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Abstract: This paper explores an approach to Bayesian sample size determi-
nation in clinical trials. The approach falls into the category of what is often
called “proper Bayesian”, in that it does not mix frequentist concepts with
Bayesian ones. A criterion for a “successful trial” is defined in terms of a pos-
terior probability, its probability is assessed using the marginal distribution
of the data, and this probability forms the basis for choosing sample sizes.
We illustrate with a standard problem in clinical trials, that of establishing
superiority of a new drug over a control.

We are honored to contribute to this Festschrift celebrating Professor Morris L.
Eaton, one of the preeminent theoretical statisticians of our time. We pay tribute
to him – for his distinguished and illustrious career at the University of Minnesota,
for his innovative and highly influential body of research, and for his dedicated and
selfless service to the statistics profession.

Readers of this volume will be familiar with Joe Eaton’s pioneering and funda-
mental research in many areas of theoretical statistics. They may be less familiar
with his work on methodological problems of particular importance to statisticians
in the pharmaceutical industry, and we would like to take this opportunity to high-
light some of this work. He has made important contributions to our understanding
of statistical issues in both early and late stage drug development; these will have
lasting impact. They include research in very diverse areas (the following list is not
intended to be exhaustive): dissolution profile testing, where the aim is to show
through in vitro testing that the dissolution properties of (for example) a new for-
mulation of an approved drug are statistically “similar” to the existing formulation,
a necessary step in obtaining a bio-waiver for in vivo testing (Eaton, Muirhead and
Steeno, 2003); the statistical evaluation of a decision rule in a regulatory guidance
for assessing whether a new drug in development prolongs the length of the QT
interval (an ECG measurement) which, because QT prolongation is a safety signal
for potential cardiac problems, can lead to the development of a compound being
halted (Eaton et al., 2006); the construction and evaluation of multivariate Bayesian
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predictive distributions and reference (or tolerance) regions for assessing a vector
of laboratory values, providing a novel approach to monitoring the safety of a drug
in clinical trials (Eaton, Muirhead and Pickering, 2006); the testing of multiple
co-primary endpoints, where a new drug must demonstrate efficacy on a number
of variables in order to gain regulatory approval (Eaton and Muirhead, 2007); and
large-sample properties of “proper Bayesian” and “hybrid classical-Bayesian” ap-
proaches to sample sizing of clinical trials (Eaton, Muirhead and Şoaita, 2012, and
used in the current paper). On behalf of the pharmaceutical statistical community,
we thank Joe for his willingness to be involved in industry problems and for his
many important contributions.

1. Introduction

Sample size determination plays an important role in the design aspect of studies
in many fields, and especially in the planning of clinical trials. Although applicable
to other situations (such as equivalence trials and non-inferiority trials), our focus
here is on superiority trials, where the aim is to establish that a new experimen-
tal treatment is more efficacious than (superior to) a control, such as placebo or
an existing treatment. The frequentist approach is well known. For a given test
of the null hypothesis of no difference between the two treatments, we specify a
significance level (or size) α, the magnitude δ∗ say, of the magnitude of the treat-
ment effect δ considered “clinically meaningful”, and 1 − β, the desired power at
δ∗. We then determine a sample size so that the test of level α will reject the
null hypothesis with probability 1− β if, in fact, the “true” treatment effect is δ∗.
Frequentist sample size formulas are available in commonly occurring situations,
whether based on standard tests themselves or on lengths of confidence intervals.
(See, for example, Joseph and Bélisle (1997) and Whitehead et al. (2008).) These
formulas generally involve “guesses” (estimates) of the values of nuisance parame-
ters, such as unknown variances. These estimates, which are usually obtained from
prior studies, or from published studies on the same (or a similar) drug, are treated
as “correct” in frequentist sample sizing (although, of course, sensitivity analyses
are routinely carried out to see how sample sizes are affected by the choice of the
values of nuisance parameters). The fact that the estimates obtained from prior
studies and from expert opinions sometimes underestimate the variability actually
observed in a new trial can lead to an underpowered study. In addition, what δ∗

should actually represent remains open to debate. The regulatory guideline ICH
E9 (which immediately follows introductory remarks by Lewis (1999)) recommends
that δ∗ may be based either on “a judgment concerning the minimal effect which has
clinical relevance in the management of patients or on a judgment concerning the
anticipated effect of the new treatment, where this is larger.” That the anticipated
effect size is often optimistically overstated may also lead to an underpowered study.
For further discussion on these matters, see e.g. Grouin et al. (2007) and O’Hagan,
Stevens and Campbell (2005).

