
RELATIVISTIC WAVE EQUATIONS
WITH FRACTIONAL DERIVATIVES
AND PSEUDODIFFERENTIAL
OPERATORS

PETR ZÁVADA

Received 17 October 2001

We study the class of the free relativistic covariant equations generated
by the fractional powers of the d’Alembertian operator (�1/n). The equa-
tions corresponding to n = 1 and 2 (Klein-Gordon and Dirac equations)
are local in their nature, but the multicomponent equations for arbitrary
n > 2 are nonlocal. We show the representation of the generalized alge-
bra of Pauli and Dirac matrices and how these matrices are related to
the algebra of SU(n) group. The corresponding representations of the
Poincaré group and further symmetry transformations on the obtained
equations are discussed. The construction of the related Green functions
is suggested.

1. Introduction

The relativistic covariant wave equations represent an intersection of
ideas of the theory of relativity and quantum mechanics. The first and
best known relativistic equations, the Klein-Gordon and particularly
Dirac equation, belong to the essentials, which our present understand-
ing of the microworld is based on. In this sense, it is quite natural that
the searching for and the study of the further types of such equations
represent a field of stable interest. For a review see, for example, [5]
and the references therein. In fact, the attention has been paid first of
all to the study of equations corresponding to the higher spins (s ≥ 1)
and to the attempts to solve the problems, which have been revealed in
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the connection with these equations, for example, the acausality due to
external fields introduced by the minimal way.

In this paper, we study the class of equations obtained by the factor-
ization of the d’Alembertian operator, that is, by a generalization of the
procedure by which the Dirac equation is obtained. As a result, from
each degree of extraction n we get a multicomponent equation, in this
way the special case n = 2 corresponds to the Dirac equation. However,
the equations for n > 2 differ substantially from the cases n = 1,2 since
they contain fractional derivatives (or pseudodifferential operators), so
in the effect their nature is nonlocal.

In Section 2, the generalized algebras of the Pauli and Dirac matri-
ces are considered and their properties are discussed, in particular their
relation to the algebra of the SU(n) group. The main part (Section 3)
deals with the covariant wave equations generated by the roots of the
d’Alembertian operator, these roots are defined with the use of the gen-
eralized Dirac matrices. In this section, we show the explicit form of
the equations, their symmetries, and the corresponding transformation
laws. We also define the scalar product and construct the corresponding
Green functions. The last section (Section 4) is devoted to the summary
and concluding remarks.

Note that the application of the pseudodifferential operators in the
relativistic equations is nothing new. The very interesting aspects of the
scalar relativistic equations based on the square root of the Klein-Gordon
equation are pointed out, for example, in [8, 15, 16]. Recently, an inter-
esting approach for the scalar relativistic equations based on the pseu-
dodifferential operators of the type f(�) has been proposed in [1]. We
can mention also [7, 17] in which the square and cubic roots of the Dirac
equation were studied in the context of supersymmetry. The cubic roots
of the Klein-Gordon equation were discussed in the recent papers [10,
13].

It should be observed that our considerations concerning the gener-
alized Pauli and Dirac matrices (Section 2) have much common with
the earlier studies related to the generalized Clifford algebras (see, e.g.,
[2, 3, 12, 14] and the references therein) and with [9], even if our starting
motivation is rather different.

2. Generalized algebras of Pauli and Dirac matrices

In the following, by the term matrix we mean the square matrix n × n,
if not stated otherwise. Considerations of this section are based on the
matrix pair introduced as follows.

Definition 2.1. For any n ≥ 2, we define the matrices
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S =




0 1
1

1
. . .

1 0


 ,

T =




1
α

α2

. . .
αn−1


 ,

(2.1)

where α = exp(2πi/n), and in the remaining empty positions are zeros.

Lemma 2.2. Matrices X = S,T satisfy the following relations:

αST = TS, (2.2)

Xn = I, (2.3)

XX† =X†X = I, (2.4)

detX = (−1)n−1, (2.5)

trXk = 0, k = 1,2, . . . ,n− 1, (2.6)

where I denotes the unit matrix.

Proof. All the relations easily follow from Definition 2.1. �

Definition 2.3. Let A be some algebra on the field of complex numbers, let
(p,m) be a pair of natural numbers, X1,X2, . . . ,Xm ∈ A and a1,a2, . . . ,am
∈ C. The pth power of the linear combination can be expanded

(
m∑
k=1

akXk

)p

=
∑
pj

a
p1

1 a
p2

2 · · ·apmm
{
X
p1

1 ,X
p2

2 , . . . ,X
pm
m

}
; p1 + · · ·+ pm = p,

(2.7)

where the symbol {Xp1

1 ,X
p2

2 , . . . ,X
pm
m } represents the sum of all the possi-

ble products created from elements Xk in such a way that each product
contains the element Xk just pk-times. We will call this symbol combina-
tor.
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Example 2.4. Some simple combinators read:

{X,Y} =XY +YX,{
X,Y 2} =XY 2 +YXY +Y 2X,

{X,Y,Z} =XYZ +XZY +YXZ +YZX +ZXY +ZYX.

(2.8)

Now, we will prove some useful identities.

Lemma 2.5. Assume that z is a complex variable, p,r ≥ 0, and denote

qp(z) = (1− z)(1− z2) · · ·(1− zp), q0(z) = 1, (2.9)

Frp(z) =
r∑

kp=0

· · ·
k3∑
k2=0

k2∑
k1=0

zk1zk2 · · ·zkp , (2.10)

Gp(z) =
p∑
k=0

zk

qp−k
(
z−1
)
qk(z)

,

Hp(z) =
p∑
k=0

1
qp−k
(
z−1
)
qk(z)

.

(2.11)

Then the following identities hold for z �= 0, zj �= 1; j = 1,2, . . . ,p:

qp(z) = (−1)pzp(p+1)/2qp
(
z−1), (2.12)

Gp(z) = 0, (2.13)

Hp(z) = 1, (2.14)

Frp(z) =
p∑
k=0

zk·r

qp−k(z)qk
(
z−1
) (2.15)

and in particular, for zp+r = 1

Frp(z) = 0. (2.16)

Proof. (1) Relation (2.12) follows immediately from definition (2.9)

qr(z) = (1− z)(1− z2) · · ·(1− zr)
= z · z2 · · ·zr(z−1 − 1

) · · ·(z−r − 1
)

= (−1)rzr(r+1)/2qr
(
z−1).

(2.17)
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(2) Relations (2.13) and (2.14): first, if we invert the order of adding
in relations (2.11) making substitution, j = p− k, then

Gp(z) =
p∑
k=0

zk

qp−k
(
z−1
)
qk(z)

= zp
p∑
j=0

z−j

qj
(
z−1
)
qp−j(z)

= zpGp

(
z−1), (2.18)

Hp(z) =
p∑
k=0

1
qp−k
(
z−1
)
qk(z)

=
p∑
j=0

1
qj
(
z−1
)
qp−j(z)

=Hp

(
z−1). (2.19)

Now, we calculate

Hp(z)−Hp−1(z) =
p∑
k=0

1
qp−k
(
z−1
)
qk(z)

−
p−1∑
k=0

1
qp−1−k

(
z−1
)
qk(z)

=
1

qp(z)
+
p−1∑
k=0

1
qp−k
(
z−1
)
qk(z)

−
p−1∑
k=0

1
qp−k−1

(
z−1
)
qk(z)

=
1

qp(z)
+
p−1∑
k=0

1− (1− zk−p)
qp−k
(
z−1
)
qk(z)

=
p∑
k=0

zk−p

qp−k
(
z−1
)
qk(z)

=Gp

(
z−1).

