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We introduce generalized definitions of Peano and Riemann directional
derivatives in order to obtain second-order optimality conditions for
vector optimization problems involving C1,1 data. We show that these
conditions are stronger than those in literature obtained by means of
second-order Clarke subdifferential.

1. C1,1 vector functions and second-order subdifferentials

A function f : R
m → R

n is said to be locally lipschitzian (or of class C0,1)
at x0 ∈ R

m when there exist constants Kx0 and δx0 such that

∥∥f(x1
)− f

(
x2
)∥∥ ≤Kx0

∥∥x1 −x2
∥∥, (1.1)

for all x1,x2 ∈ R
m, ‖x1 − x0‖ ≤ δx0 , and ‖x2 − x0‖ ≤ δx0 . For this type of

functions, according to Rademacher theorem, f is differentiable almost
everywhere (in the sense of Lebesgue measure). Then the first-order
Clarke generalized Jacobian of f at x0, denoted by ∂f(x0), exists and
is given by

∂f
(
x0
)

:= clconv
{

limf ′(xk

)
: xk −→ x0, f

′(xk) exists
}
, (1.2)

where clconv{· · ·} stands for the closed convex hull of the set under the
parentheses. Now, assume that f is a differentiable vector function from
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R
m to R

n whose directional derivative is of class C0,1 at x0 ∈ R
m. In this

case, we say that f is of class C1,1 at x0. The second-order Clarke subdif-
ferential of f at x0, denoted by ∂2f(x0), is defined as

∂2f
(
x0
)

:= clconv
{

limf ′′(xk

)
: xk −→ x0, f

′′(xk

)
exists

}
. (1.3)

Thus ∂2f(x0) is a subset of the finite-dimensional space L(Rm;L(Rm;Rn))
of linear operators from R

m to the space L(Rm;Rn) of linear operators
from R

m to R
n. The elements of ∂2f(x0) can therefore be viewed as a

bilinear function on R
m × R

m with values in R
n. For the case n = 1, the

term “generalized Hessian matrix” was used in [9] to denote the set
∂2f(x0). By the previous construction, the second-order subdifferential
enjoys all properties of the generalized jacobian. For instance, ∂2f(x0)
is a nonempty convex compact set of the space L(Rm;L(Rm;Rn)) and
the set-valued map x �→ ∂2f(x) is upper semicontinuous. Let u ∈ R

m;
in the following we will denote by Lu the value of a linear operator
L : R

m → R
n at the point u ∈ R

m and by H(u,v) the value of a bilinear
operator H : R

m ×R
m → R

n at the point (u,v) ∈ R
m ×R

m. So we will set

∂f
(
x0
)
(u) =

{
Lu : L ∈ ∂f

(
x0
)}

,

∂f
(
x0
)
(u,v) =

{
H(u,v) : H ∈ ∂2f

(
x0
)}

.
(1.4)

Some important properties are listed here (see [8]).
(i) Mean value theorem: let f be of class C0,1 and a,b ∈ R

m. Then

f(b)− f(a) ∈ clconv
{
∂f(x)(b −a) : x ∈ [a,b]

}
, (1.5)

where [a,b] = conv{a,b}.
(ii) Taylor expansion: let f be of class C1,1 and a,b ∈ R

m. Then

f(b)−f(a)∈f ′(a)(b−a)+ 1
2

clconv
{
∂2f(x)(b−a,b−a) : x∈[a,b]}. (1.6)

Several problems of applied mathematics including, for example,
portfolio analysis, data classification, and so forth involve functions
with no hope of being twice differentiable (see [4, 5, 13] and Example
4.3) but they can be approximated by C1,1 objects. Furthermore, the the-
ory of C1,1 functions has revealed its importance in some penalty meth-
ods, as shown in the following examples.

Example 1.1. Let g : R
m → R be twice continuously differentiable on R

m

and consider f(x) = [g+(x)]2, where g+(x) = max{g(x),0}. Then f is C1,1

on R
m.
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Example 1.2. Consider the minimization problem minf0(x) over all x ∈
R

m such that f1(x) ≤ 0, . . . ,fk(x) ≤ 0. Letting r denote a positive parame-
ter, the augmented Lagrangian Lr [20] is defined on R

m ×R
k as

Lr(x,y) = f0(x) +
1
4r

k∑
i=1

{[
yi + 2rfi(x)

]+}2 −y2
i . (1.7)

Upon setting y = 0 in the previous expression, we observe that

Lr(x,0) = f0(x) + r
k∑
i=1

[
f+
i (x)

]2 (1.8)

is the ordinary penalized version of the minimization problem. The aug-
mented Lagrangian Lr is differentiable everywhere on R

m ×R
k with

∇xLr(x,y) =∇f0(x) +
k∑
j=1

[
yj + 2rfj(x)

]+∇fj(x)

∂Lr

∂yi
(x,y) = max

{
fi(x),−

yi

2r

}
, i = 1, . . . ,k,

(1.9)

when fi are C2 on R
m and Lr is C1,1 on R

m+k.