Because of the uncertainty involved in the specification of both δ∗ and nuisance
parameters, it is natural to incorporate Bayesian concepts into the sample size deter-
mination process. Possible approaches have been classified by Spiegelhalter, Abrams
and Myles (2004) as “hybrid classical-Bayesian”, “decision-theoretic Bayesian”, and
“proper Bayesian”. The most common example of the hybrid classical-Bayesian ap-
proach involves specifying a prior distribution for unknown model parameters, and
then averaging the (frequentist) power function with respect to this prior to obtain



128 R. J. Muirhead and A. I. Şoaita

an “average power”, also called “predictive power” (see Whitehead et al. (2008))
and “assurance” (see O’Hagan, Stevens and Campbell (2005)). The basic idea is
to pre-specify a value for the average power and use this as the basis for sample
sizing. (This pre-specified value must be chosen with care; it does not seem to be
widely appreciated that, as the sample size increases, the average power is bounded
above by the prior probability that the new treatment is better than the control.)
A frequentist analysis will then follow, after the trial data has been collected. In
the decision-theoretic Bayesian approach, “sample size is based on maximization
of a utility function, formulated to reflect concerns involving mainly measures of
cost and benefit” (Whitehead et al., 2008). Because of the difficulties involved in
specifying utility functions in practice and because “misspecification of utilities can
lead to seriously sub-optimal designs”, Whitehead et al. (2008) conclude that “im-
plementation (of decision-theoretic Bayesian approaches) in clinical trial design has
been and probably will remain limited”. We agree with this assessment.

In a “proper Bayesian” approach to sample size determination, it is assumed
that a Bayesian analysis will be performed at the end of the trial, and that the
analysis will generally be based on whatever criterion (in terms of a posterior dis-
tribution) has been specified at the sample size determination stage. Whether or
not this is actually done however (and, as is pointed out in O’Hagan, Stevens and
Campbell (2005), regulatory agencies have been slow to adopt formal guidelines
encouraging Bayesian analyses in Phase III drug confirmatory trials), the use of
Bayesian concepts at the design stage leads to increased understanding of how
sample size is affected by the specification of prior distributions which incorporate
prior knowledge. An approach proposed by Whitehead et al. (2008) for exploratory
clinical trials falls into the “proper Bayesian” category, as do methods based on
credible intervals, such as average coverage and average length (see e.g. Joseph and
Bélisle (1997) and M’Lan, Joseph and Wolfson (2008), and the references therein).
It should also be pointed out that proposals have been made to utilize two different
priors for the different stages of design and analysis (see e.g. Brutti, De Santis and
Gubbiotti, 2008; O’Hagan and Stevens, 2001). In the latter paper, the “analysis
prior” is essentially non-informative, so that the analysis more closely resembles
a standard frequentist one. We do not pursue this approach here, although it is
straightforward to implement.

This paper is structured as follows. In Section 2 we describe a “proper Bayesian”
approach to sample size determination that seems intuitively appealing; it is based
on choosing a sample size which gives a pre-specified “probability of a successful
trial”, where the probability is calculated using the marginal distribution of the
data. Section 3 is concerned with specific examples and applications in a common
clinical trial setting, that of comparing the means of two normally distributed sam-
ples.