(2.20)

The last relation combined with (2.19) implies that

Gp

(
z−1) =Gp(z), (2.21)

which, compared with (2.18), gives

Gp

(
z−1) = 0; z �= 0, zj �= 1, j = 1,2, . . . ,p. (2.22)

So identity (2.13) is proved. Further, relations (2.22) and (2.20) imply
that

Hp(z)−Hp−1(z) = 0, (2.23)

therefore,

Hp(z) =Hp−1(z) = · · · =H0(z) = 1, (2.24)

and identity (2.14) is proved as well.
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(3) Relation (2.15) can be proved by induction, therefore, first assume
p = 1, then its left-hand side reads

k2∑
k1=0

zk1 =
1− zk2+1

1− z (2.25)

and the right-hand side gives

1
q1(z)

+
zk2

q1
(
z−1
) = 1

1− z +
zk2

1− z−1
=

1− zk2+1

1− z , (2.26)

so for p = 1 the relation is valid. Now, suppose that the relation holds for
p and calculate the case p+ 1

kp+2∑
kp+1=0

· · ·
k3∑
k2=0

k2∑
k1=0

zk1zk2 · · ·zkp+1

=
kp+2∑
kp+1=0

zkp+1 · · ·
k3∑
k2=0

k2∑
k1=0

zk1zk2 · · ·zkp

=
kp+2∑
kp+1=0

zkp+1

p∑
k=0

zk·kp+1

qp−k(z)qk
(
z−1
)

=
p∑
k=0

1
qp−k(z)qk

(
z−1
) kp+2∑
kp+1=0

z(k+1)·kp+1

=
p∑
k=0

1
qp−k(z)qk

(
z−1
) 1− z(k+1)·(kp+2+1)

1− zk+1

=
p∑
k=0

z−k−1 − z(k+1)·kp+2

qp−k(z)qk
(
z−1
)(
z−k−1 − 1

)
=

p∑
k=0

z(k+1)·kp+2 − z−k−1

qp−k(z)qk+1
(
z−1
)

=
p+1∑
k=1

zk·kp+2 − z−k
qp+1−k(z)qk

(
z−1
)

=
p+1∑
k=0

zk·kp+2 − z−k
qp+1−k(z)qk

(
z−1
)

=
p+1∑
k=0

zk·kp+2

qp+1−k(z)qk
(
z−1
) − p+1∑

k=0

z−k

qp+1−k(z)qk
(
z−1
) .

(2.27)
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The last sum equals Gp+1(z−1), which is zero according to (2.13), so we
have proven relation (2.15) for p + 1. Therefore, the relation is valid for
any p.

(4) Relation (2.16) is a special case of (2.15). The denominators in the
sum (2.15) can be with the use of the identity (2.12) expressed as

qp−k(z)qk
(
z−1) = (−1)pzsqp−k

(
z−1)qk(z), s =

(p
2
− k
)
(p+ 1), (2.28)

and since zr·k = z−p·k, the sum can be rewritten as

p∑
k=0

zk·r

qp−k(z)qk
(
z−1
) = (−1)p

p∑
k=0

z−sz−p·k

qp−k
(
z−1
)
qk(z)

= (−1)pz−p(p+1)/2
p∑
k=0

zk

qp−k
(
z−1
)
qk(z)

.

(2.29)

Obviously, the last sum coincides with Gp(z), which is zero according to
the already proven identity (2.13).

Remark that Lemma 2.5 implies also the known formula

xn −yn = (x −y)(x−αy)(x −α2y
) · · ·(x −αn−1y

)
, α = exp

(
2πi
n

)
.

(2.30)
The product can be expanded as follows:

xn −yn =
n∑
j=0

cjx
n−j(−y)j , (2.31)

and we can easily check that

c0 = 1, cn = αα2α3 · · ·αn−1 = (−1)n−1. (2.32)

For the remaining j, 0 < j < n, we get

cj =
n−1∑

kj=j−1

· · ·
k3−1∑
k2=1

k2−1∑
k1=0

αk1αk2 · · ·αkj , (2.33)

and after the shift of the summing limits, we obtain

cj = αα2α3 · · ·αj−1
n−j∑
kj=0

· · ·
k3∑
k2=0

k2∑
k1=0

αk1αk2 · · ·αkj . (2.34)
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This multiple sum is a special case of formula (2.10) and since αn = 1,
the identity (2.16) is satisfied. Therefore, for 0 < j < n we get cj = 0, and
formula (2.30) is proved. �

Definition 2.6. Suppose a matrix product created from some string of ma-
trices X, Y in such a way that matrix X is in total involved p-times, and
Y is involved r-times. By the symbol P+

j (P−
j ) we denote permutation,

which shifts the leftmost (rightmost) matrix to right (left) on the position
in which the shifted matrix has j matrices of different kind left (right).
(The range of j is restricted by p or r if the shifted matrix is Y or X.)

Example 2.7. Simple case of the permutation defined above reads:

P+
3 ◦XYXYYXY = YXYYXXY. (2.35)

Now, we can prove the following theorem.

Theorem 2.8. Let p,r > 0 and p + r = n (i.e., αp+r = 1). Then the matrices S,
T fulfill

{
Sp,Tr

}
= 0. (2.36)

Proof. Obviously, all the terms in the combinator {Sp,Tr} can be gener-
ated, for example, from the string

SS · · ·S︸ ︷︷ ︸
p

TT · · ·T︸ ︷︷ ︸
r

= SpTr (2.37)

by means of the permutations P+
j

{
Sp,Tr

}
=

r∑
kp=0

· · ·
k3∑
k2=0

k2∑
k1=0

P+
k1
◦P+

k2
· · ·P+

kp
◦SpTr. (2.38)

Now relation (2.2) implies that

P+
j ◦SpTr = αjSpTr (2.39)

and (2.38) can be modified

{
Sp,Tr

}
=

(
r∑

kp=0

· · ·
k3∑
k2=0

k2∑
k1=0

αk1αk2 · · ·αkp
)
SpTr. (2.40)
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Apparently, the multiple sum in this equation coincides with the right-
hand side of (2.10) and satisfies the condition for (2.16), thereby the the-
orem is proved. �

Remark that an alternative use of permutations P−
j instead of P+

j

would lead to the equation

{
Sp,Tr

}
=

(
p∑

kr=0

· · ·
k3∑
k2=0

k2∑
k1=0

αk1αk2 · · ·αkr
)
SpTr. (2.41)

The comparison of (2.40) and (2.41) with the relation for Fpr defined by
(2.10) implies that

Fpr(α) = Frp(α). (2.42)

Obviously, this equation is valid irrespective of the assumption αp+r = 1,
that is, it holds for any n and α = exp(2πi/n). It follows that (2.42) is
satisfied for any α.

