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The nonlinear parabolic equations describing motion of incompressible media are inves-
tigated. The rheological equations of most general type are considered. The deviator of
the stress tensor is expressed as a nonlinear continuous positive definite operator applied
to the rate of strain tensor. The global-in-time estimate of solution of initial boundary
value problem is obtained. This estimate is valid for systems of equations of any non-
Newtonian fluid. Solvability of initial boundary value problems for such equations is
proved under some additional hypothesis. The application of this theory makes it possi-
ble to prove the existence of global-in-time solutions of two-dimensional initial boundary
value problems for generalized linear viscoelastic liquids, that is, for liquids with linear
integral rheological equation, and for third-grade liquids.

1. Introduction

In the paper, we consider rheological equations of general type. We have got the global-in-
time estimate of solutions which is true for equations of motion of any non-Newtonian
liquid in two-dimensional case. The additional condition imposed on the deviator of
the stress tensor permits to obtain the weak solution of periodic initial boundary value
problem and of the Cauchy problem. This condition is fulfilled for any linear viscoelastic
fluid. Equations of motion of these fluids are approximations of the complete equations
of motion of viscoelastic fluids. These equations were investigated in the monographs of
Tschoegl [14] and of Golden et al. [6] and they have been of great interest in the recent
years. We may point out the papers of Matei et al. [9], Fabrizio et al. [4], Gentili [5].

The theoretical possibility of application of linear viscoelastic equations is proved in
the monography of Bird et al. [2]. The experimental verification of these equations is
presented in many monographs. Among them I want to mention the monographs of
Creus [3], Goodwin et al. [7] and Schwarzl [13].

Creus shows that the concrete structure is described by linear viscoelastic model.
Goodwin and Hughes [7] presented many diagrams of correspondence of experimen-
tal data and of data calculated with the help of linear viscoelastic models for different
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materials (e.g., for polystyrene latex, polybutadiene, etc.). Schwarzl [13] presents the di-
agrams containing intervals of applications of linear viscoelastic models and the critical
values for which the linearity is lost.

The solvability of initial boundary value problems for some special linear viscoelastic
fluids was investigated by Oskolkov [10, 11, 12]. He proved the existence of global classi-
cal solutions of initial boundary value problems for linear viscoelastic Oldroyd equations
in two-dimensional case and for linear viscoelastic Kelvin-Voight equations in three-
dimensional case. He did not consider linear viscoelastic equations of general type.

The motion of incompressible media is described by the system of equations

∂

∂t
v+ vk

∂v

∂xk
+ grad p = divσ + f , divv = 0, (1.1)

where σ = (σik) is the deviator of the stress tensor, trσ = 0 (by trσ we denote the trace
of the tensor σ). The type of the fluid is specified by the so-called rheological equa-
tion responding to state equation between σ and the tensor of velocity deformations
D = (1/2)(vixk + vkxi). This relation is called the rheological equation or the state equa-
tion. The simplest example of the state equation is the equation σ = 0 which describes an
ideal incompressible fluid. If we have the state equation of the type

σ = 2µD, (1.2)

we have a Newtonian fluid, and the motion is described by the Navier-Stokes equations.
In the present paper, we research different types of non-Newtonian fluids with mem-

ory. In the first part of the paper, we consider the rheological equation of the type

σ = 2µD+ KD, (1.3)

where the operator K is a continuous, positive-definite operator with some additional
properties specified below. We consider the two-dimensional initial boundary value prob-
lem with nonslip boundary condition and prove the existence of a global strong solution.
The difficulty consists of the fact that the term connected with the memory is nonlocal in
time. Therefore, we can not use the estimates on the layers Ω. All the obtained estimates
are new.

It is shown that the equations of motion of general linear viscoelastic fluids with rhe-
ological equation of the type

σ = 2µD+
∫ t

0
K(t− τ)D(x,τ)dτ (1.4)

belong to this class. As a corollary, we apply the obtained results to the equations of mo-
tion of linear viscoelastic Oldroyd fluids. These are the equations which are obtained from
the equations of motion of the Oldroyd fluids after substitution of the material deriva-
tives by the ordinary partial derivatives. This substitution may be done in the case of small
displacement gradients, which often occurs in the practice (see [7, 13]).

Moreover, the results of this section permit to confirm the solvability of initial bound-
ary value problems for equations of motion of third-grade fluids. Flows of these fluids are
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described by the rheological equations of the type

σ = 2µD+ νD3. (1.5)

If µ and ν are positive constants, then the operator in the right-hand side of (1.5) satisfies
all the conditions imposed on the operator K.

In the second part of the paper, we consider three-dimensional flows governed by the
rheological equation

σ = 2µ1D+ 2KD+ 2µ
∂D

∂t
(1.6)

with continuous, positive-definite operator K. For this class of fluids, we investigate an
initial boundary value problem with nonslip boundary condition. The existence of a
strong solution is proved. Then we show that equations of motion of the linear viscoelas-
tic Kelvin-Voight fluids belong to this class. So the existence of a strong global solution
for three-dimensional initial boundary value problems for the linear viscoelastic Kelvin-
Voight equations is proved.

In the third section, we investigate the most general rheological equation

σ =KD, (1.7)

where the operator K is continuous and positive-definite. This equations correspond to
arbitrary non-Newtonian (or Newtonian) fluid. We obtain the estimate of the solution
of periodic initial boundary value problem in two-dimensional case. The requirement of
positive definiteness makes a physical sense because the corresponding quadratic form is
equal to

−(divσ ,v)2,Ω =
∫
Ω
σ :∇v =

∫
Ω
σ :D, (1.8)

which means that dissipation of energy is positive (see [1, Chapters 2–3]).
The two-dimensional Cauchy problem is investigated for these equations. We prove

global solvability of it in the class of weak solutions under some additional hypothesis.
Then we show that the equations of flows of general linear viscoelastic fluids, that is,
flows generated by the linear rheological equations of general type

σ =
∫ t

0
K(t− τ)D(x,τ)dτ, (1.9)

belong to this class of liquids, and thus we obtain the solvability theorem for the Cauchy
problem for fluids of these types. As a corollary of these existence theorems, we prove
the global-in-time existence of a weak solution in two-dimensional case for a system of
equations of linear viscoelastic Maxwell fluids.
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2. Notation

In this section, we state preliminary mathematical notation. The symbol σ : σ ′ is used for
the summation

σ : σ ′ = tr(σσ ′)=
n∑

i,k=1

σikσ
′
ki. (2.1)

We write vt for a partial derivative ∂v/∂t, and we denote ∂v/∂xk by vxk . The norm in the

space Wl
2(Ω) is denoted by ‖u‖l2,Ω. Hilbert space

0
Wl

2 is the closure of the set
0
C∞ in the

norm Wl
2, where

0
C∞ is the set of infinitely differentiable functions with finite support.

We write ‖u‖2,∞ for the norm in the space L2,∞:

