
THE COMPLEXITY OF RETINA OPERATORS

BERNARD BEAUZAMY

Received 8 November 2001

An artificial retina is a plane circuit, consisting of a matrix of photocap-
tors; each has its own memory consisting of a small number of cells (3
to 5) arranged in parallel planes. The treatment consists of logical opera-
tions between planes, plus translations of any plane: they are called “el-
ementary operations” (EO). A retina operator (RO) is a transformation
of the image, defined by a specific representation of a Boolean function
of n variables (n is the number of neighboring cells taken into account).
What is the best way to represent an RO by means of EO, considering the
strong limitation of memory? For most retina operators, the complexity
(i.e., the number of EO needed) is exponential, no matter what repre-
sentation is used, but, for specific classes, threshold functions and more
generally symmetric functions, we obtain a result several orders of mag-
nitude better than the previously known ones. It uses a new represen-
tation, called “Block Addition of Variables.” For instance, the threshold
function T25,12 (find if at least 12 pixels are at 1 in a square of 5× 5) re-
quired 62 403 599 EO to be performed. With our method, it requires only
38 084 operations, using three memory cells.

1. Artificial retinas and their mathematical representation

1.1. Description of a retina

An artificial retina may be viewed as a plane circuit, the purpose of
which is to receive and analyze images. Instead of a usual camera, which
divides the image into pixels, in a retina we have a matrix of photocap-
tors, each of them having its own treatment and its own memory. The

Copyright c© 2002 Hindawi Publishing Corporation
Journal of Applied Mathematics 2:1 (2002) 23–50
2000 Mathematics Subject Classification: 05A18, 03D15
URL: http://dx.doi.org/10.1155/S1110757X02111107

http://dx.doi.org/10.1155/S1110757X02111107

24 The complexity of retina operators

advantage is low cost, speed of execution, and possibility of prescribing
to each circuit some specific tasks, for instance, taking into account the
behavior of its neighbors. As an example, a sensitivity threshold may
be adjusted, separately by each cell, depending on the amount of light
received by the neighbors.

So, one may view an artificial retina as:
(i) a matrix of photocaptors (at most 256× 256 for today’s technol-

ogy), each photocaptor has only two states: excited or not, which
is represented by 1 or 0;

(ii) a memory for each photocaptor. For cost reasons, this memory is
reduced to a small number of bits (3 to 5, e.g.);

(iii) computation circuits, acting the same way on all photocaptors.
A retina is therefore a “Single Instruction Multiple Data” parallel cal-

culator.

1.2. Mathematical representation

The “image” is the set of excited photocaptors (the ones which are in
the 1 state); therefore, it can be viewed as a subset of Z

2. The memory
cells are seen as planes, parallel to the plane which contains the image.
So, if there are three memory bits for each captor, we see that as three
planes, parallel to the image plane; each memory bit is represented by
the point in the corresponding parallel plane, just below the image. This
representation is quite convenient for parallel computation.

The image plane (upper plane) is not changed; it is copied onto the
first memory plane, where subsequent operations are performed.

The available operations are:
(i) to copy one memory plane upon another;
(ii) to take the negation of a memory plane and copy it on another

(the cells which were at 0 are put at 1, and conversely);
(iii) to perform translations of any memory plane, in any of the four

directions N, S, E, and W;
(iv) to realize the AND functions between two planes. This means

that if the pixel in plane 1 is at 1 and the corresponding pixel
(same coordinates) of plane 2 is also at 1, the first pixel remains
at 1; it is set to 0 in all other cases;

(v) to realize the OR function between two planes;
(vi) to realize the exclusive OR (XOR) between two planes: the first

pixel is set to 1 if and only if only one of the pixels is at 1.

1.3. The treatment in a retina

Given the indications from n captors, we want to take a decision, that is,
we want to perform a Boolean function of n variables. For instance, we

Bernard Beauzamy 25

want to replace the original image by a simpler one, for instance, keeping
only the skeleton, or the contours, and so on. We respect the principle of
invariance by translation: the transform of the translated image will be
the translate of the transform.

Another decision might be based upon the computation, in a 5 × 5
neighborhood, of the number of pixels which are at 1.

More generally, the transformation will be defined as follows:
(i) a cursor, which is a geometric shape made of n pixels. Theoret-

ically speaking, it has no prespecified regularity: it may not be
convex, or connected, but in practice, one may think of a square
or of a rectangle, or of a cross;

(ii) a specific pixel, called the reference point, among the n pixels in
the cursor;

(iii) a truth table, made the following way. There are 2n possible
choices of the colors in the cursor (including all white and all
black). For each of them, we choose 0 or 1. If 0 is chosen, the ref-
erence pixel is set to 0 when the cursor is met. If 1 is chosen, the
reference pixel is set to 1.

Let B(Z2) (Boolean subset of Z
2) be a set of all possible images. The

cursor, the reference pixel, and the truth table determine entirely an oper-
ator from B(Z2) into itself: such an operator is called a “retina operator”
(in short, RO).

Here is a simple example: take as a cursor a 3× 1 rectangle. Take the
central pixel as the reference point. Then the truth table

(0,0,0)→ 0, (1,0,0)→ 0, (0,1,0)→ 0, (0,0,1)→ 0,

(1,1,0)→ 1, (1,0,1)→ 1, (0,1,1)→ 1, (1,1,1)→ 1

is that of the threshold function T3,2: this is the function which returns 1
if in the neighborhood of the reference point at least two pixels are at 1,
and returns 0 otherwise.

1.4. The disjunctive normal form of an RO

The disjunctive normal form (in short, DNF) of an RO is the simplest
possible representation. It consists simply in the enumeration of all pos-
itive cases. It is defined in a recursive way, from the formula

f
(
x1,x2, . . . ,xn

)
=
(
f
(
x1,x2, . . . ,xn−1,1

)∧xn

)∨(f(x1,x2, . . . ,xn−1,0
)∧ x̄n

)
.

(1.1)

This finally gives

f
(
x1,x2, . . . ,xn

)
=
∑

i1<···<in
yi1 · · ·yin , (1.2)

26 The complexity of retina operators

where each yi is either xi or x̄i, and where we use a + sign to denote
the “OR”. With this convention, the RO in the threshold example above
becomes

T3,2
(
x1,x2,x3

)
= x1x2x̄3+x1x̄2x3+ x̄1x2x3+x1x2x3. (1.3)

How to handle the DNF with the memory planes is very easy to see;
we describe it on the example above. On each pixel of the image, we set
the cursor and note the value of x1, x2, and x3. Using a negation and
two translations, we compute on the second plane the quantity x1x2x̄3.
We write 1 at each reference point where this quantity is 1; the result is
written on plane 3. We pass to the monomial x1x̄2x3, again computed
on plane 2, and the OR of the two is set on plane 3, and so on with the
two other monomials. So, three memory planes will suffice, but we need
n translations for each monomial, and there are in general 2n monomi-
als. This gives a total of n× 2n elementary operations, not counting the
negations.