Definition 2.9. By the symbols Qpr we denote n2 matrices,

Qpr = SpTr, p,r = 1,2, . . . ,n. (2.43)

Lemma 2.10. The matrices Qpr satisfy the following relations:

QrsQpq=αs·pQkl; k=mod(r+p−1,n)+1, l=mod(s+q−1,n)+1, (2.44)

QrsQpq = αs·p−r·qQpqQrs, (2.45)(
Qrs

)n = (−1)(n−1)r·sI, (2.46)

Q†
rsQrs =QrsQ

†
rs = I, (2.47)

Q†
rs = αr·sQkl; k = n− r, l = n− s, (2.48)

detQrs = (−1)(n−1)(r+s), (2.49)

and for r �= n or s �= n,

trQrs = 0. (2.50)

Proof. The relations follow from the definition of Qpr and relations (2.2).
�
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Theorem 2.11. The matrices Qpr are linearly independent and any matrix A
(of the same dimension) can be expressed as their linear combination

A =
n∑

k,l=1

aklQkl, akl =
1
n

tr
(
Q†
klA
)
. (2.51)

Proof. Assume that matrices Qkl are linearly dependent, that is, there ex-
ists some ars �= 0, and simultaneously,

n∑
k,l=1

aklQkl = 0, (2.52)

which with the use of Lemma 2.10 implies that

tr
n∑

k,l=1

aklQ
†
rsQkl = arsn = 0. (2.53)

This equation contradicts our assumption, therefore, the matrices are in-
dependent and obviously represent a base in the linear space of matrices
n×n, which with the use of Lemma 2.10 implies relations (2.51). �

Theorem 2.12. For any n ≥ 2, among the n2 matrices (2.43), there exists the
triad Qλ, Qµ, Qν for which

{
Q
p

λ
,Qr

µ

}
=
{
Q
p
µ,Q

r
ν

}
=
{
Q
p
ν,Q

r
λ

}
= 0; 0 < p,r, p+ r = n (2.54)

and moreover, if n ≥ 3, then also

{
Q
p

λ,Q
r
µ,Q

s
ν

}
= 0; 0 < p,r,s, p+ r + s = n. (2.55)

Proof. We show that the relations hold, for example, for indices λ = 1n,
µ = 11, ν = n1. Denote

X =Q1n = S, Y =Q11, Z =Qn1 = T, (2.56)

then relation (2.45) implies that

YX = αXY, ZX = αXZ, ZY = αYZ. (2.57)

Actually, the relation {Xp,Zr} = 0 is already proven in Theorem 2.8, ob-
viously the remaining relations (2.54) can be proved exactly in the same
way.
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The combinator (2.55) can be, as in the proof of Theorem 2.8, expressed
as{
Xp,Y r,Zs}

=
r+s∑
jp=0

· · ·
j3∑
j2=0

j2∑
j1=0

P+
j1
◦P+

j2
· · ·P+

jp
◦Xp

s∑
kp=0

· · ·
k3∑
k2=0

k2∑
k1=0

P+
k1
◦P+

k2
· · ·P+

kr
◦YrZs,

(2.58)

which for the matrices obeying relations (2.57) give

{
Xp,Y r,Zs}

=

(
r+s∑
jp=0

· · ·
j3∑
j2=0

j2∑
j1=0

αj1αj2 · · ·αjp
)(

s∑
kp=0

· · ·
k3∑
k2=0

k2∑
k1=0

αk1αk2 · · ·αkr
)
XpYrZs.

(2.59)

Since the first multiple sum (with indices j) coincides with (2.10) and
satisfies the condition for (2.16), the right-hand side is zero and the the-
orem is proved. �

Now we make few remarks to illuminate the content of Theorem 2.12
and meaning of the matrices Qλ. Obviously, relations (2.54) and (2.55)
are equivalent to the statement that any three complex numbers a, b, c
satisfy

(
aQλ + bQµ + cQν

)n = (an + bn + cn)I. (2.60)

Further, Theorem 2.12 speaks about the existence of the triad but not
about their number. Generally, for n > 2 there is more than one triad
defined by the theorem, but on the other hand, not any three various
matrices from the set Qrs comply with the theorem. Simple example are
some X, Y , Z where, for example, XY = YX, which happens for Y ∼Xp,
2 ≤ p < n. Obviously, in this case at least relation (2.54) surely is not satis-
fied. Computer check of relation (2.58) which has been done with all pos-
sible triads fromQrs for 2 ≤ n ≤ 20 suggests that a triad X, Y , Z for which
there exist the numbers p,r,s ≥ 1 and p+ r + s ≤ n so that XpYrZs ∼ I also
does not comply with the theorem. Further, the result on the right-hand
side of (2.58) generally depends on the factors βk in the relations

XY = β3YX, YZ = β1ZY, ZX = β2XZ, (2.61)

and a computer check suggests the sets, in which for some βk and p < n

there is βpk = 1, also contradict the theorem. In this way, the number of
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different triads obeying relations (2.54) and (2.55) is a rather complicated
function of n, as shown in Table 2.1.

Table 2.1

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#3 1 1 1 4 1 9 4 9 4 25 4 36 9 16 16 64 9 81 16

Here the statement that the triad X, Y , Z is different from X′, Y ′, Z′

means that after any rearrangement of the symbols X, Y , Z for mark-
ing of matrices in the given set, there is always at least one pair βk �= β′k.

Naturally, we can ask if there exists also the set of four or generally N
matrices, which satisfy a relation similar to (2.60),

(
N−1∑
λ=0

aλQλ

)n

=
N−1∑
λ=0

anλ. (2.62)

For 2 ≤ n ≤ 10 and N = 4, the computer suggests the negative answer, in
the case of matrices generated according to Definition 2.9. However, we
can verify that if Ul, l = 1,2,3, is the triad complying with Theorem 2.12
(or equivalently with relation (2.60)), then the matrices n2 ×n2

Q0 = I ⊗ T =



I

αI
α2I

. . .
αn−1I


 , (2.63)

Ql =Ul ⊗S =




0 Ul

Ul

Ul

. . .
Ul 0


 (2.64)

satisfy relation (2.62) for N = 4. Generally, if Uλ are matrices complying
with (2.62) for some N ≥ 3, then the matrices created from them accord-
ing to the rule (2.63) and (2.64) will satisfy (2.62) for N + 1. The last
statement follows from the following equalities. Assume that

N∑
k=0

pk = n, (2.65)
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then{
Q
p0

0 ,Q
p1

1 , . . . ,Q
pN
N

}
=
n−pN∑
jpN=0

· · ·
j2∑
j1=0

j1∑
j0=0

P−
j0
◦P−

j1
· · ·P−

jpN
◦ {Qp0

0 , . . . ,Q
pN−1

N−1

}
Q
pN
N

=
n−pN∑
jpN=0

· · ·
j2∑
j1=0

j1∑
j0=0

P−
j0
◦P−

j1
· · ·P−

jpN
◦{(U0 ⊗S

)p0 , . . . ,
(
UN−1 ⊗S

)pN−1
}
(I ⊗ T)pN

=
n−pN∑
jpN=0

· · ·
j2∑
j1=0

j1∑
j0=0

αj0αj1 · · ·αjpN {(U0 ⊗S
)p0 , . . . ,

(
UN−1 ⊗S

)pN−1}(I ⊗ T)pN
=

(
n−pN∑
jpN=0

· · ·
j2∑
j1=0

j1∑
j0=0

αj0αj1 · · ·αjpN
){

U
p1

1 , . . . ,U
pN−1

N−1

}⊗Sn−pNTpN ,
(2.66)

where the last multiple sum equals zero according to relations (2.10)
and (2.16). Obviously, for n = 2 matrices (2.56), (2.63), and (2.64) created
from them correspond, up to some phase factors, to the Pauli matrices σj
and Dirac matrices γµ.

Obviously, from the set of matrices Qrs (with exception ofQnn = I) we
can easily make the n2 − 1 generators of the fundamental representation
of SU(n) group,

Grs = arsQrs +a∗rsQ
+
rs, (2.67)

where ars are suitable factors. For example, the choice

akl =
1√
2
α[kl+n(k+l−1/4)]/2 (2.68)

gives the commutation relations

[
Gkl,Grs

]
= isin

(
π(ks− lr)

n

)
· {sg(k + r, l+ s,n)

(
Gk+r,l+s − (−1)n+k+l+r+sG−k−r,−l−s

)
− sg(k − r, l− s,n)(Gk−r,l−s − (−1)n+k+l+r+sGr−k,s−l

)}
,

(2.69)

where

sg(p,q,n) = (−1)p·mq+q·mp−n, mx =
x −mod(x − 1,n)− 1

n
, (2.70)
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and the indices at G (on the right-hand side) in (2.69) are understood in
the sense of mod, like in relation (2.44). We can easily check, for example,
that for n = 2 matrices (2.67) with the factors ars according to (2.68) are
the Pauli matrices, generators of the fundamental representation of the
SU(2) group.

