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Abstract: We consider two variations on a Lehmann alternatives to symme-
try-at-zero semiparametric model, with a real parameter θ quantifying skew-
ness and a symmetric-at-0 distribution as a nuisance function. We show that
a test of symmetry based on the signed log-rank statistic [A signed log-rank
test of symmetry at zero (2011) University of Rochester] is asymptotically effi-
cient in these models, derive its properties under local alternatives and present
efficiency results relative to other signed-rank tests. We develop efficient esti-
mation of the primary parameter in each model, using model-specific estimates
of the nuisance function, and provide a method for choosing between the two
models. All inference methods proposed are based solely on the signed ranks
of the absolute values of the observations, the invariantly sufficient statistic.
A simulation study is summarized and an example presented. Extensions to
regression modeling are envisaged.

1. Introduction and summary

The simplest test of the null hypothesis of symmetry at 0 is the sign test. Addi-
tional nonparametric choices are provided by signed rank tests, again without other
assumed structure, starting with the path-breaking signed rank test of Wilcoxon
[20], and followed by a series of others—including signed normal scores and various
robust and adaptive variations; see books such as [8, 10, 15], and [11] and refer-
ences therein. Another is a signed rank test of [13] (see Section 3). Other tests of
symmetry at 0 include those of Kolmogorov type, but not having the convenience
of an asymptotically normal test statistic (and not considered here).

These tests are especially suitable for use with paired data differences—e.g.,
a treatment and placebo administered on the same subjects, or measures on both
left and right sides of a body, or twin data—where a null hypothesis of symmetry
at 0 is often appropriate. Other common applications are to testing for a median
of zero in settings in which symmetry may be a reasonable additional assumption
(but without this extra assumption, signed rank tests of median = 0 need not be
consistent).
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Although these tests are generally consistent against all stochastically ordered
alternatives to symmetry at 0, evaluations have been restricted largely to shift
alternatives whereas applications often show skewness. Asymptotic properties of
signed rank tests in shift models are shape-dependent; for example, different tests
are efficient against logistic (Wilcoxon) and normal (normal scores) shapes.

Only in semiparametric (or fully parametric) models is there an associated esti-
mation problem, and essentially the only such models studied in the literature are
shift models. For these, the center of symmetry is the real parameter of the model,
and rank-based Hodges-Lehmann estimation methods [14] provide solutions. Again,
efficiency varies with the shape of the distribution.

In a recent paper [9], a new signed rank test was introduced, aimed at skewed
alternatives to symmetry at 0, and evaluated in two Lehmann alternatives models.
Here, we show it to be asymptotically optimal in these semiparametric models, and
we evaluate the asymptotic relative efficiency of other signed rank tests in these
models. We go on to develop and evaluate efficient estimation of the associated real
parameter, which has both skewness and hazard interpretations. Efficiency of tests
and of estimation in these models are shape-free.

Note: There are tests for symmetry versus asymmetry without specifying a null
center of symmetry, and also tests that assume a specified median and evaluate
whether variation around that median is or is not symmetric; such tests are outside
the context considered here.

2. Two Lehmann alternatives to symmetry-at-zero models

Consider a random sample (X1, . . . , Xn) with an absolutely continuous distribution
function (df) on R. We confine attention to two related semiparametric Lehmann
alternatives to symmetry-at-0 models considered in [9], the first defined by the
distribution function

Fθ,F (x) = F (x)θ(1)

and the second by the survival function

Gθ,F (x) = G(x)1/θ(2)

with θ belonging to an interval of positive reals including θ = 1 and F ≡ 1−G ∈ F0,
the set of absolutely continuous d.f.’s symmetric at 0; write f for the density. Hence,
F (−x) = G(x) for all x. Our focus is on the parameter θ, with F a nuisance
function. The models are related; specifically, the survival function for Y ≡ −X
when X follows Model (1) is given by (2) with θ replaced by 1/θ. Plots of densities
for the models for several choices of F and θ appear in [9].

It is readily verified that the right tail area in each of Models (1) and (2) is
increasing in θ, so θ quantifies the skewness within each family—to the left for
θ < 1 and to the right for θ > 1. As a consequence, the medians—indeed, all
quantiles—and the means (if existent) are increasing in θ.

Each of (1) and (2) is a Lehmann alternatives family [14], but here with a
symmetric-at-0 baseline F . We will refer to these models as LAS1 and LAS2, re-
spectively. LAS2 is the popular proportional hazards family [5] of survival analysis
while LAS1 is the proportional reversed hazards family ([6] and [7]), introduced
in recent years in the reliability literature. But these latter two families are only
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defined on R
+, where hazards concepts have more direct interpretation. Still, the

reverse hazard at x is the density at x given {X ≤ x}, in contrast to the (for-
ward) hazard, namely the density at x given {X ≥ x}. Hence, θ is essentially the
proportional-hazards parameter of the popular Cox models of survival analysis, but
here with a restricted interpretation of ‘hazard’. The distribution F is associated
with ‘no effect’ and plays the role played by a baseline or control-group distribution
in survival analysis settings.

