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We consider a convertible security where the underlying stock price
obeys a lognormal random walk and the risk-free rate is given by the
Vasicek model. Using a Laplace transform in time and a Mellin trans-
form in the stock price, we derive a Green’s function solution for the
value of the convertible bond.

1. Introduction

A convertible bond is defined to be (e.g., Jorion [10]) a bond issued by
a corporation that can be converted into the equity of that corporation
at certain times using a predetermined exchange ratio. This entails the
creation of new shares issued by the corporation if and when conversion
occurs, and the existing shares are diluted by the creation of the new
shares. The option to convert is solely at the discretion of the bond holder
who will do so only if it is beneficial.

Typically, firms issue convertible bonds because they offer a lower in-
terest cost and less restrictive covenants than a nonconvertible bond, but
the drawback is that the issuer will be confronted with capital structure
uncertainty. Convertible bonds are often subordinated debentures, and
because of this, the bond rating agencies have usually rated convertibles
one class below that of a straight debenture (Dialynas et al. [7]), and typ-
ically issuing convertibles will not affect a company’s rating. In return
for a reduced yield, an investor will receive a security with considerable
upside potential along with downside protection.

Conceptually, the behavior of a convertible bond can be segmented
into four regions (e.g., Dialynas et al. [7]). In the late 1990s, most new
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issue convertibles were balanced converts, with around a 25% conver-
sion premium, where the conversion premium is the excess an investor
would pay to acquire the stock by buying the convertible and immedi-
ately converting rather than buying the stock itself. Typically, the price of
a balanced convert responds materially to changes in both the underly-
ing stock price and the spot interest rate, with a correlation of about 55%
to 80% with changes in the stock price. A second category is equity sub-
stitute converts, where the conversion premium is less than 15%, usually
because of rises in the price of the underlying. Typically, the price of an
equity substitute responds much more to changes in the stock price than
to interest rate changes. A third category is busted converts, where the
underlying stock price has declined so significantly that the conversion
option is worth very little and the value of the convertible approaches
that of an otherwise identical nonconvertible bond. A fourth category is
distressed converts, which are busted converts where the stock price has
fallen so much that there is a significant chance of bankruptcy.

As of 2000, the market value of convertible securities outstanding
globally was in excess of $400 billion US, with approximately $200 bil-
lion in the USA alone (Dialynas et al. [7]). Given the size of the market
for these securities, the pricing of convertible bonds is obviously an im-
portant problem. Traditionally, convertibles were valued based on the
premise that buying a convertible is equivalent to buying the stock at
a premium and recouping that premium from the coupons on the con-
vertible, and the payback period is the time taken to recover the pre-
mium. More recently, however, contingent claims analysis has been used
to value convertibles, which is the approach taken in the present study,
and this approach dates back to the work of Ingersoll [9] and Brennan
and Schwartz [3]. Brennan and Schwartz originally used the firm value
as the underlying variable, and later (Brennan and Schwartz [4]) ex-
tended their analysis to include stochastic interest rates and also to in-
clude the value of the stock rather than that of the firm (McConnell and
Schwartz [11]). Almost all of this earlier work led to a numerical rather
than an analytical solution of the underlying equations for the value of a
convertible bond, typically using binomial trees; by contrast, the present
work in entirely analytical.

In our analysis, we consider a convertible bond, whose value depends
on both the price of the underlying stock, which is assumed to obey a
lognormal random walk with constant volatility, as in the Black-Scholes
option pricing model, and on the interest rate, which is assumed to fol-
low a random walk given by the Vasicek [13] model. We will say more
about this interest rate model and its advantages and disadvantages in
Section 3. By constructing a risk-free portfolio, it is possible to go from
the stochastic differential equations for the stock price and the spot rate
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to a PDE for the value of the convertible (e.g., Wilmott [14]), and that
PDE is the starting point for our analysis in the next section. In our anal-
ysis, we consider this PDE, and by using a double integral transform,
specifically a Laplace transform in time and a Mellin transform with re-
spect to the asset price, we can solve the PDE by transforming it into an
ODE and then finding the inverse transforms of the solution. By doing
this, we arrive at a Green’s function for the price of a convertible.