‖u‖2,∞ = sup
t

∥∥u(x, t)
∥∥

2,Ω. (2.2)

The norm ‖u‖2,1 in the space L2,1 is defined as follows:

‖u‖2,1 =
∫ t

0

∥∥u(x, t)
∥∥

2,Ωdt. (2.3)

By ‖ux‖2,Ω we mean

∥∥ux∥∥2
2,Ω =

∫
Ω

∑
k

u2
xk (x)dx, (2.4)

and (ux,vx)2,Ω is the corresponding scalar product

(
ux,vx

)
2,Ω =

∫
Ω

∑
k

uxk (x)vxk (x)dx. (2.5)

Scalar product in the space L2(Ω) is denoted by (u,v)2,Ω,

(u,v)2,Ω =
∫
Ω
u(x)v(x)dx. (2.6)

The notation L2, W1
2 is used for the spaces of vector functions or tensors with components

from the spaces L2 or W1
2 correspondingly. The space of Lipschitz continuous functions,

that is, the space of functions with the finite norm

‖u‖C0,1(Ω) = sup
x,y∈Ω, x �=y

∣∣ f (x)− f (y)
∣∣

|x− y| (2.7)

is denoted by C0,1. We use the notation J(Ω) for the set of infinitely differentiable
solenoidal vector functions with finite support

J(Ω)=
{
u∈

0
C∞(Ω) | divu= 0

}
. (2.8)
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The closure of this set in the L2-norm is denoted by J0(Ω), and the closure in the W1
2 -

norm is denoted by H(Ω).
The subspace of all solenoidal fields in the space W1

2(Ω) which are periodic with re-
spect to xk is denoted by Ĵ1

2. The closure of this space in the L2(Ω)-norm is denoted by
Ĵ0

2(Ω).
In the paper, we use some well-known inequalities. For the sake of convenience, we list

them here.

(1) The Young inequality,

ab≤ 1
λ
ελaλ +

1
λ′
ε−λ

′
bλ

′
, (2.9)

where a, b, ε are arbitrary positive numbers, λ and λ′ are more than unit, and
(1/λ) + (1/λ′)= 1.

(2) Inequalities for the norm ‖u‖4,Ω (Ladyzhenskaya [8, Chapter 1]).

For every function u∈
0
W1

2(Ω), Ω⊂R2, it holds that

‖u‖4
4,Ω ≤ 2‖u‖2

2,Ω

∥∥ux∥∥2
2,Ω, (2.10)

and for every function u(x)∈
0
W1

2(Ω), Ω⊂R3, it holds that

‖u‖4
4,Ω ≤

(
4
3

)3/2

‖u‖2,Ω
∥∥ux∥∥3

2,Ω. (2.11)

(3) The Gronwall lemma.
Let a nonnegative absolutely continuous function y(t) satisfy the inequality

dy

dt
≤ c1(t)y(t) + c2(t) (2.12)

for a.e. t ∈ [0,T], where c1,c2 ∈ L1[0,T] are nonnegative. Then,

y(t)≤ exp
(∫ t

0
c1(τ)dτ

)
·
[
y(0) +

∫ t
0
c2(τ)dτ

]
. (2.13)

3. Generalized equations of motion of viscous fluids

3.1. Statement of the problem. We consider the following system of equations:

∂v

∂t
+ vk

∂v

∂xk
−µ∆v−div(KD) + grad p = f , divv = 0. (3.1)

The system is studied in a bounded domain Ω⊂R2, QT =Ω× [0,T), T ∈ (0,∞], v =
(v1,v2) :QT →R2 is a velocity field, p :QT →R is a pressure, and f :Q→R2 is the field of
external forces. The boundary ∂Ω is supposed to satisfy some smoothness condition. This
condition should be enough to provide the embedding theorems. It is sufficient to assume
that ∂Ω is Lipschitz continuous. Let the operator K : L2(QT)→ L2(QT) be continuous and
satisfy the following conditions:
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(1) K is bounded, that is,

‖KD‖2,QT ≤ ck‖D‖2,QT . (3.2)

(2) K is positive-definite in the following sense:∫
QT

(
(KD) :D

)≥ 0. (3.3)

(3) the operator (∂/∂t)◦K is bounded in the space L2(QT), that is,∥∥∥∥ ∂∂t (KD)
∥∥∥∥

2,QT

≤ c1‖D‖2,QT . (3.4)

We consider the initial boundary value problem

v|t=0 = v0(x), v|∂QT = 0. (3.5)

By V(QT) we denote the space of vector functions v equipped with the norm

[v]QT = sup
0≤t≤T

∥∥v(x, t)
∥∥

2,Ω +
∥∥vx∥∥2,QT

. (3.6)

We introduce the notion of generalized solution of the problem (3.1)–(3.5); the function
v ∈V(QT) which satisfies the integral identity∫

QT

(− vφt − vkvφxk +µvxφx + (KD)∇φ)dxdt+
∫
Ω
vφ|t=Tdx−

∫
Ω
v0φ|t=0dx

=
∫
QT

f φdxdt
(3.7)

for any φ ∈ 0
W1,1

2 ∩ J(QT).
To verify the correctness of the definition, it is necessary to prove the finiteness of the

integral
∫
QT

(KD)∇φ,∣∣∣∣∫
QT

(KD)∇φ
∣∣∣∣≤ ‖KD‖2,QT

∥∥φx∥∥2,QT
≤ ck

∥∥vx∥∥2,QT

∥∥φx∥∥2,QT
. (3.8)

3.2. A priori estimates. In order to obtain some a priori estimates for solutions, we mul-
tiply the system by v and integrate over Ω. After integrating by parts, we arrive at the
identity

1
2
d

dt
‖v‖2

2,Ω +µ
∥∥vx∥∥2

2,Ω +
∫
Ω

(
(KD) :D

)= ∫
Ω
f v. (3.9)

Integration with respect to t on [0, t] yields

1
2

(∥∥v(t)
∥∥2

2,Ω−
∥∥v(0)

∥∥2
2,Ω

)
+µ

∫ t
0

∥∥vx∥∥2
2,Ω +

∫
QT

(
(KD) :D

)= ∫
Qt

f v. (3.10)
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By the nonnegativity of terms (3.3), the following estimate holds:

∥∥v(t)
∥∥2

2,Ω ≤
∥∥v(0)

∥∥2
2,Ω + 2

∫ t
0

∣∣∣∣∫
Ω
f v
∣∣∣∣,

∥∥v(t)
∥∥2

2,Ω ≤
∥∥v(0)

∥∥2
2,Ω + 2

∫ t
0
‖ f ‖2,Ω‖v‖2,Ω,

∥∥v(t)
∥∥2

2,Ω ≤
∥∥v(0)

∥∥2
2,Ω +‖v‖2,∞

∫ t
0
‖ f ‖2,Ω.