An alternative parametrization of (1) and (2) replaces θ by eρ, common in pro-
portional hazards modeling, and possibly more appropriate for estimation and con-
fidence interval construction.

It is easily determined that the score for ρ in LAS2—not the efficient score but
the “raw” or “ordinary” score in the semiparametric model—is −1 + exp(−ρ)Λ
(Λ = − logG) with information for ρ equal to 1. In LAS1, information for ρ is also
equal to 1. But ρ and F are not orthogonal in these models, as is established in
the Appendix. Specifically, we find in these one-sample models that the resulting
information for ρ due to not knowing F is ≈ 0.8225, representing a 17.75% loss of
information; see Section 5.

By contrast, in a two-sample PH model (without censoring)—with X ∼ 1 −
Gexp(−ρ), Y ∼ 1 − Gexp(ρ), X ⊥ Y , G = 1 − F—it may be shown (omitted here)
that the score for ρ in the model for (X,Y ) is exp(−ρ)Λ(x)−exp(ρ)Λ(y) with infor-
mation for ρ equal to 2. Moreover, in this 2-sample model, ρ and F are orthogonal,
so the score for ρ is the efficient score and there is no loss of information. Par-
tial likelihood methods—not applicable in the models considered here—facilitate
efficient inference.

The LAS models may be appropriate for modeling differences between paired
measurements, say before and after treatment, with θ quantifying the treatment
effect with null value unity. Exchangeability of the paired measurements under
a null hypothesis of no treatment effect implies that F ∈ F0, while an effective
treatment would often induce skewness. In the literature, focus has largely been on
shift models F (x− θ), with symmetry preserved for all θ. Models (1) and (2) could
easily accommodate regression, replacing ρ by β′z, say; see Section 8.

3. Efficient testing

We focus on the null hypothesis of symmetry. [9] introduced a linear signed-rank
test, the signed log-rank test SL, with LAS models in mind. There θ = 1 (ρ = 0)
is consistent with the nonparametric null hypothesis that the df is in F0. Let Zi =
sign Xi, Yi = |Xi|, and let R+

i be the rank of Yi among (Y1, . . . , Yn). The test SL
is defined by the test statistic

SLn =
n∑

i=1

Zi an
(
R+

i

)
=

n∑
i=1

an
(
ZiR

+
i

)
,

(3)

where an(j) =
1

2
log

(
n+ 1 + j

n+ 1− j

)
.

Its null distribution is symmetric around 0 with variance σ2
n =

∑n
j=1 an(j)

2 ≈
nπ2/12. The test rejects in favor of stochastically larger alternatives (θ > 1 in
Models (1) and (2)) whenever SLn, or its standardized form SL∗

n = SLn/σn, is
sufficiently large. (The exact standard error σn is strongly recommended.) Its null
distribution is asymptotically normal, with Edgeworth corrections provided in [9].
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Moreover, it was shown there to be a locally most powerful signed-rank test in
Models (1), (2) and their union, and consistent against stochastically-ordered alter-
natives. Here we strengthen this by proving it to be asymptotically uniformly most
powerful, as defined in [4], and give its power under local alternatives, along with
ARE’s relative to various other linear signed-rank tests. We follow the methodology
there.

First, for comparison, the popular Wilcoxon signed rank test statistic Wn may
be written as in (3) with an(j) = j/(n + 1), and likewise for the signed normal
scores test statistic NSn with an(j) = Φ−1( 12 (n + 1 + j)/(n + 1)). (We choose the
van der Waerden form of this test, first introduced by [19].) Koziol’s signed rank
test Kn [13] is equivalently based on an(j) =

√
2 sin(π2 j/(n + 1)) and the sign

test Sn on an(j) = 1 (here expressed as a signed rank test). Null distributions,
variances and Edgeworth corrections are given by the same formulas (see [9] for
the Edgeworth correction formulas); the asymptotic variance of Wn is 1/3 while
that for the others is unity. Optimality for W , NS and S is against F -specific shift
alternatives, with F logistic for W , normal for NS and double-exponential (Laplace)
for S. (The supports of W and S (in this form) being a limited number of values
spaced 2 units apart, these two statistics should be moved one unit closer to zero
as a continuity correction; the others have non-lattice, and much richer, supports.)

Returning to the SL test, and following [4], we consider local alternatives to the
null hypothesis θ = 1, namely θn = 1 + (hθ + o(1))/

√
n and Fn(x) =

∫ x

−∞ fn(y) dy

with
√
fn =

√
f + (hf + δn)/

√
n and ‖δn‖ = o(1); here, symmetry of fn implies

symmetry of the L2-function hf . For one-sided local alternatives, hθ > 0.

We first derive the effective (efficient) score, depending on the nuisance L2-
function

√
f through F , or equivalently through the df F+ = 2F − 1 on R

+ for
|X|.

Proposition 1. The effective score for θ at θ = 1 in the Lehmann alternatives
Models (1) and (2) is

s∗(x, F ) =
1

2
log

F (x)

G(x)
= sign(x) · 1

2
log

1 + F+(|x|)
1− F+(|x|) ;(4)

the effective information, its variance, is I∗ = π2/12 ≈ 0.822467.