2. Analysis
In this section, we discuss the value V (S,r,t) of a convertible bond. We
assume that the asset price S obeys a lognormal random walk

dS = uSdt +oSdx;, 2.1)

where o is the volatility of the stock price and y is the drift, while the
interest rate r obeys

dr =u(r,t)dt + w(r,t)dX,, (2.2)

where dX; and dX; are both normally distributed with zero mean and
variance dt and may be correlated, with

E [XmdXQ] = pdt (23)

and -1 < p(r,S,t) < 1. Equations (2.1) and (2.2) constitute stochastic dif-
ferential equations for the underlying stock price and the spot interest

rate, respectively. Constructing a risk-free portfolio leads to the follow-
ing PDE for V:

0%V oV oV
2 - _ =
+rS aS+(u Aw) P rV =0,

(2.4)

6V+1025282_V+ oSw oV +1w
ot 1297 352 TP "ser T2 a2

the derivation of which is discussed in, for example, Wilmott [14, Chap-
ter 36]. This equation is typically valid for t <T, where T is the time at
which the bond is repaid. In (2.4), A(r, S,t) is the market price of interest
rate risk and u — Aw is the risk adjusted drift. Many of the popular one-
factor interest rate models are special cases of the general affine model
for which u — Aw = a(t) - b(t)r and w = (c(t)r — d(t))'/2. Two of these
special cases are the Cox-Ingersoll-Ross (CIR) model (Cox et al. [5, 6])
with u — Aw = a—br and w = cr'/2, where a, b, and ¢ are constants, as
opposed to functions of ¢ in the general affine model, and the Vasicek
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model, with u — Aw = a — br and w = c. The Vasicek model allows inter-
est rates to become negative. Several other special cases of the general
affine model are listed in Wilmott [14, Chapter 38]. If we specialize to
either the CIR or the Vasicek model, and further make the transforma-
tion t =T — 7, so that 7 is the remaining life of the bond, the PDE above
becomes

OV 1 ,,0%V w2V 1, RV
ar 277 a5t PO S55ar 27T o
(2.5)
+ Sa—v+(a—b )b_V_ Vv,
255 Var T

where m = 0 for the Vasicek model and 1/2 for CIR. We will suppose the
pay-off at expiry, t =T or 7 =0, is Vo(S,r) = V(5,1,0). For a European-
style convertible discount bond, with pay-off 1 at expiry, which can be
converted for one unit of stock of value S at expiry, the effective pay-
off at expiry is Vy(S,r) = max(S,1). To analyze the PDE (2.5), we take a
Laplace transform with respect to time 7,

21f(7)] =f0°° e f(r)dr, 26)

and a Mellin transform with respect to the price of the underlying S,

M[f(S)] = J:O SP1f(S)dS, (2.7)
so that
U(p,r,z)=M[L(V(S1,71))] = ro st Uw eV (S,r,T)dr|dS. (2.8)
0 0

Noting that

MISF'(S)] =-pM[f(S)],
M[S*F(S)] =p(p+1)M[f(S)], 2.9)
L[f'(T)] =zL[f(S)] - f(0),

we arrive at the following ODE for the transform of the option price:

2
%czrzmaa% +(a—-pocpr™ —br) %—?

+ [(%ozp—r>(l+p)—z

(2.10)

U+ M[Vo(S,7)] =0.
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In order to value the bond using the method considered here, it is nec-
essary to first solve the ODE (2.10) and then invert both the Mellin and
Laplace transforms. For the CIR model, with m =1/2, (2.10) becomes

2
%czrg—? +(a-pocpr'/? - br)aa—v
r : 4 (2.11)
+ [(Eo-Zp—r>(1 +p)—z| U+ M[Vo(S,1)] =0;

the presence of the r'/2 term makes this equation difficult to solve, and

we have been unable to find a closed form solution. For the Vasicek
model with m =0, on the other hand, we have

(2.12)
U+ M[Vo(S,1)] =0,

+ [(%ozp—r>(1 +p) -z

which can be solved in terms of the Kummer functions M and U
(Abramowitz and Stegun [1]), also known as confluent hypergeomet-
ric functions. Two linearly independent homogeneous solutions to (2.12)
are

U1 = (ab- (1 +p) - bpcop - b?r)

r(l+p) (ab-c*(1+p)-bpcop)’
S 2070

M [ (1+p)(2ab-c?*(1+p) —b*a?*p—2bpcop)

4b3
btz 3 (ab—c2(1+p)—bpcop-b*r)’
TR c?b?
U, = (ab-*(1+p) —bpcop - b*r)

r(1+p) (ab—cz(l+]a)—bpcop)2
coxp | -H0P) (S

U [ (1+p)(2ab-c*(1+p) - b*0*p —2bpcop)