3. Wave equations generated by the roots of d’Alembertian
operator �1/n

Now, using the generalized Dirac matrices (2.63) and (2.64), we will as-
semble the corresponding wave equation as follows. These four matrices
with the normalization

(
Q0
)n = −(Ql

)n = I, l = 1,2,3, (3.1)

allow to write down the set of algebraic equations

(
Γ(p)−µI)Ψ(p) = 0, (3.2)

where

Γ(p) =
3∑
λ=0

πλQλ. (3.3)

If the variables µ, πλ represent the fractional powers of the mass and the
momentum components

µn =m2, πn
λ = p2

λ, (3.4)

then

Γ(p)n = p2
0 − p2

1 − p2
2 − p2

3 ≡ p2, (3.5)

and after n− 1 times-repeated application of the operator Γ on (3.2), we
get the set of Klein-Gordon equations in the p-representation,

(
p2 −m2)Ψ(p) = 0. (3.6)

Equations (3.2) and (3.6) are the sets of n2 equations with solution Ψ hav-
ing n2 components. Obviously, the case n2 = 4 corresponds to the Dirac
equation. For n > 2, (3.2) is a new equation, which is more complicated
and immediately invoking some questions. In the present paper, we will
attempt to answer at least some of them. We can check that the solution
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of the set (3.2) reads

Ψ(p) =




h
U(p)
απ0 −µh

U2(p)(
απ0 −µ

)(
α2π0 −µ

)h

...

Un−1(p)(
απ0 −µ

) · · ·(αn−1π0 −µ
)h




, h =



h1

h2
...
hn


 , (3.7)

where

U(p) =
3∑
l=1

πlUl,
(
Ul

)n = −I, (3.8)

(Ul is the triad from which the matricesQl are constructed in accordance
with (2.63) and (2.64)) and h1,h2, . . . ,hn are arbitrary functions of p. At
the same time, πλ satisfy the constraint

πn
0 −πn

1 −πn
2 −πn

3 = µn =m2. (3.9)

First of all, we can bring to notice that in (3.2) the fractional powers of
the momentum components appear, which means that the equation in
the x-representation will contain the fractional derivatives

πλ =
(
pλ
)2/n −→ (i∂λ)2/n

. (3.10)

Our primary considerations will concern p-representation, but after-
wards we will show how the transition to the x-representation can be
realized by means of the Fourier transformation, in accordance with the
approach suggested in [21].

A further question concerning the relativistic covariance of (3.2): how
to transform simultaneously the operator

Γ(p) −→ Γ
(
p′
)
= ΛΓ(p)Λ−1, (3.11)

and the solution

Ψ(p) −→Ψ′(p′) = ΛΨ(p), (3.12)

to preserve the equal form of the operator Γ for initial variables pλ and
the boosted ones p′λ?
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3.1. Infinitesimal transformations

First, consider the infinitesimal transformations

Λ(dω) = I + idω ·Lω, (3.13)

where dω represents the infinitesimal values of the six parameters of the
Lorentz group corresponding to the space rotations

p′i = pi + εijkpj dϕk, i = 1,2,3, (3.14)

and the Lorentz transformations

p′i = pi + p0dψi, p′0 = p0 + pi dψi, i = 1,2,3, (3.15)

where tanhψi = vi/c ≡ βi is the corresponding velocity. Here, and any-
where in the next we use the convention that in the expressions involv-
ing the antisymmetric tensor εijk, the summation over indices appearing
twice is done. From the infinitesimal transformations (3.14) and (3.15),
we can obtain the finite ones. For the three space rotations, we get

p′1 = p1 cosϕ3 + p2 sinϕ3, p′2 = p2 cosϕ3 − p1 sinϕ3, p′3 = p3,

p′2 = p2 cosϕ1 + p3 sinϕ1, p′3 = p3 cosϕ1 − p2 sinϕ1, p′1 = p1,

p′3 = p3 cosϕ2 + p1 sinϕ2, p′1 = p1 cosϕ2 − p3 sinϕ2, p′2 = p2

(3.16)

and for the Lorentz transformations, similarly,

p′0 = p0 coshψi + pi sinhψi, i = 1,2,3, (3.17)

where

coshψi =
1√

1− β2
i

, sinhψi =
βi√

1− β2
i

. (3.18)

The definition of the six parameters implies that the corresponding infin-
itesimal transformations of the reference frame p→ p′ changes a function
f(p):

f(p) −→ f
(
p′
)
= f(p+ δp) = f(p) +

df

dω
dω, (3.19)
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where d/dω stands for

d

dϕi
= −εijkpj ∂

∂pk
,

d

dψi
= p0

∂

∂pi
+ pi

∂

∂p0
, i = 1,2,3. (3.20)

Obviously, the equation

p′ = p+
dp

dω
dω (3.21)

combined with (3.20) is identical to (3.14) and (3.15). Further, with the
use of formulas (3.13) and (3.20), relations (3.11) and (3.12) can be re-
written in the infinitesimal form

Γ
(
p′
)
= Γ(p) +

dΓ(p)
dω

dω =
(
I + idω ·Lω

)
Γ(p)

(
I − idω ·Lω

)
,

Ψ′(p′) = Ψ′(p) +
dΨ′(p)
dω

dω =
(
I + idω ·Lω

)
Ψ(p).

(3.22)

If we define

Lω = Lω + i
d

dω
, (3.23)

then relations (3.22) imply that

[
Lω,Γ

]
= 0, (3.24)

Ψ′(p) =
(
I + idω ·Lω

)
Ψ(p). (3.25)

The six operators Lω are generators of the corresponding representation
of the Lorentz group, so they have to satisfy the commutation relations

[
Lϕj ,Lϕk

]
= iεjklLϕl , (3.26)[

Lψj ,Lψk
]
= −iεjklLϕl , (3.27)[

Lϕj ,Lψk
]
= iεjklLψl , j,k, l = 1,2,3. (3.28)

How this representation looks like, in other words, what operators Lω
satisfy (3.26), (3.27), (3.28), and (3.24)? First, we can easily check that
for n > 2 there do not exist matrices Lω with constant elements repre-
senting the first term in the right-hand side of equality (3.23) and sat-
isfying (3.24). If we assume that Lω consist only of constant elements,
then the elements of matrix (d/dω)Γ(p) involving the terms like p2/n−1

i pj
certainly cannot be expressed through the elements of the difference
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LωΓ − ΓLω consisting only of the elements proportional to p2/n
k , in con-

tradistinction to the case n = 2, that is, the case of the Dirac equation.
In this way, (3.24) cannot be satisfied for n > 2 and Lω constant. Never-
theless, we can show that the set of (3.24), (3.26), (3.27), and (3.28) is
solvable provided that we accept that the elements of the matrices Lω
are not constants, but the functions of pi. To prove this, first make a few
preparing steps.