1.5. The present work

As we just saw, the number of operations required to represent an RO by
means of the classical DNF is quite high, so high that this representation
is useless in practice. The present work will realize two aims:

(i) to show that for almost all RO, no matter what representation
one uses, the complexity (number of elementary operations) is
exponential in n, size of the cursor;

(ii) to show that, for some specific RO (including the symmetric fun-
ctions), much better representations can be found.

The first topic is treated in Section 2, the second in Section 3.

2. Theoretical complexity of retina operators

In this section, we establish some general results about the complexity of
the RO, that is, we evaluate the number of elementary operations (EO)
needed to decompose any RO.

2.1. Measure of complexity of an RO

The complexity of an RO is defined as the minimum number of elemen-
tary operations necessary in order to realize it, without any considera-
tion about the memory size.

The computation of complexity, therefore, is done assuming that
there are enough memory planes, so that any sequence of EO can be
performed.

Bernard Beauzamy 27

Despite this assumption, which is quite strong, we will see that most
retina operators of size n (i.e., such that the cursor is of size n) have a
measure of complexity which is exponential in n.

More precisely, we can state the following result.

Proposition 2.1. For n ≥ 3, among the 22n retina operators using a cursor of
size n, at most 22n−1

may be expressed using at most 2n/2n elementary opera-
tions.

One should observe that the “good number” 22n−1
is extremely small,

compared with the total number 22n ; moreover, this proportion tends to
0 very quickly when n→ +∞.

Proof. A succession of elementary operations AND and OR may be view-
ed as a binary tree. So, in order to establish this result, we proceed by
successive enumerations: first all binary trees, then the negations, and fi-
nally the translations. This was inspired by a result of Shannon (see [1]).

2.1.1. Enumeration of all binary trees

A binary tree is a graph, whose nodes have two inputs and one output.
A node is simply a binary gate, made with the operator “AND” or with
the operator “OR.” The tree necessarily terminates with a unique output.
Any Boolean function may be represented that way, but the representa-
tion is not unique.

For a tree containing k binary gates, there are 2k branches (each node
has two inputs). We do not count the final exit branch.

The number C(k) of binary trees with k gates satisfies the induction
relation

C(k) =
k−1∑
l=0

C(k− l−1)C(l), C(0) = 1. (2.1)

This relation is established as follows: the terminal node of the tree is
withdrawn, so the tree is divided into two trees, one of length k − l − 1
and the other of length l, where l may take any value between 0 and
k−1.

So the number C(k) is the “Catalan number”

C(k) =

(
2k
k

)
1

k+1
. (2.2)

Rough estimates for this number may be obtained easily, for k=1,2, . . .

3k ≤ C(k) ≤ 4k

k
. (2.3)

28 The complexity of retina operators

More precisely, Stirling’s formula gives

C(k) ∼ 1√
π

4k

k3/2
. (2.4)

2.1.2. Taking into account the two elementary operations

Each node of the tree represents an elementary operation AND or OR.
For each tree, there are 2k ways to choose the AND among the k symbols.
The number of binary trees, where each node is either AND or OR is
therefore

2kC(k). (2.5)

2.1.3. Taking the negations into account

Let p be the total number of negations which will appear. There is at
most one negation on each branch (because two negations compensate
each other). Each tree has 2k branches, so there are (2k

p) possible choices
for the p “negative” branches, with p ≤ 2k.

The number of trees with k nodes and p negations is, therefore,(
2k
p

)
2kC(k). (2.6)

2.1.4. Taking the translations into account

Finally, we introduce the translations. Let t be their number. They com-
mute with the negations. There are 2k branches, and one may put as
many translations as one wants on each branch. So there are (2k)t possi-
ble repartitions.

So, the number of binary trees, made with k symbols AND and OR,
containing p negations and t translations is

N(k,p, t) ≤ (2k)t
(

2k
p

)
2kC(k). (2.7)

If now we fix a total number m of elementary operations, decomposed
into k OR or AND, p negations and t translations, with of course k+p+t =
m, the total number of distinct operators that we can write using these
operations is at most

Nm ≤
∑

k+p+t=m

(2k)t
(

2k
p

)
2kC(k), (2.8)

that is,

Bernard Beauzamy 29

Nm ≤
∑

k+p+t=m

(2k)t
(

2k
p

)
2k
(

2k
k

)
1

k+1
. (2.9)

This can be written as

Nm ≤
m∑
k=0

(2k)m−k 2k

k+1

(
2k
k

)
2k∑
p=0

(2k)−p
(

2k
p

)
. (2.10)

But
2k∑
p=0

(2k)−p
(

2k
p

)
=
(

1+
1

2k

)2k

∼ e, (2.11)

and, using (2.10), we get

Nm ≤ e
m∑
k=0

(2k)m−k 2k

k+1

(
2k
k

)

= e2m
m∑
k=0

km−k

k+1

(
2k
k

)

≤ e2m
m∑
k=1

km−k−1

(
2k
k

)
≤ e2m

m∑
k=1

mm−k−1

(
2m
k

)

≤ e2mmm−1
m∑
k=1

m−k
(

2m
k

)
≤ e2mmm−1

(
1+

1
m

)2m

(2.12)

and finally,

Nm ≤ e32mmm−1. (2.13)

For m = α2n/n, with α < 1 to be chosen, we get

logNm ≤ 3+
α2n

n
log2+

(
α2n

n
−1
)

log
α2n

n
(2.14)

and, therefore,

logNm− log22n ≤ 3+
α2n

n
log2+

α2n

n
log

α2n

n
− log

α2n

n
−2n log2

= 2n
(
− log2+

α

n
log2+

α

n
logα+α log2− α logn

n

)
− log

α2n

n
+3

= 2n
(
(α−1) log2+

α

n

(
log2+ logα

)− α logn
n

)
− log

α2n

n
+3.

(2.15)

30 The complexity of retina operators

For every fixed α < 1, this is of course equivalent to 2n(α−1) log2 when
n→ +∞.

In order to get a quantitative result, we give a precise value to α, and
for α = 1/2, we obtain

logN2n−1/n− log22n ≤ 2n
(
− 1

2
log2− 1

2
logn
n

)
− log

2n−1

n
+3. (2.16)

But, as soon as n ≥ 4, the following inequality holds:

−2n−1

n
logn− log

2n−1

n
+3 ≤ 0, (2.17)

and we get the formula, for n ≥ 4

N2n−1/n

22n
≤ 2−2n−1

(2.18)

which is also

N2n−1/n ≤ 22n−1
. (2.19)

So we see that the maximum number of binary trees using 2n−1/n ele-
mentary operations (AND, OR, negations, translations) is at most equal
to 22n−1

. The same upper bound holds for the total number of retina
operators using 2n−1/n elementary operations.