Optimality conditions for C1,1 scalar functions have been studied by
many authors and numerical methods have been proposed too (see [7,
9, 10, 15, 17, 18, 21, 22, 23]). In [7], Guerraggio and Luc have given nec-
essary and sufficient optimality conditions for vector optimization prob-
lems expressed by means of ∂2f(x). In this paper, we introduce general-
ized Peano and Riemann directional derivatives for C1,1 vector functions
and we study second-order optimality conditions for set-constrained op-
timization problems.

2. Generalized directional derivatives for C1,1 vector functions

Let Ω be an open subset of R
m and let f : Ω→ R

n be a C1,1 vector func-
tion. For such a function we define

δd
2f(x;h) = f(x+ 2hd)− 2f(x+hd) + f(x) (2.1)

with x ∈Ω, h ∈ R, and d ∈ R
m. The following result characterizes a func-

tion of class C1,1 in terms of δd
2 . It has been proved, for the scalar case, in

[12, Theorem 2.1].
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Proposition 2.1. Assume that the function f : Ω ⊂ R
m → R

n is bounded on
a neighborhood of the point x0 ∈Ω. Then f is of class C1,1 at x0 if and only if
there exist neighborhoods U of x0 and V of 0 ∈ R such that ‖δd

2f(x;h)‖/h2 is
bounded on U×V \{0}, for all d ∈ S1 = {d ∈ R

m : ‖d‖ = 1}.

Proof. The proof follows from recalling that a vector function is of class
C1,1 at x0 if and only if each component of f is of class C1,1 at x0. �

The following definition extends to the vector case the well-known
definition of the Riemann directional derivative [2].

Definition 2.2. The second Riemann directional derivative of f at x0 ∈Ω
in the direction d ∈ R

m is defined as

f ′′
R

(
x0;d

)
=
{
l = lim

k→+∞
δd

2f
(
x0; tk

)
h2
k

, tk ↓ 0
}
, (2.2)

that is, the set of all cluster points of sequences δd
2f(x0; tk)/t2k, tk ↓ 0, k →

+∞.

If f : Ω ⊂ R
m → R, then supl∈f ′′

R(x0;d) l (infl∈f ′′
R(x0;d) l) coincides with the

classical definition of the second upper Riemann directional derivative
f
′′
R(x0;d) (second lower Riemann directional derivative f ′′

R
(x0;d)). If we

define ∆d
2f(x;h) = f(x + hd)− 2f(x) + f(x −hd), then one can introduce

the corresponding Riemann directional derivatives. Riemann [19] intro-
duced (for scalar functions) the notion of second-order directional de-
rivative while he was studying the convergence of trigonometric series.
For properties and applications of Riemann directional derivatives, see
[1, 2, 8].

Remark 2.3. If we define δu,v
2 f(x;s, t) = f(x + su + tv) − f(x + su) − f(x +

tv) + f(x) with x ∈Ω, s, t ∈ R, and u,v ∈ R
m, then the set

f ′′
C

(
x0;u,v

)
=
{
l = lim

k→+∞
δu,v

2 f
(
x0;sk, tk

)
sktk

, sk, tk ↓ 0
}

(2.3)

is an extension to the vector case of the definition according to Cominetti
and Correa [6]. It is clear that f ′′

R(x0;d) ⊂ f ′′
C(x0;d,d).
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Definition 2.4. The second Peano directional derivative of f at x0 ∈Ω in
the direction d is defined as

f ′′
P

(
x0;d

)
=
{
l = lim

k→+∞
2
f
(
x0 + tkd

)− f
(
x0
)− tk∇f

(
x0
)
d

t2k
, tk ↓ 0

}
, (2.4)

that is, the set of all cluster points of sequences 2(f(x0 + tkd) − f(x0) −
tk∇f(x0)d)/t2k, tk ↓ 0, k → +∞.

