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Asymptotic solutions of nonlinear singularly perturbed Volterra integral equations with
kernels possessing integrable singularity are investigated using singular perturbation
methods and the Mellin transform technique. In particular, it is demonstrated that the
formal approximation is asymptotically valid.

1. Introduction

Singularly perturbed nonlinear Volterra problems with kernels of integrable singularity
are investigated. The singularity encountered in these problems is that of a layer type;
the solution is valid everywhere except in a thin layer, very near to the origin. This thin
layer is called the initial layer, the region of rapid variations or the inner layer region. The
region outside the initial layer is the outer region. There are many perturbation problems
which may be properly called singular but which are not of the layer type. Examples of
such problems are problems of secular type.

The following singularly perturbed nonlinear Volterra integral equation with a weakly
singular kernel is particularly considered:

εx(t)= g(t) +
1

Γ(α)

∫ t
0

a(t,s)
(t− s)1−α f

(
x(s),s

)
ds, 0 < ε� 1, 0 < α < 1, 0≤ t ≤ T , (1.1)

where g, a, and f are continuous functions. These functions may as well depend on ε, but
it is assumed here that they are independent. When g is written as g(t;ε), one requires that
limε→0 g(0;ε)= 0. It is known from the standard theory of Volterra integral equations that
this problem has a solution x(t;ε) inC[0,T] for all ε > 0. If one is interested in the solution
x(t;ε) for small values of ε and assumes an expansion of the form

x(t;ε)≈
∞∑
n=0

εnxn(t), (1.2)
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the leading order term x0(t) obeys

0= g(t) +
1

Γ(α)

∫ t
0

a(t,s)
(t− s)1−α f

(
x0(s),s

)
ds, 0≤ t ≤ T. (1.3)

This is a Volterra integral equation of the first kind. For this equation to have a continu-
ous solution, g(t) cannot be merely continuous, the forcing function must be smoother
than the desired solution. Even if (1.3) has a solution x0(t) in C[0,T], it may not approx-
imate x(t;ε) uniformly for all 0≤ t ≤ T as ε→ 0, especially if x0(0) �= limε→0 x(t;ε). In this
situation, a second term in (1.2) is needed to correct this nonuniformity. Thus one in-
troduces a new scaled variable with a different magnitude in order to obtain a uniformly
valid approximation. The idea is that if the initial layer region is described in terms of
the new time scale, no rapid variation in the solution should be exhibited. The additive
decomposition singular perturbation method will be employed to analyze the asymptotic
solution of (1.1).

Solutions of problems from many branches of applied sciences have been successfully
approximated using singular perturbation techniques. When the kernel a(t,s) is inde-
pendent of t and s, problem (1.1) reduces to a singularly perturbed fractional integral.
Emerging and increasing use of fractional integrals in physical processes brings about the
need to have available and appropriate corresponding singular perturbation techniques.
The following operators σJ

γ
t and σD

γ
t define the fractional integral and the fractional de-

rivative in the sense of Riemann-Liouville, respectively, of order γ,σ < γ < 1:

σJ
γ
t φ(t) := 1

Γ(γ)

∫ t
σ
(t− s)γ−1φ(s)ds, t ≥ σ,

σD
γ
t φ(t) := 1

Γ(1− γ)
d

dt

∫ t
σ
(t− s)−γφ(s)ds, t > σ.

(1.4)

Singularly perturbed Volterra equations with weakly singular kernels occur in various
physical applications including heat transfer and viscoelasticity. In particular, fractional
integrals arise in the modelling of physical systems, see [16] and the references therein for
more on the applications of fractional integrals.

The following is an example showing how singular perturbation problems arise: con-
sider the problem of determining the temperature of a nonlinearly radiating semi-infinite
solid. This is governed by the initial-boundary value problem

Tt(x, t)= Txx(x, t), x > 0, t > 0,

Tx(0, t)= γTn(0, t)−ψ(t), t > 0, n≥ 1,

T(x,0)= 0, x ≥ 0,

lim
x→∞T(x, t)= 0, t ≥ 0.