(3.11)

After maximization of the left-hand side, we obtain the inequality

‖v‖2
2,∞ ≤

∥∥v(0)
∥∥2

2,Ω + 2‖v‖2,∞
∫ t

0
‖ f ‖2,Ω. (3.12)

Solving this quadratic inequality, we get an estimate for the norm of v:

‖v‖2,∞ ≤
∫ t

0
‖ f ‖2,Ω +

√√√(∫ t
0
‖ f ‖2,Ω

)2

+
∥∥v(0)

∥∥2
2,Ω := c2(t). (3.13)

Moreover, (3.10) leads to the estimate

1
2

(∥∥v(t)
∥∥2

2,Ω−
∥∥v(0)

∥∥2
2,Ω

)
+µ

∫ t
0

∥∥vx∥∥2
2,Ω ≤

∫ t
0

∣∣∣∣∫
Ω
f v
∣∣∣∣. (3.14)

Consequently,

∥∥v(t)
∥∥2

2,Ω + 2µ
∫ t

0

∥∥vx∥∥2
2,Ω ≤ 2

∫ t
0

∣∣( f ,v)Ω
∣∣+

∥∥v(0)
∥∥2

2,Ω

≤ ∥∥v(0)
∥∥2

2,Ω + 2
∫ t

0
‖ f ‖2,Ω‖v‖2,Ω,

∥∥v(t)
∥∥2

2,Ω + 2µ
∫ t

0

∥∥vx∥∥2
2,Ω ≤

∥∥v(0)
∥∥2

2,Ω + 2‖v‖2,∞
∫ t

0
‖ f ‖2,Ω

≤ ∥∥v(0)
∥∥2

2,Ω + 2‖ f ‖2,1

(
‖ f ‖2,1 +

√
‖ f ‖2

2,1 +
∥∥v(0)

∥∥2
2,Ω

)
:= c3(t).

(3.15)

Now we differentiate the first equation of system (3.1) with respect to t, multiply by vt,
and integrate over Ω. Integration by parts yields

1
2
d

dt

∥∥vt∥∥2
2,Ω +µ

∥∥vxt∥∥2
2,Ω−

∫
Ω

∂

∂t
(KD)∇vt +

∫
Ω
vktvxk vt =

(
ft,vt

)
. (3.16)

By the Cauchy inequality, we have∣∣∣∣∫
Ω
vktvxk vt

∣∣∣∣≤ ∥∥vx∥∥2,Ω ·
∥∥vt∥∥2

4,Ω. (3.17)
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The terms in the right-hand side may be estimated with the help of (2.10) in two-
dimensional case. ∣∣∣∣∫

Ω
vktvxk vt

∣∣∣∣≤√2
∥∥vx∥∥2,Ω ·

∥∥vt∥∥2,Ω ·
∥∥vxt∥∥2,Ω. (3.18)

By virtue of the Young inequality, it holds that∣∣∣∣∫
Ω
vktvxk vt

∣∣∣∣≤√2
(
κ2
∥∥vxt∥∥2

2,Ω + cκ2

∥∥vx∥∥2
2,Ω

∥∥vt∥∥2
2,Ω

)
, (3.19)

where cκ2 = (1/4)κ−1
2 , κ2 is a positive number which will be chosen later.

Due to the Young inequality, the other terms of (3.16) are estimated as follows:

∣∣( ft,vt)2,Ω

∣∣≤ ∥∥ ft∥∥2,Ω

∥∥vt∥∥2,Ω ≤
1
2

∥∥ ft∥∥2,Ω +
1
2

∥∥ ft∥∥2,Ω

∥∥vt∥∥2
2,Ω,∣∣∣∣∫

Ω

∂

∂t
(KD)∇vt

∣∣∣∣≤ ∥∥∥∥ ∂∂tKD
∥∥∥∥

2,Ω

∥∥vxt∥∥2,Ω ≤ κ1
∥∥vxt∥∥2

2,Ω + cκ1

∥∥∥∥ ∂∂t (KD)
∥∥∥∥2

2,Ω
,

(3.20)

where cκ1 = (1/4)κ−1
1 .

We set
√

2κ2 = µ/4 and κ1 = µ/4. Then we get

1
2
d

dt

∥∥vt∥∥2
2,Ω +µ

∥∥vxt∥∥2
2,Ω ≤

(
1
2

∥∥ ft∥∥2,Ω +
1
2

∥∥ ft∥∥2,Ω

∥∥vt∥∥2
2,Ω

)
+
(
µ

4

∥∥vxt∥∥2
2,Ω +

2
µ

∥∥vx∥∥2
2,Ω

∥∥vt∥∥2
2,Ω

)

+
(
µ

4

∥∥vxt∥∥2
2,Ω +

1
µ

∥∥∥∥ ∂∂tKD
∥∥∥∥2

2,Ω

)
.

(3.21)

Consequently,

1
2
d

dt

∥∥vt∥∥2
2,Ω ≤

1
2

∥∥ ft∥∥2,Ω +
1
2

∥∥ ft∥∥2,Ω

∥∥vt∥∥2
2,Ω +

2
µ

∥∥vx∥∥2
2,Ω

∥∥vt∥∥2
2,Ω +

1
µ

∥∥∥∥ ∂∂t (KD)
∥∥∥∥2

2,Ω
. (3.22)

By the Gronwall lemma (2.13),

∥∥vt∥∥2
2,Ω ≤ exp

(∫ t
0

(∥∥ ft∥∥2,Ω +
4
µ

∥∥vx∥∥2
2,Ω

)
dτ
)

·
[∥∥vt(0)

∥∥2
2,Ω +

∫ t
0

(∥∥ ft∥∥2,Ω +
1
µ

∥∥∥∥ ∂∂tKD
∥∥∥∥2

2,Ω

)
dτ

]
.

(3.23)

Since
∫ t

0 ‖(∂/∂t)KD‖2
2,Ω ≤ c2

1‖vx‖2
2,QT

(3.4) and 2µ‖vx‖2
2,QT

≤ c3 (3.15), the following esti-
mate is true for norm ‖vt‖2

2,Ω:

∥∥vt∥∥2
2,Ω ≤ exp

((∫ t
0

∥∥ ft∥∥2,Ω

)
+

2
µ2
c3(t)

)
·
[∥∥vt(0)

∥∥2
2,Ω +

(∫ t
0

∥∥ ft∥∥2,Ω

)
+

1
2µ2

c2
1c3

]
:= c4(t).