2. The “Probability of a Successful Trial” Criterion

Assume that, in a clinical trial, we will collect data X1, . . . , Xn on a total of n
subjects, where X(n) ≡ (X1, . . . , Xn) has a joint distribution that depends on a
parameter θ ∈ Θ, where Θ is a subset of a multidimensional Euclidean space. The
variable Xi being measured or calculated for final analysis is often referred to as
the “primary endpoint” of the trial. This is usually 1-dimensional, but may be
multivariate if there are two or more primary endpoints. Let Θ0 and Θ1 be two
disjoint, non-empty subsets of Θ, with Θ0 ∪ Θ1 = Θ. In a classical hypothesis
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testing framework, these subsets correspond to null and alternative hypotheses.)
We are interested in concluding that θ ∈ Θ1.

Let π denote a prior distribution for θ, and denote by πn(·|x(n)) the poste-
rior distribution of θ given the observed data x(n) ≡ (x1, . . . , xn). In the notation
being used here, distributions refer to probability measures. (In the examples in
Section 3, these distributions will have probability density functions.) Thus, for ex-
ample, π(Θ1) and πn(Θ1|x(n)) are respectively the prior and posterior probabilities
that θ ∈ Θ1.

Suppose that, at the analysis stage (that is, after the data x(n) has been ob-
served), we call a clinical trial a success if the posterior probability that θ ∈ Θ1 is
greater than or equal to a specified threshold η ∈ (0, 1); that is, if

(1) πn(Θ1|x(n)) ≥ η .

At the design stage, since we haven’t yet collected the trial data, we cannot evaluate
the left side of (1). We can, however, assess the inequality (1) using the marginal (or
unconditional) distribution, PX(n) say, of X(n), obtained from the joint distribution
of X(n) (given θ) and the prior π by integrating out θ. (In the Bayesian sample size
determination literature, this distribution has also been called the “predictive dis-
tribution”; see, e.g. Joseph and Bélisle (1997) and Brutti, De Santis and Gubbiotti
(2008).) We can ask: What is the probability, according to the marginal distribu-
tion PX(n) , that the trial will be a success? Formally, this involves calculating the
quantity

(2) Ψ(n) = PX(n)(X(n) ∈ En) ,

where En denotes the set of all samples x(n) which lead to a successful trial, namely

(3) En =
{
x(n); πn(Θ1|x(n)) ≥ η

}
.

We will refer to Ψ(n) in (2) as the probability of a successful trial and abbreviate
it as PST. (It has also been called “expected Bayesian power” by Spiegelhalter,
Abrams and Myles (2004), and “predictive probability” by Brutti, De Santis and
Gubbiotti (2008).) The basic idea now is to choose a sample size n for which the
PST Ψ(n) is “large enough”, in the sense that it exceeds a specified threshold. As
we note below, there is a limitation on the size of this threshold. It is clear that,
for fixed n, Ψ(n) increases as η in (1) decreases; that is, the lower the threshold for
defining a successful trial, the greater the chance of obtaining a sample leading to
one.

Although we have emphasized the dependence in (2) of Ψ(n) on n, it of course
also depends on any hyperparameters in the prior π, as well as the subset Θ1

deemed appropriate and the choice of the threshold η. In practical situations, we
would choose η to be “large”, with the choice influenced by the specification of
Θ1, and by the type of trial. In the examples in Section 3, Θ1 will correspond to a
classical alternative hypothesis, and we will take η = 1 − α where α is a standard
significance level. (The choice of significance level is influenced by the type of trial
it is generally taken to be smaller for a confirmatory (Phase III) trial than for an
exploratory or earlier phase trial.) As previously noted, the PST increases as η
decreases, and this will be illustrated in Section 3.