(1.5)

The function T(x, t) is the temperature. It is assumed that at the point x = 0, heat is ra-
diated away at a rate proportional to the nth power of the temperature. The constant γ is
the radiation constant; it represents the ratio of the radiative properties to the conductive
properties of the solid material. It is also assumed that an external source generates heat
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at a rate proportional to a given positive function ψ(t). The case n = 1 corresponds to
Newton’s law of cooling, while the case n = 4 corresponds to the Stefan-Boltzmann ra-
diation law. It is known that to determine T(x, t) one needs to determine T(0, t) which
satisfies the Volterra integral equation

T(0, t)=
∫ t

0

1√
π(t− s)

{
ψ(s)− γTn(0,s)

}
ds. (1.6)

If one puts γTn(0, t)= xn(t) in the above equation, one obtains

x(t)= γ1/n
∫ t

0

1√
π(t− s)

{
ψ(s)− xn(s)

}
ds. (1.7)

Then consider (1.7) for the solid material with a higher thermal loss, that is,

γ−1/n� 1. (1.8)

Replacing γ−1/n in (1.7) by ε, the resulting equation is one of the problems considered
here.

There is an extensive literature on singularly perturbed differential equations. In the
study of singularly perturbed integral equations, integral operators play a subordinate
role to differential operators. However, there are difficulties in principle in the construc-
tion of asymptotic expansions for integral equations depending on a small parameter.
These difficulties are basically due to the nature of the integral operators. Singularly per-
turbed Volterra integral and integrodifferential equations with continuous kernels have
received sufficient attention from researchers compared to singularly perturbed integral
and integrodifferential equations with weakly singular kernels, see [13] for a comprehen-
sive survey of literature. Singularly perturbed integral and integrodifferential equations
with continuous kernels have inner layer solutions which decay exponentially; this sim-
plifies the analysis. Inner layer solutions corresponding to integral and integrodifferen-
tial equations with weakly singular kernels decay algebraically, and therefore the analysis
poses some complications. Thus, the rigorous theory of singularly perturbed Volterra in-
tegral and integrodifferential equations with weakly singular kernels is still under active
investigation. This paper aims at presenting a general method for constructing and dis-
closing the structure of the formal asymptotic solution of (1.1), and providing the proof
for its asymptotic correctness.

The additive decomposition method was first applied to study (1.1) in [1]. A variety
of interesting examples including (1.7) has been solved in [1], but the analysis fails to
reveal the general structure of the formal approximation and the validity of the given
formal approximate solution is not demonstrated. To date, apart from the present paper,
there have been no efforts to prove the validity of the formal approximation to nonlinear
singularly perturbed Volterra integral equations with weakly singular kernels. The linear
version of (1.1) has been studied in [3], where it is shown that the formal asymptotic so-
lution is the sum of a slowly varying function and a rapidly varying function, described
in terms of the Mittag-Leffler function. The Mittag-Leffler function (a special function)
is an example of functions which decay algebraically at infinity, as pointed in the previous
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paragraph. See [10] for more on the Mittag-Leffler function and its properties. Singularly
perturbed linear and nonlinear Volterra integrodifferential equations with weakly singu-
lar kernels have been investigated in [4, 5], respectively. It is demonstrated in [4, 5] that
singularly perturbed Volterra integrodifferential equations have wider initial layer width
and that formal approximate solutions are asymptotic up to the order equivalent to the
order of magnitude of the layer width. The main result here is the proof of asymptotic
correctness.

In the application of the additive decomposition method to Volterra equations with
weakly singular kernels, there are abnormalities arising when balancing terms of similar
orders of ε. This occurs when α is not specified and one tries to derive the first (and
higher) order terms in the formal solution. But it is known that in the description of some
physical processes it is possible to neglect the influence of a number of parameters and
not lose valuable information regarding the basic regularities of the process in question.
Hence, this paper will restrict attention to the leading order solution.

In the next section, assumptions imposed on the data, and some known results which
are applied later in the analysis are presented. In Section 3, the application of the addi-
tive decomposition technique to integral equations of type (1.1) is described and also
the leading order formal solution derived under the stated conditions. Section 4 contains
the proof that the contents of the formal solution have the required properties and those
properties imposed during the derivation. It is also shown in Section 4 that if x0(t;ε)
satisfies (1.1) approximately with a residual ρ(t;ε), then ρ(t;ε) = O(ε), ε → 0. Finally,
in Section 5, we present the theorem on asymptotic correctness which states that un-
der given conditions, if x0(t;ε) is a formal approximate solution of (1.1) and x(t;ε) is the
exact solution, then |x(t;ε)− x0(t;ε)| =O(ε), ε→ 0. An example is presented in Section 6
to demonstrate the use of the results obtained here.

2. Hypothesis and mathematical preliminaries

In the analysis presented, it is assumed that

(Hg) the function g(t)∈ C2[0,T] and is such that g(0)= 0;
(Ha) a(t,s) is a C1 function on 0≤ s≤ t ≤ T with a(t, t)=−1;
(H f ) the function ψ 	→ f (ψ, t) is at least twice continuously differentiable and that

∂1 f (ψ, t) �= 0 for all ψ.