(3.24)
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Moreover, by inequality (3.21), one can estimate
∫ t

0 ‖vxt‖2
2,Ω. Indeed, by integrating (3.21)

with respect to t on [0, t] we obtain

∥∥vt(t)∥∥2
2,Ω +µ

∫ t
0

∥∥vxt∥∥2
2,Ω ≤

∥∥vt(0)
∥∥2

2,Ω

+
∫ t

0

∥∥ ft∥∥2,Ω +
(∫ t

0

∥∥ ft∥∥2,Ω

)∥∥vt∥∥2
2,∞

+
4
µ

∥∥vt∥∥2
2,∞

∫ t
0

∥∥vx∥∥2
2,Ω +

2
µ

∫ t
0

∥∥∥∥ ∂∂tKD
∥∥∥∥2

2,Ω
dτ,

∥∥vt(t)∥∥2
2,Ω

+µ
∫ t

0

∥∥vxt∥∥2
2,Ω ≤

∥∥vt(0)
∥∥2

2,Ω + c4(t)
∫ t

0

∥∥ ft∥∥2,Ω

+
∫ t

0

∥∥ ft∥∥2,Ω +
2
µ2
c3(t)c4(t) +

1
µ2
c2

1c3 = c5(t).

(3.25)

3.3. Existence of solutions. The estimates (3.15), (3.24), and (3.25) obtained in Section
3.2 can be used for the proof of the existence theorems for problem (3.1)–(3.5).

Theorem 3.1. Let Ω be an arbitrary bounded domain in R2, ∂Ω∈ C0,1,

f , ft ∈ L2,1
(
QT
)
, v0 ∈W2

2(Ω)∩ J0(Ω), 0 < T ≤∞. (3.26)

Let the operator K satisfy conditions (3.2)–(3.4). Then problem (3.1)–(3.5) has a generalized
solution

v ∈ L∞
(
0,T ;J0(Ω)

)
, vt ∈ L∞

(
0,T ;J0(Ω)

)
. (3.27)

Moreover, vx ∈ L2(QT) and vxt ∈ L2(QT), and the following estimates hold:

2µ
∫ t

0

∥∥vx∥∥2
2,Ω +

∥∥vx∥∥2
2,∞ ≤ c3

(
‖ f ‖2,1;

∥∥v(0)
∥∥

2,Ω

)
,

µ
∫ t

0

∥∥vxt∥∥2
2,Ω +

∥∥vt∥∥2
2,Ω ≤ c5

(∥∥ ft∥∥2,1;
∥∥v(0)

∥∥
2,Ω

)
,

(3.28)

furthermore, c3(t), c5(t) tend to some constants c3,c5 <∞ for t→∞.

The corollary of this theorem is the existence of smooth global-in-time solution for
equations of motion of general linear viscoelastic fluids with rheological equation of the
type (1.4) in the case when the inverse Fourier transform of the functionK is positive. The
other corollary consists of existence of smooth global-in-time solution of initial boundary
value problem for third-grade fluids governed by the rheological equation of the type
(1.5).

Proof. To prove this theorem we can use the Galerkin method. Let {ϕk}, k = 1,2, . . . , be a
complete system of functions in W2

2(Ω)∩H(Ω), which is orthonormal in L2(Ω).
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Then for every v0 ∈W2
2(Ω)∩H(Ω), there is a sequence of functions

v0
(n)(x)=

n∑
k=1

c0
knϕ

k(x), (3.29)

such that ∥∥v0
(n)(x)− v0

∥∥
W2

2 (Ω) −→ 0. (3.30)

An approximate solution of problem (3.1)–(3.5) can be represented in the form

vn(x, t)=
n∑
k=1

ckn(t)ϕk(x), n= 1,2, . . . , (3.31)

where the functions ckn satisfy the following system of integral identities:

(
vnt ,ϕk

)
+µ
(
vnx ,ϕkx

)− (vni vn,ϕkxi
)

+
(

K∇vn,∇ϕk)= ( f ,ϕk
)
, (3.32)

and the initial conditions:

ckn|t=0 = c0
kn, k = 1, . . . ,n. (3.33)

These identities form the system of ordinary differential equations with respect to the
functions cnk,

dckn
dt

+µ
n∑
i=1

ϕkicin(t) +
n∑

i, j=1

ϕki jcin(t)cjn(t) +
n∑
i=1

(
K
(∇ϕi(x)cin(t)

)
,∇ϕk)= fk(t), (3.34)

where ϕki, ϕki j are the constants

ϕki =
(
ϕix,ϕkx

)
2,Ω

, ϕki j =
n∑
l=1

∫
Ω
ϕ
j
l ϕ

iϕkxl , fk =
(
f ,ϕk

)
2,Ω. (3.35)

System (3.34) is a system of ordinary differential equations in the normal form and may
be solved, for instance, by the method of Picard iterations.

To prove the theorem, we show that the approximations vn satisfy estimates (3.15),
(3.25). Indeed vn satisfy the integral identities (3.9) and (3.16). Identity (3.16) can be
obtained in the following way: identities (3.32) are differentiated with respect to t, then
multiplied by (d/dt)ckn, and summarized with respect to k ∈ {1, . . . ,n}.

Estimates (3.15), (3.25) and the theorem of weak compactness of bounded sets in
Hilbert spaces permit to choose a convergent subsequence {vnk} from the sequence vn.
The functions vnk , vnkx , vnkt , vnkxt converge to v, vx, vt, vxt, respectively, in the norm L2(QT).

To prove the solvability of the problem, it is necessary to verify that the function v
satisfies the integral identity (3.7). This follows from the possibility of the limit passage
in identities (3.32). �
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3.4. Equations of motion of the Oldroyd fluids. We now prove that the linear viscoelas-
tic Oldroyd flow of order L= 1,2, . . ., in a bounded two-dimensional domain Ω is a flow
of considered type. This flow is described by the system of equations

∂v

∂t
+ vk

∂v

∂xk
+ grad p = divσ + f , divv = 0, (3.36)

where σ is the deviator of the stress tensor. For fluids of Oldroyd type, this tensor is
connected with the tensor of velocity deformations by the relation(

1 +
L∑
l=1

λl
∂l

∂tl

)
σ = 2ν

(
1 +

M∑
m=1

κmν−1 ∂
m

∂tm

)
D. (3.37)

Here λl > 0 are the relaxation times, and κm > 0 are the retardation times, and L=M.
We apply the Laplace transform � to both parts of (3.37)

�σ = σ̂(x, p)=
∫∞

0
e−ptσ(x, t)dt. (3.38)

Consider polynomial Q(p)= 1 +
∑L

l=1 λl p
l. Then it holds

σ̂(x, p)= 2Q−1(p)

(
ν +

M∑
l=1

κl p
l

)
D̂(x, p). (3.39)

To obtain σ in explicit form, we apply the inverse Laplace transform �−1 to (3.39).