] (2.13)

4b3

b+z 3 (ab—c*(1+p)—bpcop—b3r)’
2b "2’ b3 '
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and the Wronskian of these two solutions is

0 =00~ V0,

__|; (1+p)(2ab—c2(1+p)—b20'2p—2prOp)+b+z o
- 4b3 2b (2.14)

2 _ _
xcbquﬁwexp[br 2(a2 pcop)r ,
C

where we have used the fact that I'(3/2) = /or /2. The general solution
to (2.12) using variation of parameters is

' 57| dr " S,7)| d7
U=§<U1[A1+J‘ UZﬂ[V(;(() )] r:|+Uz[A2—I U1ﬂ[V(;(() 7)] r])

2 (1+p)(2ab-c*(1+p) -b*c?p—2bpcop) b+z
=— +
A2/ I 4b3 2b

) [01 <Bl+r02ﬂ[Vo(5,7)] exp [—bf2+2(a—79cop)f] d?)

c2

T _ 12 _ =
+U2<B2_J‘ Ul,/’l[V()(S,f')] exp[ b?" +2(a PCO'[))T'] df’

C2
(2.15)

In applying this solution to the problem at hand, we must recall that the
spot interest rate r obeys the random walk (2.2), and that for the Vasicek
model r can range between —oo and co. The value of the convertible bond
comes from the expected pay-off as r and the stock price S follow their
respective random walks; because of this, we would expect that as the
end result of the present study, we can write the price of the bond as
a double integral over the possible ranges of both S and r, involving
both the pay-off for each possible pair of values of S and r and also the
probability of hitting those values of S and r from their current values. In
addition, we have the boundary condition that V is bounded as r — oo.
Using the asymptotic behavior of the Kummer functions (Abramowitz
and Stegun [1]), this leads us to deduce that
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o 2. (1+p)(2ab-c*(1+p) —b*a?*p—2bpcop) .\ b+z
e EN 4b3 2b
*® -bi? +2(a- 7

X [U1f U M[Vo(S,7)] exp[ T (:2 pccp)r] dar
r _b~2 2a— =
+02J‘ U1 M[Vo(S,7)] exp[ i (:2 peop)? dr|.

(2.16)

Having solved (2.12), we must now invert the Laplace and Mellin trans-
forms (2.6) and (2.7). The inverse Laplace transform is defined to be

L7 F(z)] = zim e e“"F(z)dz (2.17)

y—ioo

while the inverse Mellin transform is given by

M F(p)] = L IMO SPF(p)dp. (2.18)
2ori 6—-ioo

Inverting the Laplace transform first, we must pick the contour so that y
lies to the right of all singularities. We can evaluate this integral by clos-
ing the contour to the left with a semicircle at infinity, and the value of
the contour integral is 2sri times the sum of the residues contained in-
side the loop. Recalling that I'(cz) is single valued and analytic over the
entire complex plane, except for simple poles with residue (-1)"c™!/n!
at the points z=-n/c (n=0,1,2,...), we deduce that U has simple poles
at the points

(1+p)(2ab-c*(1+p) - b*0*p —2bpcop)

z=-b(1+2n) - T , (2.19)
and it follows that
4(ab-c*(1+p) —bpcop —b*r
MIV]= ( 3 z/z r )
c3b5/2\/or
r(l+p) (ab-c(1+p)-bpcop)®
x exp [— b 2

1 2ab-c?(1 -b*c’p-2b
< exp —b—( +p)(2ab-c*(1+p) - b*c?*p —2bpcop) .
2b?
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y i (_1)ne'—2nb'r [M[_n,§, (ab—c2(1 +p) —bPCGP—b2r)2]
~ ! 2

n c2b3

"y c2b3

r

xwa[— ,E (ab—cz(1+p)—bpcop—b2f)2]

x M[Vo(S,7)] (ab-c*(1+p) —bpcop - b*F)
—br? - 7o
< exp [ br®+2(a-pcop)f (1 +p)] .

c? b

+U[—n,—

3 (ab-c*(1+p) —bpcop—b?r)’
2’ c?b?

r 3 (ab—c*(1+p)—bpcop—b*F)’
XIOOM[—TI, E, C2b3

x M[Vo(S,7)] (ab-c*(1+p) —bpcop - b*7)

b2 +2(a- PRl
Xexp[ 72+ (:2 pcop)F  #( ;P)]d?].

