)

≤ b6
∥∥∥x+j + x−j

∥∥∥
2
+ b′7 ≤ b8

∥∥∥x0j
∥∥∥
2δ

+ b7.

(3.50)

Now, we claim that there exists b9 > 0 such that, for j large enough,

∫2π

0

∣∣xj
∣∣γdt ≥ b9

∥∥∥x0j
∥∥∥
γ
, (3.51)

In fact, for γ > 1, by (3.45) and the fact that δ < 1, we have

∫2π

0

(
xj , x

0
j

)
dt ≤

(∫2π

0

∣∣xj
∣∣γdt

)1/γ(∫2π

0

∣∣∣x0j
∣∣∣
γ/γ−1

dt

) γ−1/γ

≤ b10
(∫2π

0

∣∣xj
∣∣γdt

)1/γ∥∥∥x0j
∥∥∥;

∫2π

0

(
xj , x

0
j

)
dt =

∫2π

0

(
x0j , x

0
j

)
dt +

∫2π

0

(
x+j + x

−
j , x

0
j

)
dt

≥
∫2π

0

∣∣∣x0j
∣∣∣
2
dt −

∥∥∥x+j + x−j
∥∥∥
L2

∥∥∥x0j
∥∥∥
L2

≥ b11
∥∥∥x0j

∥∥∥
2 − b3α22

∥∥∥x0j
∥∥∥
1+δ − α22η

∥∥∥x0j
∥∥∥ ≥ b12

∥∥∥x0j
∥∥∥
2
,

(3.52)

for j large enough. This implies (3.51) for γ > 1.
For γ = 1, since M0(A − B∞) is a finite dimensional subspace of E, we know that for

any j,

b13
∥∥∥x0j

∥∥∥ ≤
∥∥∥x0j

∥∥∥
∞
≤ b14

∥∥∥x0j
∥∥∥. (3.53)

where b13, b14 > 0 are constants independent of j. Now we have

∫2π

0

(
xj , x

0
j

)
dt ≤

∫2π

0

∣∣xj
∣∣
∣∣∣x0j

∣∣∣dt ≤
(∫2π

0

∣∣xj
∣∣dt

)∥∥∥x0j
∥∥∥
∞
≤ b15

∥∥∥x0j
∥∥∥
(∫2π

0

∣∣xj
∣∣dt

)
. (3.54)

Combining (3.52) with (3.54), we get (3.51) for γ = 1.
On the other hand, by (f8)+

ψ∞
(
xj
)
=
∫2π

0
G∞

(
t, xj

)
dt ≥

∫2π

0
b2
∣∣xj

∣∣γdt − 2πb16 ≥ b17
∥∥∥x0j

∥∥∥
γ
− 2πb16. (3.55)
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Since that γ > 2δ, we get a contradiction from (3.50) and (3.55). Therefore, {xj} is bound-
ed.

If (f8)− holds, using a similar argument as above, we get a contradiction and completes
our proof.

Theorem 3.12. Suppose f satisfies (f1)–(f3) and

(f9)± there exist positive constants 1 ≤ γ < 2, 0 < δ < γ/2, and b1, b2, L such that

∣∣G′
∞(t, x)

∣∣ ≤ b1|x|δ,±
〈
G′

∞(t, x), x
〉 ≥ b2|x|γ , ∀|x| ≥ L, t ∈

[
0,
π

2

]
. (3.56)

Then (1.4) has at least I(B∞, B0) pairs of nonconstant 2π-periodic solutions provided I(B∞, B0) > 0.

Proof. If (f9)+ holds, for j large enough, by (3.45) and (3.51), we have

∫2π

0

(
G′

∞
(
t, xj

)
, xj

)
dt ≤

∣∣∣−〈J ′(xj
)
, xj

〉
+
〈
(A − B∞)

(
x+j + x

−
j

)
,
(
x+j + x

−
j

)〉∣∣∣

≤ ∥∥xj
∥∥ +M1

∥∥∥x+j + x−j
∥∥∥
2
≤
∥∥∥x0j

∥∥∥ +M2

∥∥∥x0j
∥∥∥
δ
+M3

∥∥∥x0j
∥∥∥
2δ

+M4;

∫2π

0

(
G′

∞
(
t, xj

)
, xj

)
dt ≥ b2

∫2π

0

∣∣xj
∣∣γdt −M5 ≥M6

∥∥∥x0j
∥∥∥
γ
−M5.

(3.57)

Since γ > 2δ, {x0j } is bounded, so is {xj}. Therefore, J satisfies (J2).
In the case that (f9)

− holds, using a similar argument, we can verify (J2). This com-
pletes the proof.

Example 3.13. Consider the following nonautonomous delay differential equation

x′(t) = −Mx
(
t − π

2

)a + b(t)|x(t − (π/2))|5/2 + c|x(t − (π/2))|4
1 + |x(t − (π/2))|4

, (3.58)

whereM is a 4 × 4 matrix, a, c are constants, b ∈ C([0, π/2] ,�+).

Case 1. Let A = diag(0.3, 2.7, 7.3, 9.3), a = 1, c = 2, and b arbitrary. Computing directly,
we have I(B0(t), B∞(t)) = 10. Applying Theorem 3.6, equation (3.58) has at least 10 pairs of
2π-periodic solutions.

Case 2. Let A = diag(0.3, 2.7, 5, 10.5), a = 2, c = 1, and b arbitrary. Then by Theorem 3.8,
(3.58) has at least 8 pairs of nonconstant 2π-periodic solutions.
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