The following results will be applied in the presentation.
The first result is that of applying the Mellin transformation to the asymptotic evalua-

tion of integrals. One will find a detailed discussion in [6, 15] . The Parseval formula for
Mellin transforms which will be applied in Section 4 is particularly presented.

The Mellin transform of a locally integrable function y(t) on (0,∞) is defined by

M[y;z] := x(z)=
∫∞

0
tz−1y(t)dt, (2.1)

when the integral converges. The functions y(t) and x(z) are called the Mellin transform
pair.
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Theorem 2.1. Suppose that M[ f ;1− z] and M[h;z] are defined and holomorphic, each in
some vertical strip, whose boundary is determined by the analytical structure of the corre-
sponding function as t→ 0 and as t→∞. Suppose further that these strips overlap. Then the
integral

I(t)=
∫∞

0
f (z)h(tz)dz (2.2)

can be described in terms of the Mellin-Barnes integral, known as the Parseval formula

I(t)= 1
2πi

∫ c+i∞
c−i∞

t−zM[ f ;1− z]M[h;z]dz, (2.3)

where Re(z)= c lies in the overlapping strip.

The second result is that of Abel inversion formula which follows from the results in
[11]. Let 0 < δ < 1 and define the operator

(
Dδ y

)
(t) := 1

Γ(1− δ)
d

dt

∫ t
0

1
(t− s)δ y(s)ds. (2.4)

Theorem 2.2. If y(t) is continuous on [0,T] and differentiable on (0,T] with y(0) = 0,
then Dδ(y)(t) is also continuous on [0,T] and is given by

(
Dδ y

)
(t)= 1

Γ(1− δ)

∫ t
0

1
(t− s)δ y

′(s)ds. (2.5)

The third result is the property of Riemann-Liouville which says that the Riemann-
Liouville fractional differentiation operator is a left inverse to the Riemann-Liouville frac-
tional integration operator of the same order.

Theorem 2.3. For δ > 0 and t > 0,

Dδ
(
Jδφ(t)

)= φ(t). (2.6)

The proof can be found in many books on fractional derivatives and fractional inte-
grals.

The fourth and last result is a nonlinear generalization of Gronwall’s inequality and
has been proved in [8].

Theorem 2.4. Let φ,ψ : [ι,ζ)→ [0,∞),ϕ : [ι,ζ)× [0,∞)→ [0,∞) be continuous such that

0≤ ϕ(t,u)−ϕ(t,v)≤M(t,u)(u− v), t ∈ [ι,ζ), 0≤ v ≤ u, (2.7)

where M is nonnegative and continuous on [ι,ζ)× [0,∞). Then, for every nonnegative con-
tinuous solution of the inequality

y(t)≤ φ(t) +ψ(t)
∫ t
ι
ϕ
(
s, y(s)

)
ds, t ∈ [ι,ζ), (2.8)
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the following estimate holds:

y(t)≤ φ(t) +ψ(t)
∫ t
ι
ϕ
(
s,φ(s)

)
exp

(∫ t
s
M
(
σ ,φ(σ)

)
ψ(σ)dσ

)
ds (2.9)

for all t in [ι,ζ).

3. Heuristic analysis and formal solution

To start, one seeks an asymptotic solution x(t;ε) in the form

x(t;ε)= u(t;ε) + v
(
t

εη
;ε
)

, η > 0, (3.1)

and requires that

lim
τ→∞v(τ;ε)= 0, τ = t

εη
. (3.2)

The inner layer function v(t/εη;ε) corrects the nonuniformity in the initial layer. It is
assumed that u(t;ε) and v(τ;ε) have asymptotic expansions of the form

u(t;ε)∼
∞∑
n=0

εnun(t), v(τ;ε)∼
∞∑
n=0

εnηvn(τ), (3.3)

as ε→ 0, so that

x(t;ε)∼
∞∑
n=0

εnun(t) +
∞∑
n=0

εnηvn

(
t

εη

)
. (3.4)

Moreover, for all n≥ 0,

lim
τ→∞vn(τ)= 0. (3.5)

The substitution of (3.4) into (1.1), the expression of all terms in terms of τ, and the
examination of the dominant balance in the relation yield

Ord
(
εη+η(α−1)

)
=Ord(ε), ε −→ 0. (3.6)

Hence one chooses

η = 1
α
. (3.7)

Thus, the singularly perturbed equation (1.1) possesses an initial layer width of order
(ε1/α). This means that the solution x(t;ε) of (1.1) is slowly varying forO(ε1/α)≤ t ≤ T , as
ε→ 0, but changes rapidly on a small interval 0≤ t ≤O(ε1/α). This small interval of rapid
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change is what is referred to as the inner layer, initial layer, or layer of rapid transition and
the region of slow variation of x(t;ε) is what is referred to as the outer region. The choice
η = 1/α implies that (1.1) has a narrower initial layer compared to a similar equation with
a continuous kernel and integrodifferential equations with weakly singular kernels.