Since the total number of RO corresponding to a cursor of size n is
22n , the number of RO using more than 2n−1/n elementary operations is
22n −22n−1

= 22n(1−1/22n−1
), that is almost all.

For n = 3, we must go back to formula (2.9), and perform a direct
computation. One has 2n/2n < 2, and N2 ≤ 16 (evaluation using formula
(2.9)). Evaluation (2.19) still holds, and the proof is finished. �

We now recall an upper bound for the number of EO, valid for all op-
erators. This result follows from Lupanov’s theorem (see [2]) and is also
attributed to Muller (see [1]). We are indebted to Antoine Manzanera,
who brought Lupanov’s theorem to our attention.

2.2. Optimal upper bounds, valid for any RO

Theorem 2.2 (Lupanov). Any retina operator, with cursor size n, has com-
plexity of type (2n/n)(1+o(1)).

This means that, for all ε > 0, there exists n0 ≥ 1 such that, for all n ≥ n0,
any retina operator of size n may be written using at most (1+ε)(2n/n)
operations.

Bernard Beauzamy 31

2.3. Conclusion

These statements about the general complexity of RO show in a very
clear manner that choices have to be made about which RO will be im-
plemented in a retina, because to implement all of them is beyond our
reach: they require in general too many operations. Only those with
polynomial complexity may be used. This is of course especially true
if, moreover, we have memory restrictions.

3. Efficient implementation of some classes of RO under severe
memory limitations

3.1. Generalities: two ways of writing a threshold function

As we already saw, for any Boolean function, we can implement the de-
composition using three memory planes only, using the DNF. This is
done in a very simple way: one enumerates all cases where the value
of the function is 1, and one performs an OR of all these cases. In gen-
eral, these cases are very numerous and the number of operations is very
high.

For instance, for the threshold function Tn,p(x1, . . . ,xn), defined by

Tn,p =




1 if
n∑
1

xi ≥ p,

0 otherwise,

(3.1)

the number of variables which must be at 1 is either p, or p+1,p+2, . . . ,n.
Therefore, the number of terms in the decomposition

Tn,p =
∑

i1<···<ip
yi1 · · ·yip (3.2)

(where each y is either x or x̄) is

N =

(
n

p

)
+

(
n

p+1

)
+ · · ·+

(
n

n

)
. (3.3)

If n is even, p = n/2, we get

N =
1
2


2n+


n

n

2




 , (3.4)

and if n is odd, p = (n−1)/2,

N = 2n−1. (3.5)

So, as we see, the DNF is very costly in terms of operations. However,
it requires only three memory planes: the first one keeps the variables

32 The complexity of retina operators

(the image); the second one keeps the monomials (the AND), and the
third one keeps the sums of monomials (the OR).

Conversely, if one has enough memory to write the integer p using
its decomposition in base 2, one realizes a “saturating counter.” In order
to write p in base 2, we need ϕ(p) = [log2p] + 1 memory cells, plus one
in order to propagate the carry over. So, in order to compute the num-
ber of operations, one may argue as follows, if the counter reads all the
variables

(i) each variable may give a propagation of at most ϕ(p) carry over
between the binary counters;

(ii) there are n variables;
(iii) when the sum is written in binary expansion, on the correspond-

ing memory cells one has to check that it exceeds the threshold p.
This is done using at most ϕ(p) comparisons.

So, the total number of operations is nϕ(p)+ϕ(p) = ϕ(p)(n+1), which
is quite low. But this method is rather costly in terms of memory require-
ments.

Recall that the memory allocation we are dealing with here concerns
only what is needed for the computations. One has to add the memory
used to keep the original image. We keep this convention from now on.

So, we now look at an intermediate situation, where the number ν of
available memory cells is strictly less than ϕ(p), so we cannot use a satu-
rating counter. We present a new decomposition, that is less costly than
the DNF, in terms of number of operations. We first give it on threshold
functions, where this decomposition is simpler, and then we extend it to
all symmetric functions.

First we describe the general idea behind this new decomposition. The
n variables are grouped in consecutive equal blocks. Each block is con-
sidered at its turn. Inside each block, a part of the sum of the variables
is computed and kept. This part is sufficient in order to determine if the
corresponding threshold is attained or not. We then use a DNF on these
partial sums, in order to enumerate all possible cases. But this enumera-
tion is rather simple (and short), since all permutations of the variables
do not come in: to keep a sum

∑k
i=1xi does not require to keep the order

in which the variables appeared.
We start with the case of three memory planes, for threshold func-

tions.

3.2. A new decomposition of threshold functions, using
only three memory cells

The method shortly described just above seems to be hard to use if we
have only three memory cells (besides the one for the image). Indeed, if

Bernard Beauzamy 33

we want to group the variables two by two, we need to keep their sum,
and therefore we need to code the number 2 in binary decomposition.
This requires 2 memory cells. If we add the 2 memory cells needed for
the DNF, we see that 4 memory cells at least seem necessary.

But in fact, as we now see, the method already gives significant results
if we have three memory cells.

Denote by M1 and M2 the memory cells that will be used for the DNF
and denote by C the remaining memory cell, which will be used for the
computation of the partial sums in each block. When we perform the
DNF, the cell M1 keeps the result of the AND operations, from the vari-
ables appearing in the monomials, and the cell M2 keeps the OR between
different monomials.

3.2.1. Grouping variables into blocks

We now group the variables into blocks, made of 2, 3, 4 variables or more.

Grouping 2 by 2

For a threshold function Tn,p, the n variables are grouped into blocks,
2 by 2: (x1,x2), (x3,x4), and so forth. We get m blocks, with m =
n/2�
(smallest integer ≥ n/2). If n is odd, the last block contains only one
element.

In each block (x2j−1,x2j), the sum of the variables may take only three
values: x2j−1+x2j = 0, x2j−1+x2j = 1, and x2j−1+x2j = 2.

In each block, this sum will be compared to a partial threshold, de-
noted by pj , and properly chosen. In order to know whether the thresh-
old p is reached, all we have to do is to enumerate the set of m-tuples
(p1, . . . ,pm) satisfying

(i) each pj is ≤ 2,
(ii)
∑m

1 pj = p

and, for each m-tuple, to check if, for all blocks, the sum of all variables
inside the block is ≥ pj .

The number of terms in this enumeration of the m-tuples is denoted
by s(p,2,m). We compute it later.

More generally, we introduce the sets

S(p,k,m) =
{(

p1, . . . ,pm
)
; ∀j = 1, . . . ,m, pj ≤ k,

m∑
1

pj = p

}
(3.6)

which will be used when n = km, and

Sb(p,k,m) =
{(

p1, . . . ,pm
)
; ∀j = 1, . . . ,m−1, pj ≤ k, pm ≤ b,

m∑
1

pj = p

}
(3.7)

34 The complexity of retina operators

which will be used when n = k(m−1)+b, 0 < b < m. The first case hap-
pens when the last block is complete; the second when the last block
is incomplete. We denote by s(p,k,m) (resp., sb(p,k,m)) the cardinal of
these sets.