How large can the PST in (2) be? This raises the non-trivial question of how
Ψ(n) behaves for large n. In the examples in Section 3, for the parameter values
considered, Ψ(n) is an increasing function of n, for all n. In the first example in
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Section 3 (two normal samples with unknown means and known common variance),
it is straightforward to show that

(4) lim
n→∞Ψ(n) = π(Θ1) ;

that is, no matter what value of η ∈ (0, 1) is chosen in (1) to define a successful
trial, as n→∞, then PST Ψ(n) approaches the prior probability that θ ∈ Θ1. The
limiting result (4) has been obtained by Brutti, De Santis and Gubbiotti (2008)
in the case of a single normal sample with unknown mean and known variance.
It is established in Eaton, Muirhead and Şoaita (2012) that (4) holds much more
generally, with the proof hinging on consistency of the posterior distribution. (For
a discussion of Bayesian consistency, see Ghosh and Ramamoorthi (2003)). Thus,
even with an infinite sample size (where we would learn the “true” value of Θ), the
PST cannot exceed the prior probability that Θ ∈ Θ1. Because of this, it may be
more informative, when choosing a sample size, to focus attention on the normalized
PST index

(5) Ψ∗(n) =
Ψ(n)

π(Θ1)
,

for which limn→∞ Ψ∗(n) = 1, so that Ψ∗(n) represents the proportion of the maxi-
mum value of the PST explained by the sample size n. We do this in the examples
in the next section.

3. Examples

Throughout this section, we consider a normal model for comparing the means
of two populations, corresponding to experimental treatment E and control C.
We base our notation loosely on that used by Whitehead et al. (2008). We have
independent samples of sizes nE and nC from each population, so that the model
(conditional on parameters) is

(6) X1, . . . , XnE

iid∼ N(μE , τ
−1) , Y1, . . . , YnC

iid∼ N(μC , τ
−1) .

We assume that the precision τ is the same in both populations. Let n = nE + nC

denote the total sample size, and let R = nE/nC be the allocation ratio. In terms of
n and R, the two sample sizes are nE = nR/(1+R), and nC = n/(1+R). Typically
we fix a value of R, and then the two group sample sizes follow from the choice of
n. (In the illustrations below, we will always take R = 1, so that there are equal
sample sizes in the two groups.) The parameter of interest here is the treatment
effect δ = μE − μC , and positive values of δ are assumed to favor the experimental
treatment E over the control C. We base our definition of a “successful trial” (see
(1)) on the posterior probability that δ > 0. (It is straightforward to modify this to
δ > δ∗ (for example) if this seems more appropriate in a particular situation.)

3.1. Known precision, conjugate prior

When τ is known, a standard conjugate prior specifies that the two means μE and
μC are independent, with

(7) μE ∼ N

(
μ
(0)
E ,

1

τn
(0)
E

)
, μC ∼ N

(
μ
(0)
C ,

1

τn
(0)
C

)
.
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here μ
(0)
E , μ

(0)
C , n

(0)
E , n

(0)
C are specified, and the superscript (0) is used to indicate

quantities in (or calculated from quantities in) prior distributions. (In what follows,
the superscript (1) will similarly indicate a quantity in a posterior distribution.)
The n(0)’s multiplying the precision play the role of “pseudo observations”, and
allow us to weight prior information differently in the groups E and C. We might,
for example have much more information about the control group C from previous

trials or historical data, in which case we might choose n
(0)
C to be large in comparison

with n
(0)
E . The aim in such a situation would be to allocate more subjects to group

E (allocation ratio R > 1). With the Bayesian model specified by (6) and (7), the
posterior distribution of δ = μE −μC depends only on the trial results through the
observed sample means x̄ and ȳ, and is

(8) δ|x̄, ȳ ∼ N

(
δ(1),

1

D(1)τ

)
,

where the posterior mean δ(1) is the difference between the posterior means of μE

and μC , namely

(9) δ(1) ≡ δ(1)(x̄, ȳ) = μ
(1)
E − μ

(1)
C ,

with

μ
(1)
E =

1

n
(1)
E

(
n
(0)
E μ

(0)
E + nE x̄

)
, n

(1)
E = n

(0)
E + nE ,(10)

μ
(1)
C =

1

n
(1)
C

(
n
(0)
C μ

(0)
C + nC ȳ

)
, n

(1)
C = n

(0)
C + nC ,

and D(1) in (8) is

(11) D(1) =
n
(1)
E n

(1)
C

n
(1)
E + n

(1)
C

.