3.1. Derivation of the formal approximate solution. The results in this section are sum-
marized in the following proposition.

Proposition 3.1. Suppose that (Hg), (Ha), and (H f ) hold. Suppose also that

v0(τ)∼ c0τ
−β0 , τ −→∞, (3.8)

for some constants c0 and β0 such that 0 < β0 < 1. Assume

x0(t;ε)= u0(t) + v0

(
t

εη

)
, η = 1

α
, (3.9)

satisfies (1.1) approximately, with a residual ρ(t;ε) such that

ρ(t;ε)= o(1), ε −→ 0, 0≤ t ≤ T. (3.10)

Then (1.1) has a formal approximate solution given by (3.9), where u0 and v0 satisfy corre-
sponding nonlinear Volterra equations with weakly singular kernels.

Proof. Suppose that x0(t;ε) satisfies (1.1) approximately with a residual ρ(t;ε); then

ρ(t;ε) + εu0(t) + εv0

(
t

εη

)
= g(t) +

1
Γ(α)

∫ t
0

a(t,s)
(t− s)1−α f

(
u0(s) + v0

(
s

εη

)
,s
)
ds; (3.11)

equivalently,

ρ(t;ε)=−εu0(t)− εv0

(
t

εη

)
+ g(t)

+
1

Γ(α)

∫ t
0

a(t,s)
(t− s)1−α f

(
u0(s),s

)
ds

+
1

Γ(α)

∫ t
0

a(t,s)
(t− s)1−α

{
f
(
u0(s) + v0

(
s

εη

)
,s
)
− f

(
u0(s),s

)}
ds.

(3.12)

The last integral in (3.12) can be written as

I0(t)= tα

Γ(α)

∫ 1

0

a(t, tθ)
(1− θ)1−α

{
f
(
u0(tθ) + v0

(
tθ

εη

)
, tθ
)
− f

(
u0(tθ), tθ

)}
dθ. (3.13)

Using Taylor’s theorem, one writes I0 as

I0(t)= tα

Γ(α)

∫ 1

0

a(t, tθ)
(1− θ)1−α

{
f1

(
u0(tθ), tθ)v0

(
tθ

εη

)
+ v0

2
(
tθ

εη

)
φ(t,θ;ε)

}
dθ, (3.14)
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where

φ(t,θ;ε)=
∫ 1

0
(1−µ) f11

(
u0(tθ) +µv0

(
tθ

εη

)
, tθ
)
dµ. (3.15)

Thus, applying (3.8) and the dominated convergence theorem, (3.12) is equivalent to

ρ(t;ε)=−εu0(t)− εv0

(
t

εη

)
+ g(t)

+
1

Γ(α)

∫ t
0

a(t,s)
(t− s)1−α f

(
u0(s),s

)
ds

+
c0εηβ0

Γ(α)
tα−β0

∫ 1

0

a(t, tθ)
(1− θ)1−αθβ0

f1
(
u0(tθ), tθ

)
dθ + o(1),

(3.16)

as ε→ 0. The leading order outer equation is then obtained by fixing t > 0 in the above
equation and letting ε tend to zero. If ρ(t;ε)= o(1) as ε→ 0, one sees that

0= g(t) +
1

Γ(α)

∫ t
0

a(t,s)
(t− s)1−α f

(
u0(s),s

)
ds. (3.17)

The equation governing the leading order inner layer solution is obtained by substitut-
ing (3.17) into (3.12), expressing all terms in terms of τ, dividing by the dominant power
of ε, fixing τ, and letting ε tend to zero. If ρ(εητ;ε)= o(1) as ε→ 0 for fixed τ > 0, then

v0(τ) +u0(0)= a(0,0)
Γ(α)

∫ τ
0

(τ − σ)α−1{ f (u0(0) + v0(σ),0
)− f

(
u0(0),0

)}
dσ , τ ≥ 0.

(3.18)

If u0(t) satisfies (3.17) and v0(τ) obeys (3.18), it follows from (3.12) that

ρ(t;ε)= εu0(0)− εu0(t)

− 1
Γ(α)

∫ t
0

a(0,0)
(t− s)1−α

{
f
(
u0(0) + v0

(
s

εη

)
,0
)
− f

(
u0(0),0

)}
ds

+
1

Γ(α)

∫ t
0

a(t,s)
(t− s)1−α

{
f
(
u0(s) + v0

(
s

εη

)
,s
)
− f

(
u0(s),s

)}
ds.