For any m-tuple (p1, . . . ,pm) we use the M1 memory cell in order to
perform the AND of all conditions “the jth partial sum is ≥ pj .” This
determines if the threshold p is reached.

Now, in order to check if the sum of variables inside a block is ≥ pj ,
we proceed as follows:

(i) if pj = 2, this means that both variables, x2j−1 and x2j , must be = 1.
So, we just compute the inf of these variables, using the memory
M1; that is, first M1∧x2j−1 and then M1∧x2j . This uses only M1;

(ii) if pj = 1, we compute x2j−1 ∨x2j on the memory C and we take
the inf with M1. This requires M1 and C;

(iii) if pj = 0, there is nothing to do.
We can now estimate the number of operations needed, in order to

compute a threshold function. The first two cases require two operations.
Since

∑
j pj = p, we need at most 2p operations for any m-tuple.

We get the following result.

Proposition 3.1. If only three memory cells are available, the number of nec-
essary operations, in order to implement the threshold function Tn,p, obtained
by means of a grouping of the variables 2 by 2, is at most

−Nop ≤ 2ps
(
p,2,
⌈
n

2

⌉)
if n is even;

−Nop ≤ 2ps1

(
p,2,
⌈
n

2

⌉)
if n is odd.

(3.8)

An upper bound is given by

Nop ≤ 2p3
n/2�. (3.9)

An estimate, more precise than (3.8), may be given if n is odd. Indeed,
in this case, the last block contains only one variable, and pm is 0 or 1. In
the first case, we get

∑m−1
1 pj = p, and in the second case,

∑m−1
1 pj = p−1.

So we obtain

Nop ≤ 2ps
(
p,2,

n−1
2

)
+2(p−1)s

(
p−1,2,

n−1
2

)
. (3.10)

Grouping the variables 3 by 3

This time, we choose to group the variables by consecutive blocks of 3
B1 = {x1,x2,x3}, B2 = {x4,x5,x6}, . . . ,Bj = {x3j−2,x3j−1,x3j},

Bernard Beauzamy 35

There are m blocks, with m =
n/3�. The last block, depending on the
rest of the division of n by 3, has 1, 2, or 3 terms:

if n = 3a, the last block has 3 terms,
if n = 3a+1, the last block has 1 term,
if n = 3a+2, the last block has 2 terms.
In each block, the sum Sj = x3j−2 +x3j−1+x3j may now take the values

Sj = 0,1,2,3. For pj = 0,1,2,3, we now show how to code the different
conditions Sj ≤ pj :

(i) if pj = 3, Sj ≥ pj means that x3j−2 = 1, x3j−1 = 1, x3j = 1. We com-
pute x3j−2 ∧x3j−1 ∧x3j . For this, three operations are needed, and
only one memory cell (M1) is needed;

(ii) if pj = 2, the condition Sj ≥ 2 gives any set E with two elements,
contained in Bj , satisfies

∑
E xi ≥ 1.

There are (3
2) = 3 sets E with two elements, namely (x2j−2,x2j−1),

(x2j−2,x2j), and (x2j−1,x2j), and so we have to check that x2j−2 +x2j−1 ≥ 1,
x2j−2+x2j ≥ 1, and x2j−1+x2j ≥ 1. This can be written in just one formula(

x2j−2∨x2j−1
)∧(x2j−2∨x2j

)∧(x2j−1∨x2j
)
. (3.11)

So finally 6 operations are needed, and two memory cells: C for the
successive computations of the OR and M1 for the computation of the
AND:

(i) if pj = 1, Sj ≥ 1 becomes x2j−2 ∨ x2j−1 ∨ x2j . As previously, the
OR are prepared in C and the complete expression is put in M1,
using 3 operations;

(ii) if pj = 0, there is nothing to do (this stage is skipped).
So we see that the number of operations is ≤ 6, inside each block

where pj > 0. Since
∑

j pj = p, the total number of operations realized for
a given m-tuple (p1, . . . ,pm) is ≤ 6p. The number of sequences (p1, . . . ,pm)
is s(p,3,
n/3�) or sb(p,3,
n/3�) with b = 1 or 2; so we get the following
result.

Proposition 3.2. If only three memory cells are available, the number of op-
erations, needed to compute the threshold function Tn,p, using a grouping of the
variables by blocks of three, is at most

−Nop ≤ 6ps
(
p,3,
⌈
n

3

⌉)
if n = 3

⌈
n

3

⌉
,

−Nop ≤ 6psb
(
p,3,
⌈
n

3

⌉)
if n = 3

⌈
n

3

⌉
+b with 0 < b < 3.

(3.12)

An upper bound is given by

Nop ≤ 6p4
n/3�. (3.13)

36 The complexity of retina operators

We will see (cf. Section 3.2.3) that the grouping by blocks of 3 is more
advantageous than the grouping by blocks of 2: there are fewer opera-
tions. But then, why should we stop at k = 3? We will now study the
grouping by blocks of k. We will compute how the total number of oper-
ations depends on k and we will choose the k minimizing that number.

Grouping the variables k by k

Let now k be any positive integer (k ≤ n). We group the variables in
consecutive blocks of k variables each:

B1 =
{
x1, . . . ,xk

}
,

B2 =
{
xk+1, . . . ,x2k

}
, . . . ,

Bj =
{
x(j−1)k+1, . . . ,xjk

}
,

(3.14)

There are m blocks, with m =
n/k�. More precisely, writing the Eu-
clidean division of n by k

n = ak+b with 0 < b < k, (3.15)

we get

(i) if b = 0, there are a blocks, all of length k;
(ii) if b > 0, there are a blocks, all of length k and one block of length

b, which will be treated separately.

As previously, we denote by Sj the sum running on the block Bj , that is,

Sj = x(j−1)k+1+ · · ·+xjk. (3.16)

The partial thresholds pj may take the values 0,1, . . . ,k. We have at our
disposal only one memory cell (the cell C) for the computation of the
partial sums, and all we can do is to check whether a number is ≥ 1. This
will be enough in order to determine whether Sj ≥ pj , as the following
lemma shows.