If f : Ω ⊂ R
m → R, then supl∈f ′′

P (x0;d) l (infl∈f ′′
P (x0;d) l) coincides with the

classical definition of the second upper Peano directional derivative
f
′′
P (x0;d) (second lower Peano directional derivative f ′′

P
(x0;d)). Peano

[16], studying the Taylor expansion formula for real functions, intro-
duced a concept of a higher-order directional derivative of a function f
at a point x0 known thereafter as the Peano directional derivative. A sim-
ilar directional derivative (parabolic directional derivative) is also used
in [3] in the scalar case. Furthermore, in [14] some optimality conditions
for C1,1 vector optimization problems involving inequality constraints
are given by using this type of generalized directional derivative. In this
paper we study optimality conditions for set constraints.

It is trivial to prove that the previous sets are nonempty compact sub-
sets of R

n. The aim of the next sections is to investigate some properties
of these generalized directional derivatives for C1,1 vector functions and
then apply them in order to obtain second-order optimality conditions
for vector optimization problems.

3. Preliminary properties

Let f : Ω ⊂ R
m → R be a C1,1 scalar function at x0 ∈ Ω. The following

theorem states an inequality between second upper Peano and Riemann
directional derivatives.

Theorem 3.1 [11]. Let f : Ω ⊂ R
m → R be a C1,1 scalar function at x0 ∈ Ω.

Then f
′′
P (x0;d) ≤ f

′′
R(x0;d).

Now, let f : Ω ⊂ R
m → R

n be a C1,1 vector function at x0 ∈Ω.

Lemma 3.2. For all ξ ∈ R
n, there exists r̃ξ ∈ f ′′

R(x0;d) such that ξ(p − r̃ξ) ≤ 0,
for all p ∈ f ′′

P (x0;d).

Proof. In fact, for all ξ ∈ R
n and eventually by extracting subsequences,

we have

ξf
′′
P

(
x0;d

) ≤ ξf
′′
R

(
x0;d

)
= ξr̃ξ, (3.1)
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where r̃ξ ∈ f ′′
R(x0;d). So, for all p ∈ f ′′

P (x0;d), we have ξp ≤ ξf
′′
P (x0;d) ≤ ξr̃ξ

and then the thesis follows. �

Theorem 3.3. Let f : Ω ⊂ R
m → R

n be a C1,1 vector function at x0 ∈Ω. Then
f ′′
P (x0;d) ⊂ convf ′′

R(x0;d).

Proof. Ab absurdo, there exists p∗ ∈f ′′
P (x0;d) such that p∗ 
∈ convf ′′

R(x0;d).
Since convf ′′

R(x0;d) is a compact convex set of R
m, then, by standard

separation argument, there exists ξ ∈ R
n, ξ 
= 0, such that ξ(p∗ − r) > 0, for

all r ∈ convf ′′
R(x0;d). From Lemma 3.2, there exists r̃ξ ∈ f ′′

R(x0;d) such
that ξ(p − r̃ξ) ≤ 0, for all p ∈ f ′′

P (x0;d). So ξ(p∗ − r̃ξ) ≤ 0 and ξ(p∗ − r̃ξ) >
0. �

Theorem 3.4. Let f : Ω ⊂ R
m → R

n be a C1,1 vector function at x0 ∈Ω. Then
f ′′
R(x0;d) ⊂ ∂2f(x0)(d,d).

Proof. Let r ∈ f ′′
R(x0;d). Then

r = lim
k→+∞

f
(
x0 + 2tkd

)− 2f
(
x0 + tkd

)
+ f

(
x0
)

t2k
, (3.2)

where tk ↓ 0. By Taylor formula and the upper semicontinuity of the
map x �→ ∂2f(x), for all ε > 0, there exists k0(ε) ∈ N such that, for all k ≥
k0(ε),

f
(
x0 + 2tkd

)− 2f
(
x0 + tkd

)
+ f

(
x0
)

t2k
∈ ∂2f

(
x0
)
(d,d) + εB(0,1), (3.3)

where B(0,1) is the closed unit ball in R
n. So, taking the limit when k →

+∞ and ε→ 0, we have f ′′
R(x0;d) ⊂ ∂2f(x0)(d,d). �

Corollary 3.5. Let f : Ω ⊂ R
m → R

n be a C1,1 vector function at x0 ∈ Ω.
Then f ′′

P (x0;d) ⊂ ∂2f(x0)(d,d).

The following example shows that the inclusion is strict.