Definition 3.1. Let Γ1(p), Γ2(p), and let X be the square matrices of the
same dimension and

Γ1(p)n = Γ2(p)n = p2. (3.29)

Then for any matrix X, we define the form

Z
(
Γ1,X,Γ2

)
=

1
np2

n∑
j=1

Γj1XΓn−j2 . (3.30)

We can easily check that the matrix Z satisfies, for example,

Γ1Z = ZΓ2, (3.31)

Z
(
Z(X)

)
= Z(X), (3.32)

and in particular for Γ1 = Γ2 ≡ Γ,

[Γ,Z] = 0, (3.33)

[Γ,X] = 0 =⇒X = Z(X). (3.34)

Lemma 3.2. Equation (3.2) can be expressed in the diagonalized (canonical)
form

(
Γ0(p)−µ

)
Ψ0(p) = 0; Γ0(p) ≡

(
p2)1/n

Q0, (3.35)

where Q0 is the matrix (2.63), that is, there exists the set of transformations Y ,

Γ0(p) = Y (p)Γ(p)Y−1(p); Y = Z
(
Γ0,X,Γ

)
, (3.36)

and a particular form reads

Y = y ·Z(Γ0, I,Γ
)
, Y−1 = y ·Z(Γ, I,Γ0

)
, (3.37)
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where

y =

√√√√√n
[
1− (p2

0/p
2
)1/n
]

1− p2
0/p

2
. (3.38)

Proof. Equation (3.31) implies that

Γ0 = Z
(
Γ0,X,Γ

)
ΓZ
(
Γ0,X,Γ

)−1
, (3.39)

therefore, if the matrix X is chosen in such a way that detZ �= 0, then Z−1

exists and the transformation (3.39) diagonalizes the matrix Γ. Put X = I
and calculate the following product:

C = Z
(
Γ0, I,Γ

)
Z
(
Γ, I,Γ0

)
=

1
n2p4

n∑
i,j=1

Γi0Γ
n−i+jΓn−j0 . (3.40)

The last sum can be rearranged, instead of the summation index j we
use the new one:

k = i− j for i ≥ j, k = i− j +n for i < j; k = 0, . . . ,n− 1, (3.41)

then (3.40) reads

C =
1

n2p4

n−1∑
k=0

(
n∑

i=k+1

Γi0Γ
n−kΓn+k−i0 +

k∑
i=1

Γi0Γ
2n−kΓk−i0

)
, (3.42)

and if we take into account that Γn0 = Γn = p2, then this sum can be sim-
plified as

C =
n−1∑
k=0

Ck =
1

n2p2

n−1∑
k=0

n∑
i=1

Γi0Γ
n−kΓk−i0 . (3.43)

For the term k = 0, we get

C0 =
1

n2p2

n∑
i=1

Γi0Γ
nΓ−i0 =

1
n

(3.44)
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and for k > 0, using (3.3), (2.63), (2.64), (3.35), and Definition 2.3 we ob-
tain

Ck =
1

n2p2

n∑
i=1

Γi0Γ
n−kΓk−i0 =

1
n2p2

n∑
i=1

Γi0

(
3∑
λ=0

πλQλ

)n−k
Γk−i0

=
1

n2p2

n∑
i=1

Γi0

(
π0 · I ⊗ T +

[
3∑
λ=1

πλUλ

]
⊗S
)n−k

Γk−i0

=
1

n2p2

n∑
i=1

Γi0
(
π0 · I ⊗ T +U⊗S)n−kΓk−i0

=
1

n2p2

n∑
i=1

Γi0

(
n−k∑
p=0

π
p

0 ·Un−k−p ⊗ {Tp,Sn−k−p}
)
Γk−i0

=

(
p2)k/n
n2p2

n−k∑
p=0

π
p

0 ·Un−k−p ⊗
n∑
i=1

Ti
{
Tp,Sn−k−p

}
Tk−i.

(3.45)

For p < n − k ≡ l, the last sum can be modified with the use of relation
(2.2)

n∑
i=1

Ti
{
Tp,Sl−p

}
Tk−i =

{
Tp,Sl−p

}
Tk

n∑
i=1

αi·(l−p)

=
{
Tp,Sl−p

}
Tkα(l−p)

1−αn·(l−p)
1−α(l−p) = 0,

(3.46)

therefore, only the term p = n− k contributes:

Ck =

(
p2)k/n
n2p2

(
p2

0

)(n−k)/n
n =

1
n

(
p2

0

p2

)(n−k)/n
. (3.47)

So the sum (3.43) gives in total

C =
1
n

[
1+

(
p2

0

p2

)1/n

+

(
p2

0

p2

)2/n

+ · · ·+
(
p2

0

p2

)(n−1)/n]

=
1− p2

0/p
2

n
[
1− (p2

0/p
2
)1/n] ,

(3.48)

therefore, (3.36) is satisfied with Y , Y−1 given by (3.37) and the proof is
completed. �
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The solution of (3.35) reads

Ψ0(p) =




0
...
0
g
0
...
0




; g ≡



g1

g2
...
gn


 , 0 ≡




0
0
...
0


 , (3.49)

that is, the sequence of nonzero components can be only in one block,
whose location depends on the choice of the phase of the power (p2)1/n.
The gj are arbitrary functions of p and simultaneously, the constraint
p2 =m2 is required. Now, we will try to find the generators satisfying the
covariance condition for (3.35),

[
Lω,Γ0(p)

]
= 0, (3.50)

together with the commutation relations (3.26), (3.27), and (3.28). Some
hint can be obtained from the Dirac equation transformed to the diago-
nal form in accordance with relations (3.36) and (3.37). We will use the
current representation of the Pauli and Dirac matrices:

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

γ0 =
(

1 0
0 −1

)
, γj =

(
0 σj

−σj 0

)
; j = 1,2,3,

(3.51)

where the bold 0, 1 stand for zero and unit matrices 2 × 2. The Dirac
equation

(
Γ(p)−m)Ψ(p) = 0, Γ(p) ≡

3∑
λ=0

pλγλ (3.52)

is covariant under the transformations generated by

Lϕj =
i

4
εjklγkγl + i

d

dϕj
= Lϕj + i

d

dϕj
; Lϕj =

1
2

(
σj 0
0 σj

)
,

Lψj =
i

2
γ0γj + i

d

dψj
= Lψj + i

d

dψj
; Lψj =

i

2

(
0 σj
σj 0

)
,

(3.53)
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where j,k, l = 1,2,3. Obviously, to preserve covariance, we have also,
with the transformation Γ→ Γ0 = YΓY−1 perform

Lω −→Mω = Y (p)LωY−1(p). (3.54)

For the space rotations Lϕj commuting with both Γ0, Γ, and with the Y
from relation (3.37), the result is quite straightforward,

Mϕj = Lϕj = Lϕj + i
d

dϕj
, (3.55)

that is, the generators of the space rotations are not changed by the trans-
formation (3.54). The similar procedure with the Lorentz transforma-
tions is slightly more complicated, nevertheless, after the calculation of

the commutator [Lψj ,Γ0/

√
1+ p0/

√
p2] and with a few further steps, we

obtain

Mψj =Mψj (p) + i
d

dψj
; Mψj (p) = εjkl

pkLϕl

p0 +
√
p2
. (3.56)

So generators (3.55) and (3.56) guarantee the covariance of the diago-
nalized Dirac equation obtained from (3.52) according to Lemma 3.2. At
the same time it is obvious that having the set of generators Lϕj (with
constant elements) of space rotations, we can, according to (3.56), con-
struct the generators of Lorentz transformationsMψj (p) (orMψj ), which
satisfy commutation relations (3.26), (3.27), and (3.28). Obviously, this
recipe is valid for any representation of infinitesimal space rotations. Re-
mark that the algebra given by (3.55) and (3.56) appears in a slightly
modified form in [4]. Now, we will show that if we require a linear rela-
tion between the generators Mψj and Lϕl , like in (3.56), then this relation
can have a more general shape than that in (3.56).