Lemma 3.3. Let n, r, q be integers with r ≤ q ≤ n. For every subset E with
n−q+r elements, contained in {1, . . . ,n}, satisfying

∑
i∈E

xi ≥ r, (3.17)

then
n∑
i=1

xi ≥ q. (3.18)

Bernard Beauzamy 37

Proof of Lemma 3.3. We argue by contradiction: assume the conclusion
does not hold, that is,

∑n
1 xi ≤ q − 1. Then at least n − q + 1 among the

variables xi are 0. We choose a subset E covering these n−q+1 indices,
completed by r − 1 other indices, chosen arbitrarily. Then the set E has
n−q+ r terms, and

∑
E xi ≤ r −1, which contradicts the assumption and

proves the lemma. �

We use the lemma with n = k, r = 1, and q taking the values 1, . . . ,k
(q plays here the role of pj). So we get: if for every E containing k−q+
1 elements, we have

∑
E xi ≥ 1, then

∑k
1 xi ≥ q, which is equivalent to

Sj ≥ pj .
In the rest of this paragraph, the subscript j is omitted, and, without

loss of generality, we argue on the first block (B1).
Let E be any subset contained in {1, . . . ,k} with k−q+1 elements. We

denote by i1, . . . , ik−q+1 the indices appearing in E.
The condition

∑
E xi ≥ 1 can be written

xi1 ∨· · ·∨xik−q+1 (3.19)

and the condition “for all E,
∑

E xi ≥ 1” becomes finally

∨
i1<···<ik−q+1

xi1 ∨· · ·∨xik−q+1. (3.20)

The OR are computed using C, the AND are put in M1.
Using this description, we can determine the number of operations.

There are
(k
k−q+1

)
=
(k
q−1
)

sets E. There are (k − q) operations OR for a
given E, plus the AND from one set E to the next one (except for the
last): at total (k−q+1)

(k
q−1
)−1 = q

(
k
q

)−1 operations, for a fixed thresh-
old q.

Finally, inside any block, the test of the threshold pj requires pj
(k
pj

)−1
operations and the test for the sequence (p1, . . . ,pm) (where one takes
into account, between each test of a threshold pj , one operation AND,
except for the last one) requires, if b = 0 (n divisible by k) a number of
operations

Nop
(
p1, . . . ,pm

)
= p1

(
k

p1

)
+ · · ·+pa

(
k

pa

)
−1 (3.21)

and if b > 0 (n not divisible by k)

Nop
(
p1, . . . ,pm

)
= p1

(
k

p1

)
+ · · ·+pa

(
k

pa

)
+pm

(
b

pm

)
−1. (3.22)

38 The complexity of retina operators

We simply write

Nop
(
p1, . . . ,pm

) ≤ m∑
j=1

pj

(
k

pj

)
−1, (3.23)

keeping in mind that, for j =m, the term
(

k
pm

)
must be replaced by

(
b
pm

)
.

The number of requested operations, for the enumeration of all se-
quences (p1, . . . ,pm) is therefore

Nop ≤
∑

(p1,...,pm)

[∑
j

pj

(
k

pj

)
−1

]
. (3.24)

In order to get the total number of operations, we have to add to Nop the
operations OR which are necessary between two m-tuples (p1, . . . ,pm) of
the enumeration, that is a total of sb(p,k,m) operations. So

NT ≤Nop+sb(p,k,m) ≤
∑

(p1,...,pm)

∑
j

pj

(
k

pj

)
. (3.25)

Inside the first sum, the m-tuples (p1, . . . ,pm) satisfy pj ≤ k and
∑

pj =
p, that is, (p1, . . . ,pm) ∈ Sb(p,k,m), and the total number of operations is
at most

NT ≤
m∑
j=1

∑
(p1,...,pm)∈Sb(p,k,m)

pj

(
k

pj

)
. (3.26)

The sum on j is made with (m − 1) equal terms, plus the last one
(j =m). So we have

(i) if n = k(m−1)+b, 0 < b < m,

NT ≤ (m−1)
∑

(p1,...,pm)∈Sb(p,k,m)

p1

(
k

p1

)
+

∑
(p1,...,pm)∈Sb(p,k,m)

pm

(
b

pm

)
; (3.27)

(ii) if n = km,

NT ≤m
∑

(p1,...,pm)∈S(p,k,m)

p1

(
k

p1

)
. (3.28)

The last term in (3.27) is the simplest to compute. The threshold pm
can take only the values 0,1, . . . ,b. If p1 + · · ·+ pm = p, we have p1 + · · ·+
pm−1 = p−pm, and so (p1,p2, . . . ,pm−1) ∈ S(p−pm,k,m−1). We finally get

∑
(p1,...,pm)∈Sb(p,k,m)

pm

(
b

pm

)
=

b∑
pm=0

∑
(p1,p2,...,pm−1)∈S(p−pm,k,m−1)

pm

(
b

pm

)
(3.29)

Bernard Beauzamy 39

and the number of sequences (p1,p2, . . . ,pm−1) ∈ S(p−pm,k,m−1) is equal
to s(p−pm,k,m−1), therefore

∑
(p1,...,pm)∈Sb(p,k,m)

pm

(
b

pm

)
=

b∑
pm=0

s
(
p−pm,k,m−1

)
pm

(
b

pm

)
. (3.30)

For the first term in (3.27), we write

∑
(p1,...,pm)∈Sb(p,k,m)

p1

(
k

p1

)
=

b∑
pm=0

∑
p1+···+pm−1=p−pm

p1

(
k

p1

)
, (3.31)

with (p1, . . . ,pm−1) ∈ S(p−pm,k,m−1).
If m = 2, then p1 = p−pm and we get s(p−pm,k,m−1) = 1, and

∑
(p1,...,pm)∈Sb(p,k,m)

p1

(
k

p1

)
=

b∑
pm=0

(
p−pm

)(k

p−pm

)
. (3.32)

If m > 2, the number of sequences (p1,p2, . . . ,pm−1) ∈ S(p−pm,k,m−1)
is given by s(p−pm,k,m−1) and can be decomposed as follows:

s
(
p−pm,k,m−1

)
=

min(k,p−pm)∑
p1=0

s
(
p−pm−p1,k,m−2

)
. (3.33)

Therefore,

∑
(p1,...,pm)∈Sb(p,k,m)

p1

(
k

p1

)
=

b∑
pm=0

min(k,p−pm)∑
p1=0

s
(
p−pm−p1,k,m−2

)
p1

(
k

p1

)
.

(3.34)
For (3.28), the number of sequences (p1,p2, . . . ,pm) ∈ S(p,k,m) can be

computed the same way

∑
(p1,...,pm)∈S(p,k,m)

p1

(
k

p1

)
=

min(k,p)∑
p1=0

s
(
p−p1,k,m−1

)
p1

(
k

p1

)
. (3.35)

Grouping both results, we get the following result.