Example 3.6. Let f : R → R
2, f(x) = (x4 sin(1/x) + x4,x4). The function f

is of class C1,1 at x0 = 0 and f ′′
P (0;d) = (0,0) ∈ ∂2f(0)(d,d) = [−d2,d2] ×

{0}.
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Theorem 3.7. Let f : Ω ⊂ R
m → R

n be a C1,1 vector function at x0 ∈Ω. Then

f ′′
P

(
x0;d

)

=
{
l = lim

k→+∞
2
f
(
x0 + tkdk

)− f
(
x0
)− tk∇f

(
x0
)
dk

t2k
, tk ↓ 0, dk −→ d

}
.

(3.4)

Proof. Let

A(
x0;d

)

=
{
l = lim

k→+∞
2
f
(
x0 + tkdk

)− f
(
x0
)− tk∇f

(
x0
)
dk

t2k
, tk ↓ 0, dk −→ d

}
.

(3.5)

Then the inclusion f ′′
P (x0;d) ⊂ A follows immediately considering dk =

d. Vice versa, let l ∈ A, there exist tk ↓ 0, dk → d such that

l

2
= lim

k→+∞
f
(
x0 + tkdk

)− f
(
x0
)− tk∇f

(
x0
)
dk

t2k

= lim
k→+∞

f
(
x0 + tkdk

)− f
(
x0 + tkd

)
t2k

+
f
(
x0 + tkd

)− f
(
x0
)− tk∇f

(
x0
)
d− tk∇f

(
x0
)(
dk −d

)
t2k

.

(3.6)

Taking eventually a subsequence

lim
k→+∞

f
(
x0 + tkd

)− f
(
x0
)− tk∇f

(
x0
)
d

t2
k

=
p

2
, p ∈ f ′′

P

(
x0;d

)
,

lim
k→+∞

∣∣∣∣fi
(
x0 + tkdk

)− fi
(
x0 + tkd

)− tk∇fi
(
x0
)(
dk −d

)
t2
k

∣∣∣∣

= lim
k→+∞

∣∣∣∣ tk∇fi
(
ξk
)(
dk −d

)− tk∇fi
(
x0
)(
dk −d

)
t2
k

∣∣∣∣

≤ lim
k→+∞

K
∥∥dk −d

∥∥∥∥ξk −x0
∥∥

tk
= 0,

(3.7)
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where K is the Lipschitz modulus of the derivative ∇f around x0, ξk ∈
[x0 + tkdk,x0 + tkd] and (ξk −x0)/tk → d. Therefore

lim
k→+∞

f
(
x0 + tkdk

)− f
(
x0 + tkd

)− tk∇f
(
x0
)(
dk −d

)
t2k

= 0 (3.8)

and then p = l. �

4. Set-constrained optimization problems

Let f : R
m → R

n be a C1,1 vector function and consider the following set-
constrained optimization problem:

min
x∈X

f(x), (4.1)

where X is a subset of R
m. For such a problem, the following definition

states the classical notion of local minimum point and local weak mini-
mum point.

Definition 4.1. Let C be a pointed closed convex cone of R
n. Then x0 ∈X

is called a local minimum point of (4.1) if there exists a neighborhood
N ∩X of x0 such that no x ∈N ∩X satisfies f(x0)− f(x) ∈ C\{0}.

Definition 4.2. Let C be a pointed closed convex cone of R
n. Then x0 ∈X is

called a local weak minimum point of (4.1) if there exists a neighborhood
N ∩X of x0 such that no x ∈N ∩X satisfies f(x0)− f(x) ∈ intC.

The following example shows the importance of the class of C1,1 vec-
tor functions in order to obtain smooth approximations of strongly non-
differentiable optimization problems.

Example 4.3. In many applications in portfolio analysis, data classifica-
tion, and approximation theory [4, 5, 13], one can be interested in solving
optimization problems as

min
x∈X

(
f(x),supp(x)

)
, (4.2)

where f : R
m → R is a smooth function, X is a subset of R

m, and supp(x)=
|{i : xi 
= 0}| (|A| is the cardinality of the set A ⊂ N). For example, in
portfolio optimization, the variables correspond to commodities to be
bought, the function supp(x) specifies that not too many different types
of commodities can be chosen, the function f(x) is a “measure of risk,”
and the constraints X prescribe levels of “performance.” In data classi-
fication context, the function f is a measure of the margin between the
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separating planes, and the minimization of supp(x) concerns the num-
ber of features of x, that is, the number of nonzero components of the
vector, in order to keep the complexity of the classification rule low (this
improves the understandability of the model results).

This type of optimization problems involves strongly nondifferen-
tiable functions; one way to solve it is to replace the function supp(x)
with an approximation supp∗

α(x) as

supp∗
α(x) =

m∑
i=1

[
max

{
e−αxi ,eαxi

}]2
. (4.3)

Then the function x → (f(x),supp∗
α(x)) is a C1,1 vector function, for all

α > 0.