σ(x, t)= 2
∫ t

0
G(t− τ)D(x,τ)dτ, (3.40)

where

G(t)=�−1

(
Q−1(p)

(
ν +

M∑
l=1

κl p
l

))
. (3.41)

By introduction of the polynomial Po(p),

Po(p)= ν−µ+
L∑
l=1

(
κl −µλl

)
pl, (3.42)

where µ= κlλ−1
l , we arrive at the expressions

G(t)=�−1(µ+Q−1(p)Po(p)
)
,

G(t)= µδ(t) +
L∑
s=1

Po
(−αs)

Q′
(−αs)e−αst,

G(t)= µδ(t) +
L∑
s=1

β(o)
s e−αst,

(3.43)
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where δ(t) is the Dirac δ-function, (−αs) are the roots of the polynomial Q(p), and

β(o)
s = Po

(−αs)(Q′(−αs))−1
. (3.44)

Suppose that the roots −αs are single, that is, Q′(−αs) �= 0, l = 1, . . . , L, real-valued and

negative. The coefficients β(o)
s are supposed to be positive.

After substituting (3.43) into (3.40), we get

σ = µD+
L∑
s=1

β(o)
s

∫ t
0
e−αs(t−τ)Ddτ. (3.45)

In this way, the equations of motion of the Oldroyd fluids take the form

∂v

∂t
+ vk

∂v

∂xk
−µ∆v−

∫ t
0

L∑
s=1

β(o)
s e−αs(t−τ)∆v(x,τ)dτ + grad p = f , divv = 0. (3.46)

This is the system of type (3.1) with the operator

Kov =
∫ t

0
K(t− τ)v(x,τ)dτ (3.47)

with the kernel K

K(t)=
L∑
s=1

β(o)
s e−αs(t). (3.48)

We should prove that the operator Ko satisfies conditions (3.2)–(3.4).
Indeed, from the properties of the integral operators, it follows that the operator Ko is

continuous in the space L2(QT), and its norm does not exceed

ck =
√√√√( sup

0≤t≤T

∫ t
0
K(τ)dτ

)(
sup

0≤τ≤T

∫ T−τ
0

K(t)dt

)
, ck =

∫ T
0
K(t)dt. (3.49)

Then we prove that the quadratic form
∫
QT

(Kv)v is positive definite. This fact follows
from the following lemma.

Lemma 3.2. For every u(τ)∈ L2([0, t]), it holds that

I =
∫ t

0

∫ σ
0
K(σ − τ)u(σ)u(τ)dσ dτ ≥ 0. (3.50)

Proof. Suppose that the function K is continued on the negative semiaxis like an even
function. Then I is equal to the half of integral on [0, t]× [0, t]. If we extend u by zero to
R and denote the obtained function by ũ, we may rewrite I in the form

1
2

∫∞
−∞

∫∞
−∞

K(σ − τ)ũ(σ)ũ(τ)dσ dτ. (3.51)
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To prove that the integral (3.51) is positive for every u ∈ L2(R), we calculate at first the
inverse Fourier transform of the function K :

�−1(K)= L(p)= (2π)−1/2
L∑
s=1

2βsαs
p2 +α2

s
≥ 0. (3.52)

Then we transform I :

I = 1
2

∫∞
−∞

∫∞
−∞

K(σ − τ)ũ(σ)ũ(τ)dσ dτ,

I = 1
2

∫∞
−∞

∫∞
−∞

�(L)(σ − τ)ũ(σ)ũ(τ)dσ dτ,

I = (2π)−1/2
∫ ∫

R3

∫
e−i(σ−τ)pL(p)dp ũ(σ)ũ(τ)dσ dτ,

I =
∫
R

∣∣∣∣∫
R
e−iσ pũ(σ)dσ

∣∣∣∣2

L(p)dp ≥ 0.

(3.53)

The lemma is proved. �

We see that condition (3.3) is fulfilled. To verify condition (3.4), transform the corre-
sponding relation:

∥∥∥∥ ∂∂t (KD)
∥∥∥∥

2,QT

=
∥∥∥∥ ∂∂t

∫ t
0
K(t− τ)D(x,τ)dτ

∥∥∥∥
2,QT

≤ ∥∥K(0)D(x, t)
∥∥

2,QT
+
∥∥K′

oD
∥∥

2,QT
,

(3.54)

where K′
o is an integral operator of Volterra type with the kernel (d/dt)K :

(
K′
ou
)
(t)=

∫ t
0

d

dt
K(t− τ)u(τ)dτ. (3.55)

The operator K′
o is continuous in the space L2(Qt), and

∫ t
0

∥∥K′
ovx
∥∥2

2,Ω ≤ c′k
∫ t

0

∥∥vx∥∥2
2,Ω. (3.56)

Thus ‖(∂/∂t)(KD)‖2,QT can be estimated in the following way:

∥∥∥∥ ∂∂t (KD)
∥∥∥∥

2,QT

≤ K(0)
∥∥vx∥∥2,QT

+ c′k
∥∥vx∥∥2,QT

≤ 1
2µ

(
K(0) + c′k

)
c3 := c1. (3.57)

So we proved that the equation, which describes motion of the Oldroyd fluids, satisfies the
condition (3.2)–(3.4). Consequently, the corresponding initial boundary value problem
admits a solution.
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4. Equations of motion of generalized Kelvin-Voight fluids

4.1. The abstract problem. Consider a PDE system of the following type:

∂v

∂t
+ vk

∂v

∂xk
−µ∂∆v

∂t
−µ1∆v−div(KD) + grad p = f , divv = 0, µ,µ1 > 0. (4.1)

The system is considered in the cylinder QT = Ω× [0,T), 0 < T ≤ ∞, Ω is a bounded
three-dimensional domain. Suppose that the operator K satisfies conditions (3.2)–(3.4)
and that the solution of the system satisfies the following initial boundary conditions:

v|t=0 = v0(x), v|∂QT = 0. (4.2)

We introduce the notion of generalized solution. A function v ∈V(QT) is called the gen-
eralized solution if it satisfies the integral identity∫

QT

(− vφt − vkvφxk +µ1vxφx −µvxφxt + (KD)∇φx
)
dxdt

+
∫
Ω

(
vφ−µvxφx

)|t=Tdx−∫
Ω

(
v0φ−µvxφx

)|t=0dx =
∫
QT

f φ
(4.3)

for any t ∈ [0,T] and for any test function φ ∈ 0
W1,1

2 (QT)∪ J(QT).

4.2. A priori estimates. To obtain some a priori estimates for solutions of initial bound-
ary value problem (4.1)-(4.2), we multiply the first equation of system (4.1) by v and
integrate with respect to x.