Proposition 3.4. When three memory cells only are available, the number of
operations needed to implement the threshold function Tn,p, obtained by group-
ing the variables k by k, is at most

(i) if n = k(m−1)+b with 0 < b < k,
if m = 1, NT ≤ p(bp);

40 The complexity of retina operators

if m = 2,

NT ≤
b∑

pm=0

(
p−pm

)(k

p−pm

)
+

b∑
pm=0

pm

(
b

pm

)
; (3.36)

if m > 2,

NT ≤ (m−1)
b∑

pm=0

min(k,p−pm)∑
p1=0

s
(
p−pm−p1,k,m−2

)
p1

(
k

p1

)

+
b∑

pm=0

s
(
p−pm,k,m−1

)
pm

(
b

pm

)
,

(3.37)

(ii) if n = km,
if m = 1, NT ≤ p(kp);
if m > 1,

NT ≤m
min(k,p)∑
p1=0

s
(
p−p1,k,m−1

)
p1

(
k

p1

)
. (3.38)

3.2.2. Organization of memory cells

We now describe the general implementation of the method, in order to
compute a threshold function Tn,p. The algorithm uses a double enumer-
ation.

First, for a given arrangement in blocks of k variables, we enumerate
all the m-tuples (p1, . . . ,pm) in Sb(p,k,m). The cardinal of this enumera-
tion is by definition Sb(p,k,m). Then, for each m-tuple (p1, . . . ,pm) of the
first enumeration, we compare successively, in each block, the sum of the
variables in the block with the partial threshold pj .

Assuming, without loss of generality, that all blocks are complete, we
see that this algorithm gives a decomposition of the function Tn,p into

Tn,p
(
x1,x2, . . . ,xn

)
=

∑
Ui∈S(p,k,m)

fUi

(
x1,x2, . . . ,xn

)
= fU1

(
x1,x2, . . . ,xn

)∨· · ·∨fUi

(
x1,x2, . . . ,xn

)
∨· · ·∨fUs(p,k,m)

(
x1,x2, . . . ,xn

)
,

(3.39)

where Ui is an m-tuple (pi1,p
i
2, . . . ,p

i
m) ∈ S(p,k,m) and fUi is a function

defined by

fUi

(
x1,x2, . . . ,xn

)
=




1 if ∀j = 1, . . . ,m,
∑
xl∈Bj

xl ≥ pij ,

0 otherwise,

(3.40)

where Bj is the jth block.

Bernard Beauzamy 41

Indeed, this is just the description of the first enumeration: Tn,p is writ-
ten as the OR of the set of all functions fUi , representing each m-tuple in
S(p,k,m). Each function fUi expresses the result of the successive com-
parisons between the sums of the variables in each block Bj and the par-
tial thresholds pij , and therefore can be written as the product

fUi

(
x1,x2, . . . ,xn

)
= Ri

1∧Ri
2∧· · ·∧Ri

m, (3.41)

where

Ri
j

(
xi1 ,xi2 , . . . ,xik

)
=




1 if
∑
xl∈Bj

xl ≥ pij ,

0 otherwise,

(3.42)

where the k variables (xi1 ,xi2 , . . . ,xik) all belong to Bj .
The value of Ri

j is the result of the comparison
∑

xl∈Bj
xl ≥ pij , which is

obtained by means of the description made in Section 3.2.1. Finally, this
new method gives a decomposition, for threshold functions, which can
be described as follows:

Tn,p
(
x1,x2, . . . ,xn

)
=
[
R1

1∧R1
2∧· · ·∧R1

m

]∨[R2
1∧R2

2∧· · ·∧R2
m

]
∨· · ·∨

[
R

s(p,k,m)
1 ∧Rs(p,k,m)

2 ∧· · ·∧Rs(p,k,m)
m

]
.

(3.43)

The implementation of this decomposition with 3 memory cells, de-
noted by M1, M2, and C is therefore as follows.

The cell M2 realizes an OR of all cases in the enumeration, whereas,
inside an m-tuple, M1 realizes an AND of the comparisons computed
on C. This can be described by the following elementary operations:

(i) initially, all memory cells are at 0;
(ii) for a given m-tuple Ui, M1 contains, when the Ri

j are computed
one after the other, the result of the previous comparisons: this
means either M1 = 1 if, until then, all blocks Bj have been ≥ pij ,
or M1 = 0, if one of the blocks Bj did not reach the threshold pij .
The computation of the value of Ri

j is done on C and/or on M1

(only if we have an AND between the variables). The value of
Ri

j is either added to M1 by means of the elementary operation
M1 =M1∧C, or is directly computed in M1;

(iii) at the end of the m-tuple Ui, M1 contains the result of all succes-
sive comparisons between the sums of variables in each block Bj

and the thresholds pij . This result is taken into account in the cell
M2, by means of the elementary operation M2 =M2∨M1. Then
M1 is set to 0, and we pass to the next m-tuple in the enumera-
tion;

42 The complexity of retina operators

(iv) at the end of this enumeration, M2 contains the final result: the
value of the function Tn,p.

Using this algorithm, we see that only three memory cells are neces-
sary. Moreover, the numerical estimate of the cost in elementary opera-
tions, made in Proposition 3.4, shows that the cost is much less than that
of a DNF. We study this in detail in the next subsections.

3.2.3. Numerical estimates

We now give numerical estimates about the number of elementary op-
erations necessary to implement the worst threshold function, that is
Tn,[n/2], when we have only three memory planes (not counting the one
containing the image). These estimates are obtained from the exact for-
mula for s(p,k,m) (see the appendix) and are compared with that of
DNF.

We denote by NDNF the number of operations for the Disjunctive Nor-
mal Form, and by NT (k) the number of operations given by our method,
when the n variables are divided into blocks of k variables each.

When the number n of variables takes the values 9 to 36, we get

n = 9, p = 4, NDNF = 503 EO (3.44)

and the variation of NT as a function of k for k ∈ [0,9] is

k 1 2 3 4 5 6 7 8 9

NT (k) 504 192 108 124 107 168 291 449 504

The minimum is obtained for k = 5, and its value is NT = 107 EO.
In the following estimates, we only give the minimum values:

n = 16, p = 8, NDNF = 102 959 EO. (3.45)

The minimum is obtained for k = 6 and its value is NT = 2024 EO

n = 25, p = 12, NDNF = 62 403 599 EO. (3.46)

The minimum is obtained for k = 9 and its value is Nop = 38 084 EO

n = 36, p = 18, DNF = 163 352 435 399 EO. (3.47)

The minimum is obtained for k = 9 and its value is Nop = 672 628 EO.
So we see that this method realizes a considerable progress, compared

to the DNF. However, for n = 25, the number of operations (38 042) is
quite high for the capacity of present retinas, and for n = 36 it becomes
out of reach. This means that, if n ≥ 25, we need more memory.

Bernard Beauzamy 43

3.3. Extension to symmetric functions

We need a few adaptations of the method, since the definition of sym-
metric functions is more general than that of threshold functions.

By definition, the value of a symmetric function depends only on the
value of the sum of the variables. So we can describe a symmetric func-
tion by the set of all cases where the value of the function is 1, that is,

f
(
x1,x2, . . . ,xn

)
=




1 if
n∑
i=1

xi = pl,

0 otherwise,

(3.48)

where (pl)1≤l≤l0 is one of the thresholds of the function.