Definition 4.4. Let A be a given subset of R
n and x0 ∈ clA. The sets

WF
(
A,x0

)
=
{
d ∈ R

n : ∃tk ↓ 0, x0 + tkd ∈X
}
,

T
(
A,x0

)
=
{
d ∈ R

n : ∃tk ↓ 0, ∃dk → d, x0 + tkdk ∈X
} (4.4)

are called cone of weak feasible directions and tangent cone to A at x0.

Theorem 4.5 (necessary optimality condition). If x0 is a local weak mini-
mum point, then, for all d ∈ R

m such that −∇f(x0)d ∈ C and d ∈WF(X,x0),

f ′′
P

(
x0;d

) 
⊂ − intC. (4.5)

Proof. Ab absurdo, there exist d ∈ R
n, −∇f(x)d ∈ C, and d ∈WF(X,x0)

such that f ′′
P (x0;d) ⊂ − intC. Now, for all l ∈ f ′′

P (x0;d), we have

2
f
(
x0 + tkd

)− f
(
x0
)− tk∇f

(
x0
)
d

t2k
= l+ o

(
t2k
)
, (4.6)

where l ∈ f ′′
P (x0;d) ⊂ − intC and there exists k0 such that for all k ≥ k0 we

have

2
f
(
x0 + tkd

)− f
(
x0
)− tk∇f

(
x0
)
d

t2
k

∈ − intC (4.7)
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and then

f
(
x0 + tkd

)− f
(
x0
) ∈ tk∇f

(
x0
)
d − intC ⊂ − intC. (4.8)

�

Corollary 4.6. If x0 is a local weak minimum point, then, for all d ∈ R
m such

that −∇f(x0)d ∈ C and d ∈WF(X,x0), we have

∂2f
(
x0
)
(d,d) 
⊂ − intC. (4.9)

Example 4.7. Let f : R → R
2, f(x) = (x4 sin(1/x)−x2/4,−x2), and C = R

2
+.

The point x0 = 0 is not a local weak minimum point. We have f ′′
P (0;d) =

(−d2/2,−2d2) ∈ − intR
2
+ (the necessary condition is not satisfied) but

∂2f(0)(d,d) = [−3d2/2,d2/2] × {−2d2} (the necessary condition is satis-
fied).

Theorem 4.8 (sufficient optimality condition). Let x0 ∈ X and suppose
that ∇f(x0)d 
∈ − intC, for all d ∈ T(X,x0). If for all d 
= 0, d ∈ T(X,x0), and
∇f(x0)d ∈ −(C\ intC) there exists a neighborhood U of d such that, for all
v ∈U(d), ∇f(x0)v 
∈ − intC, and f ′′

P (x0;d) ⊂ intC, then x0 is a local mini-
mum point.

Proof. Ab absurdo, there exists xk ∈X, xk → x0 such that f(xk)− f(x0) ∈
−C\{0}. If dk = (xk −x0)/‖xk −x0‖, then, eventually by extracting subse-
quence, xk = x0 + tkdk and dk → d, ‖d‖ = 1. So d ∈ T(X,x0). Furthermore,

f
(
xk

)− f
(
x0
)
= tk∇f

(
x0
)
dk + o

(
tk
)

(4.10)

and then ∇f(x0)d ∈ −C since C is closed. So ∇f(x0)d ∈ −(C\ intC) and
then there exists U(d) such that ∇f(x0)v 
∈ − intC, for all v ∈U(d).

Let p = limk→+∞ 2((f(xk) − f(x0) − tk∇f(x0)dk)/t2k) ∈ intC, then p ∈
f ′′
P (x0;d) and, since intC is open, there exists k0 such that, for all k ≥ k0,

2
f
(
xk

)− f
(
x0
)− tk∇f

(
x0
)
dk

t2
k

∈ intC (4.11)

and then

f
(
xk

)− f
(
x0
) ∈ tk∇f

(
x0
)
dk + intC ⊂ (− intC)c + intC ⊂ (−C)c. (4.12)

�
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Corollary 4.9. Let x0 ∈X and suppose that ∇f(x0)d 
∈ − intC, for all d∈
T(X,x0). If for all d 
= 0, d ∈ T(X,x0), and ∇f(x0)d ∈ −(C\ intC), there ex-
ists a neighborhood U of d such that, for all v ∈ U, ∇f(x0)v 
∈ − intC, and
∂2f(x0)(d,d) ⊂ intC, x0 is a local minimum point.
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