(3.19)

�

Remark 3.2. Following the above analysis, the derivation of the equations governing
higher-order terms in (3.4) depends on the actual value of η. Thus one will be interested
in modifying the present methodology to include higher-order terms as well.

4. Properties of the formal solution

It is shown in this section that there are unique solutions u0(t) and v0(τ) of (3.17) and
(3.18), and that they have the important properties assumed in their derivation.

Equation (3.17) is a Volterra integral equation of the first kind for u0(t). If one puts

f
(
u0(t), t

)= ϕ(t), 0≤ t ≤ T , (4.1)
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the resulting equation

0= g(t) +
1

Γ(α)

∫ t
0

a(t,s)
(t− s)1−α ϕ(s)ds, t ≥ 0, (4.2)

is a linear Volterra equation of the first kind. A unique solution ϕ(t) ∈ C1[0,T] exists
under given conditions (Hg) and (Ha), see [11]. Then the existence and uniqueness of a
continuous solution u0(t) of (4.1) follow from the implicit function theorem and the fact
that ∂1 f (u0(t), t) �= 0. The cases a(t,s) = k, a constant, and a(t,s) = a(t− s) would give
the function ϕ(t) exactly. Numerical approximation of u0(t) from (4.1) should then be
easy.

Proposition 4.1. Suppose that (Hg), (Ha), and (H f ) hold. Then (3.18) has a C∞ solution
v0 satisfying

v0(τ)∼ −u0(0)
Γ(1−α)

τ−α, τ −→∞. (4.3)

Proof. Equation (3.18) cannot be solved explicitly; however, this equation is simpler than
the original equation in the sense that the forcing function and the kernel have simpler
forms. Existence and uniqueness of solutions of (3.18) for τ ≥ 0 are well known, see, for
example, [7, 11, 12, 14].

To prove the asymptotic behavior (4.3) of v0(τ), as τ →∞, the presentation below
follows the analysis in [6, Chapter 4]. Consider (3.18) and let

I(τ)= −1
Γ(α)

∫ τ
0

(τ− σ)α−1{ f (u0(0) + v0(σ),0
)− f

(
u0(0),0

)}
dσ , (4.4)

which can equivalently be written as

I(τ)=−ταIα(τ). (4.5)

Here,

Iα(τ)=
∫∞

0
φ(θ)ψ(τθ)dθ, (4.6)

where

φ(θ)=



1
Γ(α)

(1− θ)α−1 0≤ θ < 1,

0 1≤ θ,

ψ(θτ)= f
(
u0(0) + v0(θτ),0

)− f
(
u0(0),0

)
.

(4.7)

Thus, to determine the asymptotic behavior of v0(τ), τ →∞, one needs to determine
the asymptotic behavior of Iα(τ), τ →∞, and then multiply by −τα. The form of the
integral in (4.6) suggests the application of Mellin transform in the determination of an
asymptotic expansion of Iα(τ), τ →∞. This is a well known and powerful technique. Since
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this technique involves asymptotic behavior of functions in the integrand, one should
note that Taylor’s theorem implies that v0(τ) and ψ(τ) are O-equivalent:

ψ(τ)=Ord
(
v0(τ)

)
, τ −→ 0, τ −→∞. (4.8)

We know from (3.18) that v0(τ)=O(1), τ → 0, and we have assumed in (3.8) that v0(τ)=
O(τ−β0 ), τ →∞.

Now, suppose that M[φ;1− z] and M[ψ;z] are defined and holomorphic, each in
some vertical strip determined by the asymptotic behaviors of φ and ψ. Since Iα(τ) is
absolutely convergent, these vertical strips overlap. Let Re{z} = c lay in the overlapping
strip; then the Parseval formula (2.3) implies that

Iα(τ)= 1
2πi

∫ c+i∞
c−i∞

τ−zM[φ;1− z]M[ψ;z]dz. (4.9)

One observes from (2.1) that

M[φ;1− z]= Γ(1− z)
Γ(1 +α− z)

, (4.10)

and therefore

Iα(τ)= 1
2πi

∫ c+i∞
c−i∞

τ−zM[ψ;z]
Γ(1− z)

Γ(1 +α− z)
dz. (4.11)

The asymptotic evaluation of (4.11) as τ →∞ involves the asymptotic behavior of
ψ(τ), τ →∞, which in turn involves the asymptotic behavior of v0(τ), the result set out to
be obtained. Thus the approach will be to employ the assumed leading order asymptotic
behavior of v0(τ) in (3.8). Then the asymptotic expansion of Iα can be derived using
Mellin transform procedure. This will involve some unknown parameters which will be
determined by requiring the derived expansion to coincide with the left-hand side of
(3.18) which involves the assumed expansion of v0.