3.3.1. Decomposition of a symmetric function

Any symmetric function (including any threshold function) can be com-
puted using a DNF, and this requires at most n2n−1 EO. Indeed, we may
assume that the number of thresholds l0 is at most equal to [n/2] (if not,
it is wiser to consider the function f̄ , which is also symmetric, but has
fewer thresholds). For [n/2] thresholds, each function has at most 2n−1

monomials, with n variables, so this gives n2n−1 EO.
An example of a costly symmetric function is

f
(
x1,x2, . . . ,xn

)
=




1 if
n∑
i=1

xi is even,

0 otherwise,

(3.49)

since it has exactly [n/2] thresholds.
The previous method does not apply immediately, since a symmetric

function is not, in general, a sum of threshold functions.
Any symmetric function can be written as

f
(
x1,x2, . . . ,xn

)
= En,p1

(
x1,x2, . . . ,xn

)
∨· · ·∨En,pl

(
x1,x2, . . . ,xn

)∨· · ·∨En,pl0

(
x1,x2, . . . ,xn

)
,

(3.50)

where the functions En,pl are “test-functions,” defined by

En,pl

(
x1,x2, . . . ,xn

)
=




1 if
n∑
i=1

xi = pl,

0 otherwise,

(3.51)

where pl is one of the thresholds of the function f .

44 The complexity of retina operators

Each function En,pl is not a threshold function, but a test function: its
value is 1 if and only if the sum of the variables is equal to the fixed
threshold.

In order to adapt the new decomposition to symmetric functions, one
can think of two distinct methods: either to express the test functions as
a combination of threshold functions and use the above definitions in
order to get their decompositions in EO, or to write directly a decompo-
sition of test functions. We now see that both methods require more than
three memory planes in general.

3.3.2. Adaptation of the new decomposition to symmetric functions

Using threshold functions

Each test function can be transformed into a combination of two thresh-
old functions

En,pl

(
x1,x2, . . . ,xn

)
= Tn,pl

(
x1,x2, . . . ,xn

)∧Tn,pl+1
(
x1,x2, . . . ,xn

)
(3.52)

and this gives

f
(
x1,x2, . . . ,xn

)
=
[
Tn,p1

(
x1,x2, . . . ,xn

)∧Tn,p1+1
(
x1,x2, . . . ,xn

)]
∨· · ·∨

[
Tn,pl
(
x1,x2, . . . ,xn

)∧Tn,pl+1
(
x1,x2, . . . ,xn

)]
∨· · ·∨

[
Tn,pl0

(
x1,x2, . . . ,xn

)∧Tn,pl0+1
(
x1,x2, . . . ,xn

)]
.

(3.53)

With this new decomposition, we can compute, for each repartition into
blocks of k variables, any symmetric function as a combination of thresh-
old functions. However, this requires two memory planes: one in order
to get the AND between both threshold functions and the other to com-
pute the OR between the functions En,pl .

One may reduce the cost of decomposition (2.10) for a symmetric
function, computing differently the functions En,pl .

In the previous paragraphs, we saw that the threshold functions
could be computed with three memory planes, no matter what the repar-
tition into blocks of k variables was. We now compute the test functions,
using the same number of planes. If we write

En,pl

(
x1,x2, . . . ,xn

)
= Tn,pl

(
x1,x2, . . . ,xn

)∧Tn,pl+1
(
x1,x2, . . . ,xn

)
, (3.54)

Bernard Beauzamy 45

we use at least four memory planes, since we need to keep the value of
Tn,pl+1(x1, . . . ,xn), in order to take its negation. We transform this compu-
tation as follows:

Tn,p
(
x1,x2, . . . ,xn

)
=
[
R1

1∧R1
2∧· · ·∧R1

m

]∨[R2
1∧R2

2∧· · ·∧R2
m

]∨· · ·
∨
[
R

s(p,k,m)
1 ∧Rs(p,k,m)

2 ∧· · ·∧Rs(p,k,m)
m

] (3.55)

using the following property:

a1∨a2∨· · ·∨am = a1∧a2∧· · ·∧am. (3.56)

So we get

Tn,p
(
x1,x2, . . . ,xn

)
=
[
R1

1∧R1
2∧· · ·∧R1

m

]∧[R2
1∧R2

2∧· · ·∧R2
m

]
∧· · ·∧

[
R

s(p,k,m)
1 ∧Rs(p,k,m)

2 ∧· · ·∧Rs(p,k,m)
m

]
.

(3.57)

This gives

En,pl

(
x1,x2, . . . ,xn

)
= Tn,pl

(
x1,x2, . . . ,xn

)∧Tn,pl+1
(
x1,x2, . . . ,xn

)
= Tn,pl

(
x1,x2, . . . ,xn

)
∧[R1

1∧R1
2∧· · ·∧R1

m

]∧[R2
1∧R2

2∧· · ·∧R2
m

]
∧· · ·∧

[
R

s(p,k,m)
1 ∧Rs(p,k,m)

2 ∧· · ·∧Rs(p,k,m)
m

]
.

(3.58)

We now have a sequence of AND, which can be computed with three
memory planes only. No matter what the repartition into blocks of k
variables is, the computation of Tn,p is made on three memory cells and
the result is kept on M2. Then, on each m-tuple, [R1 ∧R2 ∧ · · ·∧Rm] may
be computed on two memory cells (on C and M1). At the end of this
computation, we take the negation and add it to M2. So, three memory
cells are enough to compute any test function.

So, decomposition (2.10) now requires four memory planes, and this
cannot be reduced further if test functions are considered as products of
threshold functions. So we turn to another description of test functions.

Direct decomposition

As before, the n variables are grouped into blocks of k variables. We
write all the m-tuples (p1, . . . ,pm) in the set s(p,k,m). Then, for each of
them, we check that, on each block, the partial sum of the variables is
precisely equal to the partial threshold pj .

46 The complexity of retina operators

Each test function may be written as

En,p

(
x1,x2, . . . ,xn

)
=
[
Q1

1 ∧Q1
2 ∧· · ·∧Q1

m

]∨[Q2
1 ∧Q2

2 ∧· · ·∧Q2
m

]
∨· · ·∨

[
Q

s(p,k,m)
1 ∧Qs(p,k,m)

2 ∧· · ·∧Qs(p,k,m)
m

]
,

(3.59)

where

Qi
j

(
xi1 ,xi2 , . . . ,xik

)
=




1 if
∑
xl∈Bj

xl = pij ,

0 otherwise,

(3.60)

where the k variables (xi1 ,xi2 , . . . ,xik) all belong to the same block Bj and
pij is the partial threshold.

The only difference with the earlier method is that we check equality
in a block, and not inequality. We now see how to obtain the functions
Qi

j , when grouping into blocks of 2 and of k variables.