1
2
d

dt
‖v‖2

2,Ω +µ1
∥∥vx∥∥2

2,Ω + (KD,∇v) +
µ

2
d

dt

∥∥vx∥∥2
2,Ω = ( f ,v). (4.4)

Integrating system (4.4) again with respect to t over the interval [0, t), we get

1
2

(∥∥v(t)
∥∥2

2,Ω−
∥∥v(0)

∥∥2
2,Ω

)
+

1
2
µ
(∥∥vx(t)

∥∥2
2,Ω−

∥∥vx(0)
∥∥2

2,Ω

)
+
∫ t

0
(KD,D)Ω +µ1

∫ t
0

∥∥vx∥∥2
2,Ω =

∫
QT

f v.
(4.5)

Consequently,

1
2

(∥∥vt∥∥2
2,Ω−

∥∥v(0)
∥∥2

2,Ω

)
+

1
2
µ
(∥∥vx(t)

∥∥2
2,Ω−

∥∥vx(0)
∥∥2

2,Ω

)
≤
∫ t

0

∣∣( f ,v)
∣∣≤ ‖ f ‖2,1‖v‖2,∞.

(4.6)

Maximization of the left-hand side implies

1
2
‖v‖2

2,Ω ≤ ‖v‖2,∞‖ f ‖2,1 +
1
2

∥∥v(0)
∥∥2

2,Ω +
1
2
µ
∥∥vx(0)

∥∥2
2,Ω. (4.7)
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Thus the norm ‖v‖2,Ω is estimated by

‖v‖2,Ω ≤ ‖ f ‖2,1 +
(
‖ f ‖2

2,1 +
∥∥v(0)

∥∥2
2,Ω +µ

∥∥vx(0)
∥∥2

2,Ω

)1/2
:= c6(t). (4.8)

From (4.6) and (4.8), we deduce that∥∥v(t)
∥∥2

2,Ω +µ
∥∥vx(t)

∥∥2
2,Ω ≤ 2‖v‖2,Ω‖ f ‖2,1 +

∥∥v(0)
∥∥2

2,Ω +µ
∥∥vx(0)

∥∥2
2,Ω

≤ 2c6‖ f ‖2,1 +
∥∥v(0)

∥∥2
2,Ω +µ

∥∥vx(0)
∥∥2

2,Ω := c7(t).
(4.9)

Due to (4.5), we can moreover estimate the norm
∫ t

0 ‖vx‖2
2,Ω:

∥∥v(t)
∥∥2

2,Ω +µ
∥∥vx(t)

∥∥2
2,Ω + 2µ1

∫ t
0

∥∥vx∥∥2
2,Ω

≤ ∥∥v(0)
∥∥2

2,Ω +µ
∥∥vx(0)

∥∥2
2,Ω + 2‖ f ‖2,1‖v‖2,∞

≤ ∥∥v(0)
∥∥2

2,Ω +µ
∥∥vx(0)

∥∥2
2,Ω + 2c6‖ f ‖2,1 := c8(t).

(4.10)

Now we differentiate the first equation of system (4.1) with respect to t, multiply by vt,
and integrate over Ω:

1
2
d

dt

∥∥vt∥∥2
2,Ω +µ1

∥∥vxt∥∥2
2,Ω +

∫
Ω

(
∂

∂t
(KD)

)
: (∇v)t

+
∫
Ω
vktvxk vt +

1
2
µ
d

dt

∥∥vxt∥∥2
2,Ω =

(
ft,vt

)
Ω.

(4.11)

Using similar estimates for
∫
Ω vktvxk vt,

∫
Ω(∂/∂t)(KD)(∇v)t and ( ft,vt)Ω as in (3.21) and

applying the Young inequality (2.9), we arrive at the following relation:

1
2
d

dt

∥∥vt∥∥2
2,Ω +µ1

∥∥vxt∥∥2
2,Ω +

1
2
d

dt
µ
∥∥vxt∥∥2

2,Ω

≤
(
θ
∥∥ ft∥∥2,Ω + cθ

∥∥ ft∥∥2,Ω

∥∥vt∥∥2
2,Ω

)
+
(

4
3

)3/4(
κ3
∥∥vxt∥∥2

2,Ω + cκ3

∥∥vx∥∥4
2,Ω

∥∥vt∥∥2
2,Ω

)
+
(
cκ1

∥∥∥∥ ∂∂t (KD)
∥∥∥∥2

2,Ω
+ κ1

∥∥vxt∥∥2
2,Ω

)
.

(4.12)

Define the constants θ, κi:(
4
3

)3/4

κ3 = µ1

4
, κ1 = µ1

4
, cκ1 =

1
µ1

; cκ3 =
12
µ3

1
, θ = cθ = 1

2
. (4.13)

We obtain the estimate

1
2
d

dt

∥∥vt∥∥2
2,Ω +

1
2
µ
d

dt

∥∥vxt∥∥2
2,Ω ≤

(
1
2

∥∥ ft∥∥2,Ω +
1
2

∥∥ ft∥∥2,Ω

∥∥vt∥∥2
2,Ω

)
+

47/431/4

µ3
1

∥∥vx∥∥4
2,Ω

∥∥vt∥∥2
2,Ω +

1
µ1

∥∥∥∥ ∂∂t (KD)
∥∥∥∥2

2,Ω
.

(4.14)
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We abbreviate ζ = ‖vt‖2
2,Ω +µ‖vxt‖2

2,Ω, cµ1 = 2(47/431/4/µ3
1). Then,

d

dt
ζ ≤ ∥∥ ft∥∥2,Ω +

∥∥ ft∥∥2,Ω

∥∥vt∥∥2
2,Ω + cµ1

∥∥vx∥∥4
2,Ω

∥∥vt∥∥2
2,Ω +

2
µ

∥∥∥∥ ∂∂t (KD)
∥∥∥∥2

2,Ω

≤
(∥∥ ft∥∥2,Ω + cµ1

∥∥vx∥∥4
2,Ω

)
ζ +

(∥∥ ft∥∥2,Ω +
2
µ1

∥∥∥∥ ∂∂t (KD)
∥∥∥∥2

2,Ω

)
.

(4.15)

By the Gronwall lemma

ζ ≤ exp
(∫ t

0

(∥∥ ft∥∥2,Ω + cµ1

∥∥vx∥∥4
2,Ω

))

·
[∥∥vt(0)

∥∥2
2,Ω +µ

∥∥vxt(0)
∥∥2

2,Ω +
∫ t

0

(∥∥ ft∥∥2,Ω +
2
µ1

∥∥∥∥ ∂∂t (KD)
∥∥∥∥2

2,Ω

)]
.