(2.20)

At first glance, this expression (2.20) appears to be an extremely compli-
cation function of the Mellin transform variable p, because of the con-
tinued presence of the Kummer functions. Fortunately, we can simplify
it considerably using several identities for special functions. Firstly, we
can rewrite (2.20) in terms of Laguerre polynomials using the relations
(Abramowitz and Stegun [1])

M(—n,fc,f) =

R e,
T'(k+n) (2.21)
U(-nk,#) = (-1)"nlLE (7),

which leads to a greatly simplified expression,

4(ab-c*(1+p) —bpcop—b*r)

MV] = 3652/
r(l+p) (ab-c(1+p)-bpcop)’
e [_ b 2

—2 202
X ex _b_(1+p)(2ab c*(1+p) -b*o’p - 2bpcop) .
P 2b?
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Z nif(3/2) ;1 (ab=(+p)—bpeop- b*r)* p-2br
AT(3/2+n) Ly cb3

c2bd
x M[Vo(S,7)] (ab—-c*(1+p) —bpcop — b*F)
b2 +2(a—pcop)i  F(1+ p)] B
- dar
c? b
2(ab-c*(1+p) —bpcop —b*r)

c3b5/2

r(l+p) (ab-c*(1+p)-bpcop)’
xexp | - ——— - 53

(1+p)(2ab—c*(1+p) -b*o’p - prcop)
xexp| | -b- 5

J’°° 12 [ (ab-c*(1+p) —bpcop - b27)2:|
x n

xexp[

. fw [Vo(S,7)]

X<i nle=2nbt Ll/z[(ab—cz(lﬂa)—bpcop—bzr)z]

~T(3/2+4n) " b

[ [(ab —c*(1+p) —bpcop — bzf’)z]>
x n

c?b?
x (ab-c*(1+p) —bpcop - b*7)
b2 +2(a—pcop)i¥ F(1+p)

c2

X EXp [
(2.22)

One important point to note is that the two separate integrals from 7 =
—oo to r and from 7 = r to oo have now been combined into a single in-
tegral over the range —oo < 7 < c0. This expression can be simplified still
further. We know (Gradstein and Ryzik [8]) that

Z T(n+zx+ 1) La()La(y)

(2.23)

1-z 1-z

- Mexp [_ z(x+y) a[ZW]
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-2bt

sowitha=1/2and z =e4"", we have

0 -2nbt
nle 112

W 2(x) L (y)
n=0

B 14 ebT/Z e—ZbT
= (xy) T exp |~ — = (x+vy)

—b'r
11/2 [2 VX 1 e—sz]

(2.24)

Since I1/(x) = 1/2/ (orx) sinh x, we have

e}

S

bt e—ZbT

_ -1/2,-1/2__€ _
= (xy) o N exp [ T (x+y) (2.25)

e b7
x sinh [Zw /xylizb] .
— e T

With this, our expression (2.22) becomes

B 2vb r(l+p) (ab-c*(1+p)—bpcop)’
M= e [" b b
_(1+p)(2ab-c*(1+p) -bPo’p - 2bpc0p)
x exp T

XJ‘ ﬂ[VQ(S,TN’)]
e 27 (ab— (1 +p) - bpcop —b*r)’
XEXp = 21,3 ~2b7
c?b3(1—e27)
e 2" (ab— (1 +p) —bpcop — b*#)*
Czb3(1 — e—2b-r)

ze—bT

2 2
ey (e P ~bpeop )

x sinh [

x (ab-c*(1+p) —bpcop - bzf)]

b2 +2(a—pcop)F F(1+p) p

X exp [ o

(2.26)
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We can cast this in the form

MV] =

Vo (S, F)] [e® 7 HPertre — en P 4P-pH1-] d,

(2.27)
where a,, p., and y. are functions of r, 7, and 7, and are given by

\/l; ©
/1 —e 27 J‘—ooﬂ[

_*(c+ pob?)® —2coshbr (pob + 2) . 7(0?b? + c* +2cpob)

- 2b3sinhbr 212 '
+(c+pob?) (2¢> -2b%a+b*(r + 7)) —4coshbr(pob +c) (c* - ba)
pe= 2b3csinhbt
(2cpob +0?b* +2c* -2ba)t  pob(7e’” +re ) +c(r + 7) coshbr
" 2b2 - besinhbr ’
+(b*F-b*a+c?) (bPr-b*a+c*) (c*-2ba)r
V== 26 sinhbr T

b(rre " +7%e7) 4 (re™7 +7ebT)
2Zsinhbr | Zsinhbr
<czb2 (r+7)+ (ab- c2)2> coshbr

b3c?sinhbr !