Grouping into blocks of 2 variables

The partial thresholds pij may take only the values 0, 1, 2. In order to
check that the partial sum of the variables (x2j−1, x2j) in each block is
equal to the partial threshold:

(i) if pj = 2, the two variables must be 1, and we just compute x2j−1∧
x2j ;

(ii) if pj = 1, only one of the variables must be 1, and we compute
x2j−1⊕x2j ;

(iii) if pj = 0, there is nothing to do.

So, the computation of Qi
j requires only one memory cell, C, and a

small number of EO. After that, two memory cells are used in order to
compute any function En,p: M1 to compute the AND between the func-
tions Qi

j describing an m-tuple and M2 to compute the OR between two
m-tuples.

Moreover, since any symmetric function is an OR of functions En,p, we
can make the link between them on M2. So three memory cells suffice.
However, this does not hold if the grouping is made into blocks of k
variables, k > 2.

Grouping into blocks of k variables

The decomposition (2.13) of the functions En,p remains the same, and we
have to compute all the functions Qi

j on a number of memory planes as
small as possible. The partial thresholds pij can take the values 0,1, . . . ,k

Bernard Beauzamy 47

and one cannot in general write the functions Qi
j using just one cell. For

example, for the value pj = 2, we have(
x3j−2∧x3j−1∧x3j

)∨(x3j−2∧x3j−1∧x3j
)∨(x3j−2∧x3j−1∧x3j

)
(3.61)

if the grouping is made 3 by 3, and more generally(
x(j−1)k+1∧x(j−1)k+2∧x(j1)k+3 · · ·∧xjk

)
∨(x(j−1)k+1∧x(j−1)k+2∧x(j−1)k+3 · · ·∧xjk

)
∨· · ·∨(x(j−1)k+1∧x(j−1)k+2∧x(j−1)k+3 · · ·∧xjk

) (3.62)

if the grouping is made k by k.
This sequence of EO, allowing the computation of the thresholds pj =

2 can be done with two memory cells at least, and so the computation of
any function En,p requires at least four memory cells.

Appendix

Computation of the numbers s(p,k,m) and sb(p,k,m)

We now give the value of s(p,k,m) and sb(p,k,m), by means of an ex-
plicit formula. This formula is too complicated if evaluations have to be
made in a short time, so we give also upper bounds, less precise but
easier to evaluate.

The sets S(p,k,m) and Sb(p,k,m) are defined by

S(p,k,m) =
{(

p1, . . . ,pm
)
; ∀j = 1, . . . ,m, pj ≤ k,

m∑
1

pj = p

}
if n = km,

Sb(p,k,m) =
{(

p1, . . . ,pm
)
; ∀j = 1, . . . ,m−1, pj ≤ k, pm ≤ b,

m∑
1

pj = p

}

if n = k(m−1)+b with 0 < b < m
(A.1)

and s(p,k,m), respectively, sb(p,k,m) are the cardinals of these two sets.

Expression of s(p,k,m)

Obviously, if there is only one block (m = 1), there is only one pj such
that p = pj , and s(p,k,1) = 1 for all p and all m.

Conversely, if each block has length 1 (k = 1, m = n), the thresholds
pj are 0 or 1, and we have to choose p nonzero among n, so s(p,1,m) =
(np) for all n and all p.

In the general case, the explicit expression of s(p,k,m) is written as a
sum (there is no closed form).

48 The complexity of retina operators

Proposition A.1. The following identity holds

s(p,k,m) =
[p/(k+1)]∑

j=0

(−1)j
(
m

j

)(
m−1+p− j(k+1)

m−1

)
. (A.2)

Proof. Indeed, s(p,k,m) is the coefficient of xp in

(
1+x+ · · ·+xk)m =

(
1−xk+1)m
(1−x)m . (A.3)

Or

(
1−xk+1)m =

m∑
j=0

(
m

j

)
(−1)jx(k+1)j ,

(1−x)−m = 1+
∑
l≥1

m(m+1) · · ·(m+ l−1)
l!

xl.

(A.4)

The proposition follows, just performing the product of the two devel-
opments. �

Expression of sb(p,k,m)

In this case, the last value of the threshold pm may be only 0,1, . . . ,b and
the threshold of (p1,p2, . . . ,pm−1) is p−pm. The sequences (p1,p2, . . . ,pm−1)
are in the set S(p−pm,k,m−1) and their number is equal to s(p−pm,k,
m−1). So we get the inductive formula

sb(p,k,m) =
b∑

pm=0

s
(
p−pm,k,m−1

)
(A.5)

and sb(p,k,m) follows from s(p,k,m−1).

Upper bounds

We give several upper bounds, depending on the value of the different
parameters.

We denote

s(p,m) = card

{(
p1, . . . ,pm

)
;

m∑
j=1

pj = p

}
. (A.6)

Obviously, for all k, s(p,k,m) ≤ s(p,m), with equality if k ≥ p (the
condition pj ≤ k is automatically satisfied, since pj ≤ p).

There is an easy formulation for s(p,m).

Bernard Beauzamy 49

Proposition A.2. For all p and all m,

s(p,m) =
m(m+1) · · ·(m+p−1)

p!
=

(
m+p−1

p

)
. (A.7)

Proof. The number s(p,m) is the coefficient of xp in the expansion of

(
1+x+x2+ · · ·)m = (1−x)−m, (A.8)

the result follows. �

When p changes with n (e.g., p = n/2), Proposition A.2 may not give
the best estimate. We use the following result.

Proposition A.3. For all p, k, m,

s(p,k,m) ≤ (min(k,p)+1
)m−1

. (A.9)

Proof. If p1+ · · ·+pm = p, one has p2+ · · ·pm = p−p1, and so

s(p,k,m) =
min(p,k)∑
p1=0

s
(
p−p1,k,m−1

)
. (A.10)

By induction on m, we get the result. �

Acknowledgments

The work presented here is part of a study realized for the French Min-
istry of Defense (contract CTA 97.04.095). A seminar was held every
month during almost a year, and the ideas developed above were pre-
sented there for the first time, and, sometimes, found further develop-
ments. Thanks are due to Thierry Bernard, Gilles Darblade, Antoine
Manzanera, Damien Mercier, for their suggestions and criticisms. Thanks
are also due to Doron Zeilberger (Temple University, Philadelphia, Pa)
for his help in the combinatorial estimates given above.

References

[1] R. B. Boppana and M. Sipser, The complexity of finite functions, Handbook of
Theoretical Computer Science (J. Van Leeuwen, ed.), vol. A, Elsevier, Am-
sterdam, 1990, pp. 757–804.

[2] A. Manzanera, Mesures de complexité sur la rétine, Internal report, Départe-
ment “Géographie Imagerie Perception”, Centre Technique d’Arcueil,
april 1998.

50 The complexity of retina operators

Bernard Beauzamy: Société de Calcul Mathématique, SA, 111 faubourg Saint
Honoré, 75008 Paris, France

E-mail address: beauzamy@aol.com

mailto:beauzamy@aol.com