(4.16)

Thus the following estimate is true:

∥∥vt∥∥2
2,Ω +µ

∥∥vxt∥∥2
2,Ω

≤ exp
(∫ t

0

(∥∥ ft∥∥2,Ω + cµ1

c7(t)
µ

))
·
[∥∥vt(0)

∥∥2
2,Ω +µ

∥∥vxt(0)
∥∥2

2,Ω +
∫ t

0

∥∥ ft∥∥2,Ω +
1
µ2

1
c2

1c8

]
:= c9(t).

(4.17)

4.3. Existence theorem. The estimates (4.9),(4.10), and (4.17) obtained in the preceding
subsection imply the existence of the solution for the initial boundary value problem
(4.1)-(4.2).

Theorem 4.1. Let Ω be an arbitrary bounded domain in R3, ∂Ω∈ C0,1,

f , ft ∈ L2,1
(
QT
)
, 0 < T ≤∞, v0 ∈W2

2(Ω)∩ J0(Ω). (4.18)

Assume that operator K satisfies conditions (3.2)–(3.4). Then problem (4.1), (4.2) has a
generalized solution v such that

v,vt ∈ L∞
(
0,T ;J0(Ω)

)
, vx,vxt ∈ L2(QT)∩L∞

(
0,T ;J0(Ω)

)
, (4.19)

which satisfies the following estimates:

‖v‖2
2,∞ +µ

∥∥vx∥∥2
2,∞ + 2µ1

∫ t
0

∥∥vx∥∥2
2,Ω ≤ c8

(
‖ f ‖2,1;

∥∥v(0)
∥∥

2,Ω;
∥∥vx(0)

∥∥
2,Ω

)
,∥∥vt∥∥2

2,∞ +µ
∥∥vxt∥∥2

2,Ω ≤ c9

(∥∥ ft∥∥2,1;
∥∥vt(0)

∥∥
2,Ω;

∥∥vxt(0)
∥∥

2,Ω

)
,

(4.20)

furthermore, c8(t), c9(t) tend to some constants c8,c9 ≤∞ when t→∞.

The proof of this theorem is similar to the proof of Theorem 3.1.
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4.4. Equations of motion of the linear viscoelastic Kelvin-Voight fluids. Now we show
that the system of equations describing the motion of a linear viscoelastic Kelvin-Voight
fluid belongs to the considered class.

The system of equations describing the Kelvin-Voight flow can be obtained from the
system of equations of incompressible media (3.36) when the deviator of the stress tensor
σ and the tensor of velocity deformations D satisfy the relation (3.37). We assume, that
M = L + 1, L = 0,1, . . . . Transforming this relation in a similar way as in the previous
section, we obtain an expression for the tensor σ

σ = µ∂D
∂t

+µ1D+
L∑
s=1

β(k)
s

∫ t
0
e−αs(t−τ)Ddτ, (4.21)

where (−αs) are the roots of polynomial Q(p) and the coefficients β(k)
s are supposed to be

positive

β(k)
s = Pk

(
αs
)[
Q′
(
αs
)]−1

> 0. (4.22)

Pk are the polynomials

Pk(p)= ν−µp−µ1 +
L−1∑
l=1

(
κl −µ1λl −µλl−1

)
pl,

µ= κL+1λ
−1
L , µ1 =

(
κl −µλL

)
λ−1
L , λ0 = 0.

(4.23)

We assume again that the coefficients −αs are single, that is, Q′(−αs) �= 0, l = 1,2, . . . ,L,
real valued and negative. Thus the equations of motion of the Kelvin-Voight fluids take
the form

∂v

∂t
+ vk

∂v

∂xk
−µ1∆v−µ∂∆v

∂t
−

L∑
s=1

β(k)
s

∫ t
0
e−αs(t−τ)∆vdτ + grad p = f , divv = 0.

(4.24)

Obviously, this system is of type (4.1) with the operator

Kkv =
∫ t

0
K(t− τ)v(x,τ)dτ, (4.25)

where the kernel K has the form

K(t)=
L∑
s=1

β(k)
s e−αst. (4.26)

The operator Kk has a similar form as the operator Ko from the previous section. So
it possesses the properties (3.2)–(3.4). Thus the existence theorem is valid also for the
systems describing motions of the Kelvin-Voight fluids.
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5. Equations of general type

5.1. Formulation of the problem. In this section, we consider rheological equations of
more general type (1.7). Suppose that the operator K maps L2(QT) into L2(QT) and satis-
fies conditions (3.2), (3.3). These conditions are fulfilled for rheological equations of any
non-Newtonian (and Newtonian) fluid.

Substituting (1.7) into the equation of motion of incompressible fluid (1.1), we obtain
the system

∂v

∂t
+ vk

∂v

∂xk
−div KD+ grad p(x, t)= f (x, t) divv(x, t)= 0. (5.1)

At first, we consider an initial boundary value problem with periodic boundary condi-
tions. Let ΩR = [−R,R]× [−R,R] be a square in R2. System (5.1) is considered in the
cylinder QT =ΩR× [0,T]. Suppose that the functions v and p satisfy periodic boundary
conditions on the sides of the square. We formulate them for the function v:

v|x1=−R = v|x1=R, v|x2=−R=v|x2=R, vx1|x1=−R = vx1|x1=R, vx2|x2=−R=vx2|x2=R.
(5.2)

Moreover, the function v satisfies the initial condition

v|t=0 = v0(x), x ∈ΩR. (5.3)

Multiply the system (5.1) by v and integrate over Ω. After integrating by parts, we get

1
2
d

dt
‖v‖2

2,Ω +
∫
Ω

(
(KD) :D

)= ∫
Ω
f v. (5.4)

Integration with respect to t implies the identity

1
2

(∥∥v(t)
∥∥2

2,Ω−
∥∥v(0)

∥∥2
2,Ω

)
+
∫
QT

(
(KD) :D

)= ∫
QT

f v. (5.5)

Proceeding as in Section 3.2 and using the nonnegativity of the term
∫
QT

((KD) : D),
we get a priori estimate for the norm of v

‖v‖2,∞ =
∫ t

0
‖ f ‖2,Ω +

√√√(∫ t
0
‖ f ‖2,Ω

)2

+
∥∥v(0)

∥∥2
2,Ω. (5.6)

We prove the existence of at least a one weak solution from the space L∞(0,T ; Ĵ1
2(Ω))

which satisfies the integral identity∫
QT

(− vφt − vkvφxk + (KD)∇φ)dx dt+
∫
ΩR

vφ|t=Tdx−
∫
ΩR

v0φ|t=0dx =
∫
QT

f φ

(5.7)

for any solenoidal periodic φ such that φx,φxt ∈ L2(QT).
We project system (5.1) onto the space of divergence-free vector fields and annihilate

the term gradp, find a weak solution of obtained boundary value problem. When the
velocity is found, the pressure may be found from system (5.1).
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5.2. A priori estimates of the solutions. Now we assume that the operator K possesses
the following property:

−(rotdiv(KD),rotv
)≥ 0. (5.8)

The operation rot is understood as the scalar function in the space R2

rotu= ∂u2

∂x1
− ∂u1

∂x2
. (5.9)

If the operators K and ∂/∂xk, k = 1,2 commute then condition (5.8) is a corollary of (3.3).
This condition (5.8) is fulfilled, for instance, in the case when the operator K is integral
operator of the form (1.9). Then the condition of positiveness (3.3) may be improved in
the following manner. We may suppose that the kernel K(t) of the operator K is a positive
definite function. It means that the matrix {K(ti− t j)}Ni, j=1 is positive in CN for every N
and for any t1, . . . , tN ∈RN .