The asymptotic relation in (4.8) implies that

ψ(τ)∼ c0τ
−β0 , τ −→∞, for some positive β0 < 1. (4.12)

It can be shown that M[ψ;z] has a simple pole at z = β0 and the singular part of the
Laurent expansion of M[ψ;z] about this point is given by

−c0

z−β0
. (4.13)

To compute the asymptotic behavior of Iα, the vertical path is displaced to the right. In
doing so, the pole implied by M[ψ;z] is encountered before that of Γ(1− z) at z = 1 since
β0 < 1, and hence it provides the leading order contribution. Computing the relevant
residues, one finds that

v0(τ) +u0(0)∼−c0M[ψ;1−β0]τα−β0 =−c0
Γ
(
1−β0

)
Γ
(
1 +α−β0

)τα−β0 . (4.14)
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The dominant term balancing argument then implies

α= β0, c0 = −u0(0)
Γ(1−α)

. (4.15)

Therefore

v0(τ)∼ −u0(0)
Γ(1−α)

τ−α, τ −→∞. (4.16)
�

This result agrees with that obtained in [3] for f (x,s) = x using the explicit solution
in terms of the Mittag-Leffler function.

Therefore, up to the leading order, the formal approximate solution x0(t;ε) of (1.1) is
given by (3.9), where u0(t) and v0(τ) are solutions of (3.17) and (3.18), respectively. Hav-
ing established the existence and uniqueness of the approximate solution, the following
proposition bounds the residual ρ(t;ε).

Proposition 4.2. Suppose ρ(t;ε) satisfies (3.19); then there exist positive constants c1,
which does not dependent on ε, and ε0 such that

∣∣(Dαρ
)
(t;ε)

∣∣≤ c1ε, ε −→ 0, (4.17)

for all 0≤ t ≤ T and all 0 < ε ≤ ε0.

Proof. An argument similar to the one used in (3.14) and (3.15) for the Taylor expansion
implies that one can write (3.19) as

ρ(t;ε)= εu0(0)− εu0(t)

− tα

Γ(α)

∫ 1

0

a(0,0)
(1− s)1−α

{
f1
(
u0(0),0

)
v0

(
ts

εη

)
−φ(t,s;ε)v0

2
(
ts

εη

)}
ds

+
tα

Γ(α)

∫ 1

0

a(t, ts)
(1− s)1−α

{
f1
(
u0(ts), ts

)
v0

(
ts

εη

)
+φ(t,s;ε)v0

2
(
ts

εη

)}
ds,

(4.18)

where the function φ is as given in (3.15). The dominated convergence theorem and
(4.16) imply that when ε is sufficiently small, ρ(t;ε) can be approximated by

ρ(t;ε)= εu0(0)− εu0(t)− εu0(0) f1
(
u0(0),0

)
− εu0(0)
Γ(α)Γ(1−α)

∫ 1

0

a(t, ts)
(1− s)1−αsα

f1
(
u0(ts), ts

)
ds.

(4.19)

Thus ρ(t;ε) is continuous for all 0≤ t ≤ T and all 0≤ ε with ρ(0;ε)= 0. It is also differ-
entiable for all t > 0. Thus, Theorem 2.2 implies that there exist positive constants c1 and
ε0, where c1 depends on T , such that for all 0≤ t ≤ T and all 0 < ε ≤ ε0,

∣∣(Dαρ
)
(t;ε)

∣∣≤ c1ε. (4.20)

�
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5. Proof of asymptotic correctness

In this section, it is established that the formal approximation defined in (3.9) is indeed
an asymptotic approximation to a solution x(t;ε) of (1.1). The method is to adapt the
theory of [9] on developing a rigorous theory of singular perturbation. The main result
in this paper is the following.

Theorem 5.1. Suppose that (Hg), (Ha), and (H f ) hold. Then (1.1) has a continuous solu-
tion x(t;ε) with the property that if x0(t;ε) is the formal asymptotic solution, then there are
constants c�, which does not depend on ε, and ε0 such that

∣∣x(t;ε)− x0(t;ε)
∣∣≤ c�ε (5.1)

for all 0≤ t ≤ T and 0 < ε ≤ ε0.