From (1), we call the trial a success if the posterior probability that δ > 0 exceeds
a specified threshold η. This condition is equivalent to

(12) δ(1)
√
D(1)τ ≥ zn ,

where zn denotes the η–quantile of the N(0, 1) distribution. Then the PST is (see
(2))

(13) Ψ(n) = P

{
δ(1) ≥ zn√

D(1)τ

}
,

where the probability is calculated using the marginal distribution of δ(1)(X̄, Ȳ ).
This distribution is N(Δ, σ2), with mean and variance given by

(14) Δ = μ
(0)
E − μ

(0)
C , σ2 =

nE

τn
(0)
E n

(1)
E

+
nC

τn
(0)
C n

(1)
C

.

Consequently,

(15) Ψ(n) = Φ

(
1

σ

(
Δ− zn√

D(1)τ

))
.
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(Note that this depends on the prior means only through their difference Δ.) Since
the prior probability that δ > 0 is

(16) P (δ > 0) = Φ(Δ
√
τD(0)) ,

where

(17) D(0) =
n
(0)
E n

(0)
C

n
(0)
E + n

(0)
C

,

the normalized PST index (see (5)) is

(18) Ψ∗(n) =
Φ
(

1
σ

(
Δ− zn√

D(1)τ

))
Φ(Δ

√
τD(0))

.

Example 3.1.1. The “International Restless Legs Syndrome Study Group Rating
Scale” (IRLS) is used in clinical trials that attempt to show that a drug is efficacious
in treating “Restless Legs Syndrome” (RLS). The IRLS is a clinician-administered
10-item questionnaire used to assess the severity of RLS. The overall score ranges
from 0 to 40, with lower scores reflecting lower severity and better quality of life.
We consider a randomized trial aimed at comparing a drug group with a placebo
group, and take as the endpoint the difference between the IRLS score at baseline
and at the end of the trial. If the drug is efficacious, we would expect to see positive
values of this difference in the drug group.

For the purpose of illustration here, assume the standard deviation (SD) of the
endpoint in both populations is known to be 8. (This is about equal to the aver-
age SD observed in Allen et al. (2010), a published RLS study.) In a frequentist
approach, assume a difference in mean scores (drug vs. placebo) of 4 is “clinically
meaningful”. In a confirmatory Phase III trial, a test of “no difference between
drug and placebo” is usually a 2-sided, 0.05-level test (even when the hope is to
conclude that drug is better than placebo); consequently we will focus here on a
1-sided 0.025-level test. A standard normal-based calculation shows that, in order
to have 80% power at δ∗ = 4, we need 64 subjects in each group, for a total sample
size of 128.

Figure 1 illustrates how the normalized PST index (18) behaves as a function
of total sample size n for four different values of the difference in prior means Δ,

when R = 1, η = 0.975 and the prior weights are taken to be n
(0)
E = n

(0)
C = 2 (in

which case the prior distribution of the treatment effect δ is a N(Δ, 64)). As noted
in Section 2, the curves all converge to 1 as the sample size increases, although
this is not obvious from Figure 1, which only goes to n = 200. In a practical
setting, we would probably choose Δ to reflect our prior opinion, perhaps based on
previous studies, about the treatment effect. Alternatively, we might take it to be
the “clinically meaningful” treatment effect. If we take, for example, Δ = 4, the
PST converges to a maximum of Φ(0.5) = 0.6915. The normalized PST index gives
the proportion of this maximum value achieved for various sample sizes–see Table 1.
We see, for example, that when n = 100 (so there are 50 subjects in each group, the
PST is 79% of its maximum value, and it is increasing only slowly with n. There is
not much to be gained, in terms of the PST, by taking larger sample sizes. Also, we
noted in Section 2 that, for fixed Δ, the PST increases as the threshold η decreases
(and then, of course, a smaller sample size may be chosen)–see Figure 2.
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Fig 1. Normalized PST index versus n for various values of Δ. (η = 0.975, SD=8, n
(0)
E = n

(0)
C =

2.)