Lemma 3.3. Let Lϕj be matrices with constant elements satisfying commuta-
tion relations (3.26). Then the operators

Mψj =Mψj (p) + i
d

dψj
; Mψj (p) =

κLϕj + εjklpkLϕl

p0 +
√
p2 −κ2

, (3.57)

where κ is any complex constant, satisfy the commutation relations (3.27) and
(3.28).

Proof. After the insertion of generators (3.57) into relations (3.27) and
(3.28), we can check that the commutation relations are satisfied. In fact,
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it is sufficient to verify, for example, the commutators [Lϕ1 ,Lψ2],
[Lϕ1 ,Lψ1], and [Lψ1 ,Lψ3], the remaining follow from the cyclic symme-
try.

Note that formula (3.57) covers also the limit case |κ| →∞, then

Mψj = iLϕj . (3.58)

On the other hand, relation (3.56) corresponds to κ = 0. The representa-
tions of the Lorentz group defined by generators (3.55) and (3.57) and
differing only in the parameter κ should be equivalent in the sense that

Mω

(
κ′
)
=X−1(p)Mω(κ)X(p). (3.59)

We will not make a general proof of this relation, but rather we will show
that the representations, defined in Lemma 3.3 and differing only in κ,
can be classified by the same mass m2 = p2 and spin s2 = s(s + 1). First,
note that the six generators considered in the lemma together with the
four generators pα of the space-time translations form the set of genera-
tors of the Poincaré group. We can easily check that the corresponding
additional commutation relations are satisfied,

[
pα,pβ

]
= 0,

[
Mϕj ,p0

]
= 0,

[
pα,Γ0

]
= 0,[

Mϕj ,pk
]
= iεjklpl,

[
Mψj ,pk

]
= iδjkp0,

[
Mψj ,p0

]
= ipj .

(3.60)

Further, the generators Mω can be rewritten in the covariant notation

Mjk = εjklMϕl , Mj0 =Mψj , Mαβ = −Mβα. (3.61)

Now the Pauli-Lubanski vector can be constructed:

Vα =
εαβγδM

βγpδ

2
, (3.62)

which satisfies

VαV
α = −m2s(s+ 1), (3.63)

where s is the corresponding spin number. We can check that after in-
serting the generators (3.61) into relations (3.62) and (3.63), the result
does not depend on κ,

VαV
α = −p2(M2

ϕ1
+M2

ϕ2
+M2

ϕ3

)
= −m2s(s+ 1). (3.64)
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So the generators of the Lorentz group, which satisfy (3.50), can have
the form

Rω = Rω + i
d

dω
; Rω =



Mω

Mω

Mω

. . .
Mω


 , (3.65)

where Mω are the n×n matrices defined in accordance with Lemma 3.3.
There are n such matrices on the diagonal and apparently these matrices
may not be identical.

Finally, it is obvious that (3.35) is covariant also under any infinitesi-
mal transform,

Λ(dξ) = I + idξ ·Kξ, (3.66)

where the generators Kξ have the similar form as the generators (3.65)

Kξ =



kξ

kξ
kξ

. . .
kξ


 (3.67)

and generally, their elements may depend on p. Obviously, we can put
the question: if the generators Lϕ, kξ from (3.55) and (3.67) with con-
stant elements represent the algebra of some group (containing the ro-
tation group as a subgroup), then what linear combination Mψj (p) of
these generators satisfy the commutation relations (3.27) and (3.28) for
the generators of Lorentz transformations? In other words, what are the
coefficients in the summation

Mψj (p) =
3∑
k=1

cjk(p)Lϕk +
∑
ξ

cjξkξ, (3.68)

satisfying the commutation relations for the generators of the Lorentz
transformations? In this paper we will not discuss this more general task,
for our present purpose it is sufficient that we proved the existence of the
generators of infinitesimal Lorentz transformations under which (3.35)
is covariant. �



Petr Závada 187

3.2. Finite transformations

Now, having the infinitesimal transformations, we can proceed to the
finite ones corresponding to the parameters ω and ξ,

Ψ′
0

(
p′
)
= Λ(ω)Ψ0(p), Ψ′

0(p) = Λ(ξ)Ψ0(p), (3.69)

where p→ p′ is some of transformations (3.16) and (3.17). The matrices
Λ satisfy

Λ(ω +dω) = Λ(ω)Λ(dω), Λ(ξ +dξ) = Λ(ξ)Λ(dξ), (3.70)

which for the parameters ϕ (space rotations only) and ξ imply that

dΛ
(
ϕj
)

dϕj
= iΛ

(
ϕj
)
Rϕj ,

dΛ(ξ)
dξ

= iΛ(ξ)Kξ. (3.71)

Assuming the constant elements of the matricesRϕj andKξ, the solutions
of the last equations can be written in the usual exponential form,

Λ
(
ϕj
)
= exp

(
iϕjRϕj

)
, Λ(ξ) = exp

(
iξKξ

)
. (3.72)

The space rotation by an angle ϕ about the axis having the direction �u,
|�u| = 1, is represented by

Λ
(
ϕ, �u
)
= exp

[
iϕ
(
�u · �Rϕ

)]
; �Rϕ =

(
Rϕ1 ,Rϕ2 ,Rϕ3

)
. (3.73)

For the Lorentz transformations we get, instead of (3.71),

dΛ
(
ψj
)

dψj
= ifj

(
ψj
)
Λ
(
ψj
)
Nj, (3.74)

where, in accordance with (3.17) and (3.57), we have

fj
(
ψj
)
=

1

p0 coshψj + pj sinhψj +
√
p2 −κ2

,

Nj = κRϕj + εjklpkRϕl .

(3.75)

The solution of (3.74) reads

Λ
(
ψj
)
= exp

(
iF
(
ψj
)
Nj

)
; F

(
ψj
)
=
∫ψj

0
fj(η)dη. (3.76)
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The Lorentz boost in a general direction �u with the velocity β is repre-
sented by

Λ
(
ψ, �u
)
= exp

(
iF(ψ)N

)
, tanhψ = β, (3.77)

where

F(ψ) =
∫ψ

0

dη

p0 coshη+ �p�usinhη +
√
p2 −κ2

,

N = κ�u�Rϕ +
(
�u× �p) · �Rϕ.

(3.78)

The corresponding integrals can be found, for example, in the handbook
[11].

Note, from the technical point of view, that the solution of the equa-
tion

dΛ(t)
dt

= Ω(t)Λ(t), (3.79)

where Λ, Ω are some square matrices, can be written in the exponential
form

Λ(t) = exp

(∫ t
0
Ω(η)dη

)
(3.80)

only if the matrix Ω satisfies[
Ω(t),

∫ t
0
Ω(η)dη

]
= 0. (3.81)

This condition is necessary for the differentiation

dΛ(t)
dt

=
d

dt

∞∑
j=0

(∫ t
0Ω(η)dη

)j
j!

= Ω(t)
∞∑
j=0

(∫ t
0Ω(η)dη

)j
j!

= Ω(t)Λ(t) = Λ(t)Ω(t).