Proof. Define the remainder

χ(t;ε)= x(t;ε)− x0(t;ε), 0≤ t ≤ T. (5.2)

Substituting this into (1.1) and using (3.4) gives

εχ(t;ε)= ρ(t;ε) +
1

Γ(α)

∫ t
0

a(t,s)
(t− s)1−α

{
f
(
x0(s;ε) + χ(s;ε),s

)− f
(
x0(s;ε),s

)}
ds. (5.3)

Applying Taylor’s theorem, one has an equivalent equation

εχ(t;ε)= ρ(t;ε) +
1

Γ(α)

∫ t
0

a(t,s)
(t− s)1−α ∂1 f

(
x0,s;ε

)
χ(s;ε)ds

+
1

Γ(α)

∫ t
0

a(t,s)
(t− s)1−α ϕ

(
χ,x0,s;ε

)
ds,

(5.4)

where

ϕ
(
χ,x0, t;ε

)= χ(t;ε)2
∫ 1

0
(1−µ)∂11 f

(
x0 +µχ, t;ε

)
dµ. (5.5)

One can also write (5.4) as

εχ(t;ε)= ρ(t;ε) +
1

Γ(α)

∫ t
0

a(0,0)
(t− s)1−α χ(s;ε)ds+

1
Γ(α)

∫ t
0

k(t,s;ε)
(t− s)1−α χ(s;ε)ds

+
1

Γ(α)

∫ t
0

a(t,s)
(t− s)1−α ϕ

(
χ,x0,s;ε

)
ds,

(5.6)

where

k(t,s;ε)= a(t,s)∂1 f
(
x0,s;ε

)− a(0,0). (5.7)

Note that ∂1 f and k are both regular with respect to ε as ε→ 0. Applying the operator Dα

(defined in (2.4)) to both sides of (5.6) gives

χ(t;ε)=G(χ)(t;ε) +
∫ t

0
h(t,s;ε)χ(s;ε)ds, 0≤ t ≤ T , (5.8)
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where χ 	→G(χ) is given by

G(χ)(t;ε)= (Dαρ
)
(t;ε)− ε(Dαχ

)
(t;ε) +

∫ t
0
h̃(t,s)ϕ

(
χ,x0,s;ε

)
ds, (5.9)

with

h(t,s;ε)= 1
Γ(α)Γ(1−α)

∂

∂t

∫ t
s

k(σ ,s;ε)
(t− σ)α(σ − s)1−α dσ ,

h̃(t,s)= 1
Γ(α)Γ(1−α)

∂

∂t

∫ t
s

a(σ ,s)
(t− σ)α(σ − s)1−α dσ

(5.10)

obtained using Theorem 2.3 and Fubini’s theorem. It can be shown that both h(t,s;ε) and
h̃(t,s) are continuous functions on 0≤ s≤ t ≤ T .

Let H(t,s;ε) be the resolvent kernel for h(t,s;ε); then H(t,s;ε) is given by

H(t,s;ε)= h(t,s;ε) +
∫ t
s
h(t,σ ;ε)H(σ ,s;ε)dσ , (5.11)

and (5.8) can equivalently be given by the variation of the constants formula

χ(t;ε)=G(χ)(t;ε) +
∫ t

0
H(t,s;ε)G(χ)(s;ε)ds, 0≤ t ≤ T. (5.12)

The above equation is equivalent to

χ(t;ε)= (Dαρ
)
(t;ε)− ε(Dαχ

)
(t;ε)

+
∫ t

0
H(t,s;ε)

{(
Dαρ

)
(s;ε)− ε(Dαχ

)
(s;ε)

}
ds

+
∫ t

0
ϕ
(
χ,x0,s;ε

)
H̃(t,s;ε)ds,

(5.13)

where

H̃(t,s;ε)= h̃(t,s) +
∫ t
s
H(t,σ ;ε)h̃(σ ,s)dσ (5.14)

is continuous on 0≤ s≤ t ≤ T .
It is known that χ(t;ε) is continuous with χ(0;ε)= 0, ε > 0. Moreover, (4.20) and (5.8)

imply that, when ε = 0,

χ(t;0)=
∫ t

0
h(t,s;0)χ(s;0)ds+

∫ t
0
h̃(t,s)ϕ

(
χ,x0,s;0

)
ds. (5.15)

Thus, Theorem 2.2 implies that there exist positive constants c2 (depending on T) and ε0

such that

∣∣(Dαχ
)
(t;ε)

∣∣≤ c2, 0≤ t ≤ T , 0 < ε ≤ ε0. (5.16)
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It then follows from (5.13), Proposition 4.2, and (5.5) that for all t in [0,T] and all ε in
(0,ε0],