Fig 2. Normalized PST index versus n for various values of the threshold η. (Δ = 4, SD=8,

n
(0)
E = n

(0)
C = 2.)

When the prior weights n
(0)
E and n

(0)
C are increased (so that the prior distributions

for the means are sharper or more informative) we expect the PST to also increase.

The second set of two rows in Table 1, with n
(0)
E = n

(0)
C = 30, illustrates this. The

PST values are considerably higher here than in the first set; the normalized PST
index is 0.80 with a total sample size of 60.
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Table 1
Values of the PST and the normalized PST index for two sets of values of n

(0)
E and n

(0)
C when

Δ = 4. (η = 0.975, SD= 8.)

n 40 60 80 100 120 140

n
(0)
E = n

(0)
C = 2 Ψ(n) 0.46 0.50 0.53 0.55 0.56 0.57

Ψ∗(n) 0.67 0.73 0.77 0.79 0.81 0.83

n
(0)
E = n

(0)
C = 30 Ψ(n) 0.75 0.78 0.81 0.82 0.84 0.85

Ψ∗(n) 0.77 0.80 0.83 0.85 0.86 0.87

3.2. Known precision, mixture prior

Suppose that we are in a situation where we believe that there is some chance
(perhaps small) that the treatment effect δ is “close” to zero. This might arise,
for example, when a prior is based on the elicitation of opinions of experts, some
of whom are skeptical about the efficacy of a proposed new drug, whereas others
are more confident. In the frequentist setting, when testing the null hypothesis
δ = 0, sufficiency and translation invariance leads us to consider U ≡ X̄ − Ȳ ∼
N

(
δ, (τ∗n)

−1
)
, with τ∗n = nEnCτ/n. For the purpose of illustration, assume that

the prior distribution for δ is a mixture of two normal distributions, N(0, τ−1
0 ) and

N(δ1, τ
−1
1 ), with mixing probabilities ρ and 1−ρ. Then, given U = u, the posterior

probability that δ > 0 is

(19) P (δ > 0|u) = ρ̃(u)Φ

(
τ∗nu√
τ∗n + τ0

)
+ (1− ρ̃(u))Φ

(
τ∗nu+ τ1μ1√

τ∗n + τ0

)
,

where

(20) ρ̃(u) =
ρ

f(u)
×
{
N

(
u; 0,

τ∗n + τ0
τ∗nτ0

)}
,

and where

(21) f(u) = ρ×
{
N

(
u; 0,

τ∗n + τ0
τ∗nτ0

)}
+ (1− ρ)×

{
N

(
u; μ1,

τ∗n + τ1
τ∗nτ1

)}

is the density function of the marginal distribution of U . (In ((20) and (21), the
notation N(u;μ, σ2) denotes the N(μ, σ2) density function evaluated at u.) then
the PST is Ψ(n) = P (U ∈ En), where En is the set of all values u of U for which
the posterior probability (19) exceeds a specified value η. Although an analytic
expression for Ψ(n) seems elusive, it is a straightforward matter to calculate it via
Monte Carlo simulation, and a MATLAB program which does this is available from
the authors.

Example 3.2.1. This is a continuation of Example 3.1.1. When δ has the mixture
prior described above, the prior mean and variance are

(22) E(δ) = (1− ρ)δ1 , Var(δ) = ρ(1− ρ)δ21 +
ρ

τ0
+

1− ρ

τ1
.

For the purpose of illustration here, we take τ0 = 100, E(δ) = 4. and, as in Ex-
ample 3.1.1, Var(δ) = 64. Given ρ, we can then determine the parameters δ1 and
τ1 in the second mixture distribution appropriately. Figure 3 gives the graphs for
the normalized PST index for various values of ρ. If, for example, we take ρ = 0.1
(in which case δ1 = 4.44, τ−1

1 = 69.13) the limiting value of the PST is 0.6830.
The normalized PST index gives the proportion of this maximum value achieved
for various sample sizes–see Table 2.
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Fig 3. Normalized PST index versus n for various values of ρ, and η = 0.975. (Each mixture has
mean 4 and SD 8.)