We estimate the space derivative of the function v.
Consider the stream function v = (−ψx2 ,ψx1 ). To obtain the following relation, we ap-

ply the operator rot to both parts of the first equation of system (5.1). Then it holds

∆ψt − rotdiv(KD)= ψx1∆ψx2 −ψx2∆ψx1 +ϕ, (5.10)

where ϕ(x, t)= (∂ f2/∂x1)− (∂ f1/∂x2). Moreover, we suppose that the function ψ satisfies
periodic boundary conditions. Let all the first-order and the second-order space deriva-
tives of the function ψ be periodic functions in ΩR.

The initial condition takes the form

ψ|t=0 = b(x), (5.11)

where bx1 =−v02, bx2 = v01. (vi is the i-th coordinate of the function v.)
If we multiply equation (5.10) by ∆ψ in the space L2(ΩR), we arrive at the identity

1
2
d

dt

∥∥∆ψt∥∥2
2,Ω−

(
rotdiv(KD),rotv

)= (ϕ,∆ψ). (5.12)

This relation is similar to relation (3.9). Thus we find an estimate similar to estimate
(3.13) for the function ∆ψ, namely,

‖∆ψ‖2,∞ ≤ ‖ϕ‖2,1 +

√
‖ϕ‖2

2,1 +
∥∥∆ψ(0)

∥∥2
2,Ω. (5.13)

Since ‖vx‖2,∞ ≤ ‖∆ψ‖2,∞, (5.13) implies a further estimate

∥∥vx∥∥2,∞ ≤ c
(
‖ϕ‖2,1 +

√
‖ϕ‖2

2,1 +
∥∥∆ψ(0)

∥∥2
2

)
. (5.14)
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5.3. Existence of the solution. To prove the existence of a weak solution, we apply
Galerkin’s method with the system of eigenfunctions of the Stokes problem

−∆v = λv, divv = 0,

v ∈ Ĵ1
2(Ω)∩W2

2(Ω)= Ĵ2
2(Ω)

(5.15)

as basis functions. By [8] the functions {ϕl}∞l=0 form an orthonormal system in the space
Ĵ0

2(Ω), and so it is the case in the spaces Ĵ1
2(Ω) and Ĵ2

2(Ω).
The Galerkin approximations are defined as

vn(x, t)=
n∑
l=0

cln(t)ϕl(x), (5.16)

where the coefficients cln(t) are determined from the system

d

dt

(
vn,ϕl

)
+
(

Kvnx ,ϕlx
)

+
(
vnkv

n
xk ,ϕ

l
)= ( f ,ϕl

)
(5.17)

with initial conditions

cln(0)= (v0,ϕl
)
, l = 0, . . . ,n. (5.18)

The approximations vn satisfy the same identities

1
2
d

dt

∥∥vn∥∥2
2,Ω +

∫
Ω

((
KD

(
vn
))

:D
(
vn
))= ∫

Ω
f vn (5.19)

as the exact solutions. So estimates (3.13) and (5.14) are true for them. And a majorant
is independent of n. This permits to pass to the limit and prove the next theorem.

Theorem 5.1. Let the following functions be given:

f ∈ L2,1
(
QT
)
, fx ∈ L2,1

(
QT
)
, v0 ∈ Ĵ1

2

(
ΩR
)
. (5.20)

Then the initial boundary value problem (5.1), (5.2), (5.3) admits a generalized solution

v ∈ L∞
(
0,T ; Ĵ1

2

(
ΩR
))

(5.21)

which is global in t. The solution v satisfies estimates (3.13) and (5.14).

The corollary of this theorem consists of the existence of a solution (5.21) for the
systems of equations of general linear viscoelastic liquids with rheological equation of the
type (1.9). All the conditions (3.2), (3.3), and (5.8) are fulfilled for these equations.

5.4. The Cauchy problem. From Theorem 3.1, it follows that the Cauchy problem is also
solvable.

Theorem 5.2. Let

f ∈ L2,1
(
R2× [0,T]

)
, fx ∈ L2,1

(
R2× [0,T]

)
, v0 ∈ J1

2

(
R2), (5.22)
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where J1
2(R2) is a space of solenoidal vector fields with finite norm ‖u‖2 +‖ux‖2. Then there

exists a generalized solution of system (5.1) which satisfies the initial Cauchy condition

v(x,0)= v0(x), x ∈R2. (5.23)

This solution belongs to L∞(0,T ;J1
2(R2)) and satisfies estimates (3.13) and (5.14).

This theorem is also true for general linear viscoelastic liquids.

Proof. The theorem can be proved in the following way. We choose the sequence of ex-
tending domains ΩRn , Rn→∞, and construct the solution vn of periodic boundary value
problem in every domain. The norms ‖vn‖2,∞, ‖vnx‖2,∞ of all solutions vn are bounded
by a majorant, which is independent of the domain. If we use compactly supported test
functions, then we can pass to the limit in the identities (5.7) for functions vn. �

5.5. Equations of motion of the Maxwell fluids. The motion of the Maxwell fluid is de-
termined by the relation (3.37), together with M = L− 1, L= 1,2, . . . . Proceeding exactly
as in the previous sections, we can represent the deviator of the stress tensor σ in the form

σ =
L∑
s=1

β(m)
s

∫ t
0
e−αs(t−τ)D(x,τ)dτ, (5.24)

where

β(m)
s = Pm

(
αs
)[
Q′
(
αs
)]−1

, (5.25)

and the polynomial Pm is given by

Pm(p)= ν +
L−1∑
l=1

κl p
l. (5.26)

The flow of the Maxwell fluid is described by the system (5.1) with the operator Km

Km =
L∑
s=1

β(m)
s e−αst. (5.27)

It is evident that the operator Km possesses properties (3.2), (3.3), and (5.8), and there-
fore the existence theorem is also valid for the Maxwell fluids.
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