∣∣χ(t;ε)
∣∣≤ (c1ε+ c2ε

)(
1 +‖H‖t)+‖H̃‖

∫ t
0
c3
∣∣χ(s;ε)

∣∣2
ds, (5.17)

where

‖H‖ = max
0≤s≤t≤T ,ε≥0

∣∣H(t,s;ε)
∣∣,

‖H̃‖ = max
0≤s≤t≤T ,ε≥0

∣∣H̃(t,s;ε)
∣∣,

c3 = max
0≤t≤T

0<µ<1,ε≥0

∣∣∂11 f
(
x0 + χµ, t;ε

)∣∣.
(5.18)

Application of Theorem 2.4 yields the required result. �

Remark 5.2. The analysis in Section 3.1 for higher-order terms depends on the actual
value of α. But the proof of asymptotic correctness presented in Section 5 holds for all
terms in (3.4) and for any value of η.

6. Example

The following example obtained from [16, Chapter 8] is an initial-boundary value prob-
lem describing the process of cooling of a semi-infinite body (with higher thermal loss)
by radiation:

∂

∂t
T(x, t)= ∂2

∂x2
T(x, t), x > 0, t > 0, (6.1a)

∂

∂x
T(0, t)= 1

ε
T4(0, t), t > 0, 0 < ε� 1, (6.1b)

T(∞, t)= T(x,0)= a0, x ≥ 0, t ≥ 0, (6.1c)

where a0 is a constant. Here, one is interested in finding the temperature T(0, t) for t > 0.
It can be shown that if T(x, t) satisfies (6.1a) and (6.1c), then

a0−T(0, t)= 1
Γ(1/2)

∫ t
0
(t− s)−1/2 ∂

∂x
T(0,s)ds. (6.2)

Using (6.1b), one obtains

ε
(
a0−T(0, t)

)= 1
Γ(1/2)

∫ t
0
(t− s)−1/2T4(0,s)ds. (6.3)
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Let T(0, t) = φ(t) and consider the nonlinear singularly perturbed fractional integral
equation

εφ(t)= εa0− 1
Γ(1/2)

∫ t
0
(t− s)−1/2φ4(s)ds, t ≥ 0. (6.4)

Note that g depends on ε and that (Hg), (Ha), and (H f ) are satisfied.
The limiting equation obtained by letting ε→ 0 in (6.4) is

0= 1
Γ(1/2)

∫ t
0
(t− s)−1/2φ0

4(s)ds, t ≥ 0. (6.5)

This implies φ0(t) = 0, t ≥ 0. Thus the reduced equation has a qualitative behavior dif-
ferent from the original problem. In particular, φ0(0) �= φ(0) when a0 �= 0. Thus, when
a0 �= 0, the solution φ(t;ε) of (6.4) is not everywhere close to the solution of the unper-
turbed equation, obtained by letting ε→ 0. Therefore (6.4) is singularly perturbed.

To analyze (6.4) consider the approximation given in (3.9) with η = 2. The leading
order outer solution u0(t) follows from (3.17) as

u0(t)= 0, 0≤ t ≤ T. (6.6)

The governing equation for the leading order inner layer solution is given by

v0(τ)= a0− 1
Γ(1/2)

∫ τ
0

(τ− σ)−1/2v0
4(σ)dσ , τ ≥ 0. (6.7)

This equation cannot be solved exactly for v0(τ) but it is simpler compared to (6.4) in
the sense that it does not contain the parameter ε. Initial investigation of this equation
implies that there exists a solution v0(τ) for all τ ≥ 0, such that

0≤ v0(τ)≤ a0, ∀τ ≥ 0. (6.8)

Further analysis reveals that the Mellin transform technique can be used to describe
the asymptotic behavior of the solution v0(τ) of (6.7) for large and small values of τ. In
particular, applying Proposition 4.1 to (6.7) with

ψ(τ)= v4
0(τ) (6.9)

strongly nonlinear implies that ψ(τ)= o(v0(τ))=O(τ−4β0 ), τ →∞. Following the proof
of Proposition 4.1 with α= 1/2 reveals that

v0(τ)∼ a0√
π
τ−1/8, τ −→∞. (6.10)

A similar analysis from [6] implies that

v0(τ)∼ a0 +
2a4

0√
π
τ1/2, τ −→ 0. (6.11)
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These results agree with those obtained in [2]. Thus the uniformly valid asymptotic solu-
tion of (6.4) is

φ(t;ε)= v0

(
t

ε2

)
, 0≤ t ≤ T , (6.12)

for all ε ≥ 0 and not the φ0(t).
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