Table 2
Values of the PST and the normalized PST index when ρ = 0.1

n 20 40 60 80 100 120 140
Ψ(n) 0.32 0.40 0.44 0.46 0.48 0.49 0.50
Ψ∗(n) 0.47 0.59 0.65 0.68 0.71 0.72 0.74

3.3. Unknown precision, conjugate prior

We begin with the model in Section 3.1, but now assume that the precision τ is
unknown, and that its prior distribution is gamma, with specified hyperparameters
α(0) and β(0) (so that E(τ) = α(0)/β(0) and Var(τ) = α(0)/(β(0))2). Given τ , the
means μE and μC are independent, with conditional prior distributions given by(7).
Then the posterior distribution of τ (see e.g. Whitehead et al., 2008) is gamma,
with parameters α(1) and β(1), where

(23) α(1) = α(0) +
1

2
n , β(1) ≡ β(1)(x̄, ȳ, s2) = β(0) +

1

2
H ,

with

(24) H ≡ H(x̄, ȳ, s2) = (n− 2)s2 +
nEn

(0)
E

n
(1)
E

(
x̄− μ

(0)
E

)2

+
nCn

(0)
C

n
(1)
C

(
ȳ − μ

(0)
C

)2

and s2 being the value of the (unbiased) pooled sample variance S2. Next, define
T as

(25) T =

√
D(1)α(1)

β(1)
(δ − δ(1)) ,

where δ(1), D(1), α(1) and β(1) are given in (9), (11), and (23). Then (see Joseph
and Bélisle (1997), Whitehead et al. (2008)) the posterior distribution of T is t2α(1) .
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Fig 4. Normalized PST index versus n for various values of Δ.

We call the trial a success if P (δ > 0|x̄, ȳ, s2) ≥ η. Using (25) this is equivalent to

(26) δ(1)

√
D(1)α(1)

β(1)
≥ t2α(1),η ,

where the right side of (26) denotes the η-quantile of the t2α(1) distribution. Then
the PST is

(27) Ψ(n) = P

{
δ(1)(X̄, Ȳ )

√
D(1)α(1)

β(1)(X̄, Ȳ , S)
≥ t2α(1),η

}

where the probability in (27) is calculated using the marginal joint distribution of
X̄, Ȳ , and S2. It may be shown that (27) depends on the prior means only through
their difference Δ. Although it appears difficult to obtain an analytical expression,
Ψ(n) in (27) can be calculated via simulation, by first conditioning on the model
parameters. A MATLAB program that does this is available from the authors.

Example 3.3.1. This continues Example 3.1.1. We use six precision estimates for
IRLS change from baseline (mean 0.015 and SD of 0.0010 ) from Table 2 of Allen
et al. (2010) to fit a prior gamma distribution with α(0) = 243 and β(0) = 16200.
Figure 4 gives the normalized PST curves for various values of Δ when η = 0.975

and n
(0)
E = n

(0)
C = 2 (as in Figure 1). The mean precision here corresponds to a SD of

about 8.16 (Example 3.1.1 assumed a known SD of 8), and the precision variability
is small, so that the graphs in Figure 4 are very similar to those in Figure 1.

4. Summary

We have described a “proper Bayesian” approach to sample size determination,
and illustrated its use in a context of a two parallel arm clinical trial for superior-
ity with normal data. It is more widely applicable–for example, in non-inferiority
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and equivalence trials, and to non-normal data (such as dichotomous data and
time-to-event-data). In most instances, the proposed PST criterion will have to
be calculated via simulation, and–at least in standard distributional settings–this
appears to be reasonably straightforward. The material in Section 3 may also be
readily generalized to the multiple primary endpoints setting, although the number
of hyperparameters that have to be specified in prior conjugate distributions grows
rapidly as the dimension increases.
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