(2.28)

"oy

where we take the “+” signs in (2.28) for a,, B., and y,, and the
signs for a_, p_, and y_. The reason for writing M[V] in the form (2.27)
is that the Mellin transform can then be inverted using tables (Polyanin
and Manzhirov [12]), using the inverse transform

y— PlosSy S)z] (2.29)

M]3 T [ I

and the relation
W EEEE] - [ AE9ASSTS, )
which tells us that
M < Jm M[Vo(S,7)] e P d?)

(T (F (B-log(5/5))° I
= _wfo 2\/Jﬁexp [Y—T]Vo(s,r)s das dr.
(2.31)
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It follows that our inverse is

b
weV1-e 2T

w o/ . —log(5/5))
L (o]
_a12 exp [Y— _ (B- —log(S/S))2

V=

]>V0(§,F)S‘l dsdr,
do_

(2.32)

where a., f., and y, are given by (2.28). This solution can of course be
written in the form

v:f f G(S,3,r,7,7)Vo(5,7) dS dF, (2.33)
0

—0o

where

G- A
G(S,S,r,#,1) = L\/E <a:1/2 exp [Y+ . (B —1og(S/S)) ]

mreV1—e 2t da,
_an _ (B--log(8/8))
a_'“exp [Y— ix ,
(2.34)

is the Green’s function.

3. Discussion

The principle result of this paper is the Green’s function solution (2.32)
for the value of a convertible bond under the dual assumptions that the
value of the underlying stock obeys a lognormal random walk and the
spot interest rate is given by the Vasicek model. The valuation of convert-
ible bonds is an important problem, not least because the market value
of such instruments currently outstanding is several hundred billion dol-
lars. Our end result is of course quite flexible and can be adapted to sev-
eral situations by the choice of an appropriate pay-off at expiry, Vo(S,r).
For example, for a European style convertible bond, meaning one that
can only be converted at expiry, the pay-off would be V;(S,r) = max(S,1)
if the conversion ratio was one, and we have assumed that the num-
ber of shares outstanding is very large so that we can neglect dilution.
Similarly, we can use our solution to price a semi-American (or Bermu-
dan) style convertible bond which can be exercised at a series of discrete



R. Mallier and A. S. Deakin 231

dates, for example, t =T,T — 7y, T — 27y, ..., which might coincide with the
coupon dates of the bond, by valuing the bond separately on successive
time intervals, typically, the pay-off would be known at t =T, the expi-
ration of the bond, and we can use this to arrive at a value for the bond
on the interval T <t < T — 1 using our solution (2.32), and use this to ar-
rive at the pay-off at time t = T — 7y, which we can use in (2.32) to yield a
value of the bond on the interval T — 7y <t < T - 271y, and so on. As a fur-
ther extension, most convertibles are also callable at the discretion of the
issuing corporation (Jorion [10]), and this call feature could also be in-
cluded in the pay-off at expiry Vi (S, r). Similarly, some convertibles also
have embedded put options (Bhattacharya [2]), and these could also be
included in Vi (S, ).

A few words should also be said about the model used in our study,
where we have combined the standard lognormal random walk for the
stock price with the Vasicek model for the spot rate. The primary ratio-
nale for using the Vasicek model is that it is extremely tractable; it is also
mean reverting which is desirable, but has the undesirable property that
interest rates can go negative, which is why the integral over 7 in (2.32)
extends from —oo to co. Obviously, more realistic models exist, and a sim-
ilar analysis to ours could in principal be performed for some of those
models. However, most of these models are somewhat less tractable than
the Vasicek model, for example, for the CIR model mentioned earlier,
which many researchers hold to be a more realistic model, we have been
unable to date to solve the ODE (2.11) for the transform of the bond
price, and unless and until that equation is solved, we cannot proceed
with the analysis for the CIR model; by contrast, the corresponding ODE
(2.12) for the Vasicek model was comparatively easy to solve, with the
solution given by (2.16).
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