(3.82)

Obviously, condition (3.82) is satisfied for the generators of all the con-
sidered transformations, including the Lorentz ones in (3.77), since the
matrixN does not depend on ψ. (N depends only on the momenta com-
ponents perpendicular to the direction of the Lorentz boost.)
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3.3. Equivalent transformations

Now, from the symmetry of (3.35) we can obtain the corresponding
transformations for (3.2). The generators (3.65) satisfy relations (3.50),
(3.26), (3.27), and (3.28), it follows that the generators

Rω(Γ) = Y−1(p)Rω

(
Γ0
)
Y (p) = Rω(Γ) + i

d

dω
,

Rω(Γ) = Y−1(p)Rω

(
Γ0
)
Y (p) + iY−1(p)

dY (p)
dω

,

(3.83)

where Rω(Γ0), Rω(Γ0) are generators (3.65) and Y (p) is the transforma-
tion (3.37), will satisfy the same conditions, but with relation (3.24) in-
stead of relation (3.50). Similarly, the generators Kξ(Γ0) in relation (3.67)
will be for (3.2) replaced by

Kξ(Γ) = Y−1(p)Kξ

(
Γ0
)
Y (p). (3.84)

The finite transformations of (3.2) and its solutions can be obtained as
follows. First, consider the transformations Λ(Γ0,ω, �u) given by (3.73)
and (3.77). In accordance with (3.36), we have

Γ(p) = Y−1(p)Γ0(p)Y (p), Γ
(
p′
)
= Y−1(p′)Γ0

(
p′
)
Y
(
p′
)
, (3.85)

and correspondingly for the solutions of (3.2) and (3.35),

Ψ(p) = Y−1(p)Ψ0(p), Ψ′(p′) = Y−1(p′)Ψ′
0

(
p′
)
. (3.86)

Since

Ψ′
0

(
p′
)
= Λ
(
Γ0,ω, �u

)
Ψ0(p), (3.87)

then (3.86) imply that

Ψ′(p′) = Λ
(
Γ,ω, �u

)
Ψ(p); Λ

(
Γ,ω, �u

)
= Y−1(p′)Λ(Γ0,ω, �u

)
Y (p). (3.88)

Similarly, the transformations Λ(Γ0, ξ) given by (3.72) are for (3.2) re-
placed by

Λ(Γ, ξ) = Y−1(p)Λ
(
Γ0, ξ
)
Y (p). (3.89)

Note that all the symmetries of (3.2) like the transformation (3.89), which
are not connected with a change of the reference frame (p), can be, in
accordance with relation (3.33), expressed as

Λ(Γ,X) = Z(Γ,X,Γ), (3.90)
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where Z is defined by (3.30) and X(p) is any matrix for which there
exists Z(Γ,X,Γ)−1. Further, it is obvious that if we have some set of gen-
erators Rω(Γ) satisfying relations (3.24), (3.26), (3.27), and (3.28) then
also any set

R̂ω(Γ) = Z(Γ,X,Γ)−1Rω(Γ)Z(Γ,X,Γ) (3.91)

satisfies these conditions. For the finite transformations, we get, corre-
spondingly,

Λ̂
(
Γ,ω, �u

)
= Z
(
Γ
(
p′
)
,X
(
p′
)
,Γ
(
p′
))−1Λ

(
Γ,ω, �u

)
Z
(
Γ(p),X(p),Γ(p)

)
.

(3.92)
In the same way, the sets of equivalent generators and transformations
can be obtained for the diagonalized equation (3.35).

We remark that according to Lemma 3.2, there exists the set of trans-
formations Γ(p)↔ Γ0(p) given by relation (3.36). We used its particular
form (3.37), but how will the generators

Rω

(
Γ,Xk

)
= Z
(
Γ0,Xk,Γ

)−1
Rω

(
Γ0
)
Z
(
Γ0,Xk,Γ

)
; k = 1,2 (3.93)

differ for the two different matrices X1 and X2? The last relation implies
that

Rω

(
Γ,X1

)
= Z
(
Γ0,X1,Γ

)−1
Z
(
Γ0,X2,Γ

)
Rω

(
Γ,X2

)
Z
(
Γ0,X2,Γ

)−1
Z
(
Γ0,X1,Γ

)
(3.94)

and according to relation (3.31),

ΓZ
(
Γ0,X1,Γ

)−1
Z
(
Γ0,X2,Γ

)
= Z
(
Γ0,X1,Γ

)−1Γ0Z
(
Γ0,X2,Γ

)
= Z
(
Γ0,X1,Γ

)−1
Z
(
Γ0,X2,Γ

)
Γ,

(3.95)

which means that [
Z
(
Γ0,X1,Γ

)−1
Z
(
Γ0,X2,Γ

)
,Γ
]
= 0. (3.96)

It follows that there must exist a matrixX3 (e.g., according to implication
(3.34) we can put X3 = Z(Γ0,X1,Γ)−1Z(Γ0,X2,Γ)) so that

Z
(
Γ,X3,Γ

)
= Z
(
Γ0,X1,Γ

)−1
Z
(
Γ0,X2,Γ

)
, (3.97)

then relation (3.94) can be rewritten as

Rω

(
Γ,X1

)
= Z
(
Γ,X3,Γ

)
Rω

(
Γ,X2

)
Z
(
Γ,X3,Γ

)−1
, (3.98)
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that is, the generators Rω(Γ,X1),Rω(Γ,X2) are equivalent in the sense of
relation (3.91).

3.4. Scalar product and unitary representations

Definition 3.4. The scalar product of the two functions satisfying (3.2) or
(3.35) is defined as

(
Φ(p),Ψ(q)

)
=

{
0 for p �= q,
Φ†(p)W(p)Ψ(q) for p = q,

(3.99)

where the metric W is the matrix, which satisfies

W†(p) =W(p), (3.100)

R†
ω(p)W(p)−W(p)Rω(p) + i

dW

dω
= 0, (3.101)

K†
ξ
(p)W(p)−W(p)Kξ(p) = 0. (3.102)

Conditions (3.101) and (3.102) in the above definition imply that the
scalar product is invariant under corresponding infinitesimal transfor-
mations. For example, for the Lorentz group the transformed scalar
product reads

Φ′†(p′)W(p′)Ψ′(p′)
= Φ†(p)

(
I − idωR†

ω(p)
)(
W(p) +dω

dW

dω

)(
I + idωRω(p)

)
Ψ(p)

(3.103)

and with the use of condition (3.101), we get

Φ′†(p′)W(p′)Ψ′(p′) = Φ†(p)W(p)Ψ(p). (3.104)

According to a general definition, the transformations conserving the
scalar product are unitary. In this way, (3.101) and (3.102) represent the
condition of unitarity for the representation of the corresponding group
generated by Rω and Kξ.

How to choose these generators and the matrix W(p) to solve (3.101)
and (3.102)? Similarly, as in the case of the solution of (3.24), (3.26),
(3.27), and (3.28), it is convenient to begin with the representation re-
lated to the canonical equation (3.35). Apparently, the generators of the
space rotations can be chosen Hermitian

R†
ϕj

(
Γ0
)
= Rϕj

(
Γ0
)
. (3.105)
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Then also for the Lorentz transformations we get

R†
ψj

(
Γ0
)
= Rψj

(
Γ0
)
, (3.106)

provided that the constant κ in (3.57) is real and |κ| ≤m. Also the gener-
ators Kξ can be chosen in the same way,

K†
ξ

(
Γ0
)
=Kξ

(
Γ0
)
. (3.107)

It follows that instead of conditions (3.101) and (3.102), we can write[
Rω

(
Γ0
)
,W
(
Γ0
)]

= 0,
[
Kξ

(
Γ0
)
,W
(
Γ0
)]

= 0. (3.108)

The structure of the generatorsRω(Γ0), Kξ(Γ0) given by (3.65) and (3.67)
suggests that the metric W satisfying condition (3.108) can have a simi-
lar structure, but in which the corresponding blocks on the diagonal are
occupied by unit matrices multiplied by some constants. Nevertheless,
note that condition (3.108) in general can be satisfied also for some other
structures of W(Γ0).

From W(Γ0) we can obtain matrix W(Γ), the metric for the scalar
product of the two solutions of (3.2). We can check that after the trans-
formations

Rω

(
Γ0
) −→Rω(Γ,X) = Z

(
Γ0,X,Γ

)−1
Rω

(
Γ0
)
Z
(
Γ0,X,Γ

)
,

Kξ

(
Γ0
) −→Kξ(Γ,X) = Z

(
Γ0,X,Γ

)−1
Kξ

(
Γ0
)
Z
(
Γ0,X,Γ

)
,

(3.109)

and simultaneously,

W
(
Γ0
) −→W(Γ,X) = Z

(
Γ0,X,Γ

)†
W
(
Γ0
)
Z
(
Γ0,X,Γ

)
, (3.110)

the unitarity in the sense of conditions (3.101) and (3.102) is conserved,
in spite of the fact that equalities (3.105), (3.106), and (3.107) may not
hold for Rω(Γ,X), Kξ(Γ,X).

3.5. Space-time representation and Green functions

If we take the solutions of the wave equation (3.2) or (3.35) in the form
of the functions Ψ(p), for which there exists the Fourier picture

Ψ̃(x) =
1

(2π)4

∫
Ψ(p)δ

(
p2 −m2)exp(−ipx)d4p, (3.111)

then the space of the functions Ψ̃(x) constitutes the x-representation of
wave functions. Correspondingly, for all the operators D(p) given in the
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p-representation and discussed in the previous sections, we can formally
define their x-representation:

D̃(z) =
1

(2π)4

∫
D(p)exp(−ipz)d4p, (3.112)

which means that

D̃Ψ̃(x) =
1

(2π)4

∫
D(p)Ψ(p)δ

(
p2 −m2)exp(−ipx)d4p

=
1

(2π)4

∫
D(p)exp(−ipx)Ψ̃(y)exp(ipy)d4yd4p

=
1

(2π)4

∫
D̃(x−y)Ψ̃(y)d4y.

(3.113)

In this way, we get for our operators

Γ0(p) −→ Γ̃0(z) =Q0
1

(2π)4

∫ (
p2)1/n exp(−ipz)d4p; pz ≡ p0z0 − �p�z,

Γ(p) −→ Γ̃(z) =
3∑
λ=0

Qλ
1

(2π)4

∫
p2/n
λ exp(−ipz)d4p,

Rϕj

(
Γ0
) −→ R̃ϕj

(
Γ0
)
= Rϕj

(
Γ0
)
+ i

d

dϕ̃j
;

d

dϕ̃j
= −εjklxk ∂

∂xl
,

Rψj

(
Γ0
) −→ R̃ψj (z) =

1
(2π)4

∫
κRϕj

(
Γ0
)
+ εjklpkRϕl

(
Γ0
)

p0 +
√
p2 −κ2

exp(−ipz)d4p

+ i
d

dψ̃j
;

d

dψ̃j
= −x0

∂

∂xj
−xj ∂

∂x0
,

(3.114)

and in the same way,

Rω(Γ) −→ R̃ω(z)

=
1

(2π)4

∫
Z
(
Γ0,X,Γ

)−1
Rω

(
Γ0
)
Z
(
Γ0,X,Γ

)
exp(−ipz)d4p.

(3.115)

Apparently, the similar relations are valid also for the remaining oper-
ators Kξ, W , Z, Z−1 and the finite transformations Λ in the x-represen-
tation. Concerning the translations, the usual correspondence is valid,
pα → i∂α.
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Further, the solutions of the inhomogeneous version of (3.35) and
(3.2),

(
Γ0(p)−µ

)
G0(p) = I,

(
Γ(p)−µ)G(p) = I (3.116)

can be obtained with the use of formula (2.30),

G0(p) =

(
Γ0 −αµ

)(
Γ0 −α2µ

) · · ·(Γ0 −αn−1µ
)

p2 −m2
,

G(p) =
(Γ−αµ)(Γ−α2µ

) · · ·(Γ−αn−1µ
)

p2 −m2
,

(3.117)

and (3.36) implies that

G(p) = Z
(
Γ0,X,Γ

)−1
G0(p)Z

(
Γ0,X,Γ

)
. (3.118)

Apparently, the functions

G̃0(x) =
1

(2π)4

∫
G0(p)exp(−ipx)d4p,

G̃(x) =
1

(2π)4

∫
G(p)exp(−ipx)d4p

(3.119)

formally satisfy (3.116) in the x-representation

∫
Γ̃0(x −y)G̃0(y)d4y −µG̃0(x) = δ4(x),

∫
Γ̃(x−y)G̃(y)d4y −µG̃(x) =

[
3∑
λ=0

Qλ

(
i∂λ
)2/n −µ

]
G̃(x) = δ4(x).

(3.120)
The last equation contains the fractional derivatives defined in [21]. Ob-
viously, the functions G̃0, G̃ can be identified with the Green functions
related to the x-representation of (3.35) and (3.2).

With the exception of the operators R̃ϕj (Γ0), W̃(Γ0), and i∂α, all the re-
maining operators considered above are pseudodifferential ones, which
are in general nonlocal. The ways to deal with such operators are sug-
gested in [1, 8, 21]. A more general treatise of the pseudodifferential
operators can be found, for example, in [6, 18, 19, 20]. In our case it is
significant that the corresponding integrals will depend on the choice of
passing about the singularities and the choice of the cuts of the power
functions p2j/n. This choice should reflect contained physics, however,
corresponding discussion would exceed the scope of this paper.
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4. Summary and concluding remarks

In this paper, we have first studied the algebra of the matrices Qpr =
SpTr generated by the pair of matrices S, T with the structure given by
Definition 2.1. We have proved that for a given n ≥ 2 we can in the cor-
responding set {Qpr} always find a triad, for which (2.60) is satisfied,
where the Pauli matrices represent particular case n = 2. On this base, we
have got the rule, to construct the generalized Dirac matrices [(2.63) and
(2.64)]. Further, we have shown that there is a simple relation [(2.67)
and (2.68)] between the set {Qpr} and the algebra of generators of the
fundamental representation of the SU(n) group.

In the further part, using the generalized Dirac matrices we have
demonstrated how we can, from the roots of the d’Alembertian operator,
generate a class of relativistic equations containing the Dirac equation as
a particular case. In this context, we have shown how the corresponding
representations of the Lorentz group, which guarantee the covariance of
these equations, can be found. At the same time, we have found addi-
tional symmetry transformations on these equations. Further, we have
suggested how we can define the scalar product in the space of the cor-
responding wave functions and make the unitary representation of the
whole group of symmetry. Finally, we have suggested how to construct
the corresponding Green functions. In the x-representation, the equa-
tions themselves and all the mentioned transformations are in general
nonlocal, being represented by the fractional derivatives and pseudodif-
ferential operators in the four space-time dimensions.

In line with the choice of the representation of the rotation group used
for the construction of the unitary representation of the Lorentz group
according to which the equations transform, we can ascribe to the related
wave functions the corresponding spin—and further quantum numbers
connected with the additional symmetries. Nevertheless, it is obvious
that before more serious physical speculations, we should answer some
more questions requiring a further study. Perhaps the first could be the
problem how to introduce the interaction. The usual direct replacement

∂λ −→ ∂λ + igAλ(x) (4.1)

would lead to the difficulties, first of all with the rigorous definition of
terms like

(
∂λ + igAλ(x)

)2/n
. (4.2)

At the end, still the more general question: is it possible on the base of
the discussed wave equations to build up a meaningful quantum field
theory?
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