Proof. We assume Model (1). As in the examples in [4], we first find the directional
score (per observation) in direction (hθ, hf ). Writing gθ,f for the density, this score
is (ignoring o(1) terms)

s(x;hθ, hf ) =
√
n log

[
gθn,fn(x)

g1,f (x)

]
=

[
1 + logF (x)

]
hθ + h′(x)(5)

with h′(x) = 2hf (x)/
√

f(x) = h′(−x). The directional information (variance of s)
is

I(hθ, hf ) =

∫ ∞

−∞

{[
1 + logF (x)

]
hθ + h′(x)

}2
dF (x)

=

∫ ∞

0

{[(
h′ + hθ

)
+ (logF )hθ

]2
+

[(
h′ + hθ

)
+ (logG)hθ

]2}
dF

=

∫ ∞

0

{
2

[(
h′ + hθ

)
+

1

2
(logF + logG)hθ

]2

+
1

2
[logF − logG]2h2

θ

}
dF.
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The terms in square brackets in the last expression are orthogonal, and so minimiza-
tion of I is achieved by choosing direction hf for which h′ = −[1 + 1

2 log(F G)]hθ.
Substituting in (5) and in I, we find the effective score as claimed (first form in (4))
and the effective information reduces to I∗ = 1

4

∫ ∞
−∞ log2(F/G) dF . This integral

clearly does not depend on F , so choose the standard logistic distribution func-
tion FL(x) = 1/(1 + exp (−x)), with variance π2/3, yielding I∗ = 1

4

∫
x2 dFL(x) =

π2/12 . The second form for s∗ in (4) follows from the first. Verification in Model
(2) is similar; or, the effective score for (2) is seen to be −s∗(·, G) = s∗(·, F ).

Let TLn be the sum of the effective scores (4), which is AN(0, nI∗) (asymp-
totically normal). To obtain an AE test, we need to replace s∗(x, F ) by an esti-
mate, say ŝ∗(x), for which the sum will equal TLn + op(

√
n). To this end, write

ŝ∗(x) = sign(x) · ψ+(F+(|x|)) where ψ+(u) = 1
2 log[(1 + u)/(1 − u)] = tanh−1(u);

note that ψ+ integrates to 0 with an integrated square of π2/12. In ŝ∗(xi), estimate
F+(|xi|) by R+

i /(n+ 1), resulting in
∑

ŝ∗(Xi) = SLn.

We now need to show the asymptotic equivalence of SLn and TLn. Using Lemma
V.1.6.a of [8], we find from their Theorem V.1.7 and its proof the following (with
oms indicating smaller order in mean-square):

Proposition 2. TLn−SLn = oms(
√
n) , and SLn is AN(0, nI∗) and AN(0, σ2

n) .

It follows, applying LeCam’s Third Lemma to TL, that SL∗ is asymptotically
N(

√
I∗ hθ, 1) under local alternatives, to θ = 1 and F—just as in [8] except now for

Lehmann alternatives rather than the shift alternatives considered there and with
F locally varying. We thus conclude:

Corollary. Let Φ be the standard normal df, and define zα by Φ̄(zα) = α. The
signed log-rank test, rejecting θ = 1 in favor of θ > 1 (ρ > 0) in Model (1) or
(2) whenever SL∗ ≥ zα, is AUMP(α). Its local power under local alternatives with
θn = 1 + (hθ + o(1))/

√
n is Φ(

√
I∗ hθ − zα).

The power at a particular θn near unity—that is, ρn ≡ log θn near 0—may be
estimated by Φ(σnρn − zα). Similarly, a two-sided version of SL, rejecting for large
|SLn|, is asymptotically uniformly most powerful unbiased for (1), (2) and their
union; see [4].

Following [19], the asymptotic relative efficiency (ARE) between two signed rank
tests—based on scores an and a′n, say—when one is asymptotically efficient is given
by

lim
n→∞

{[
n∑

j=1

an(j) a
′
n(j)

]2

/

n∑
j=1

an(j)
2

n∑
j=1

a′n(j)
2

}
(6)

(or with sums replaced by integrals du with u = j/n). We find when a LAS model
is correct that ARE(NS,SL) ≈ 99.2%, ARE(W,SL) = 9/π2 ≈ 91.2%, ARE(K,SL)
≈ 84.5% and ARE(S,SL) = 12(log 2/π)2 ≈ 58.4%. Each of these also has an in-
terpretation when the other test considered is efficient. Hence, there is little to
choose between SL and NS when either a LAS model or a normal shift model
is correct, and—since it is well-known that ARE(W,NS) = 3/π ≈ 95.5% under
normal shift alternatives—with W not very far behind. Although these compar-
isons are asymptotic—and all limits in (6) were found to be slowly decreasing as n
increased—simulation studies (Section 7) confirm that the ordering SL > NS > W
in LAS models is maintained, even for small n.
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To test other null hypotheses, say ρ = ρo vs. > ρo, the appropriate effective scores
are given by the ρ version of the scores in Proposition 3 in Section 5. To construct
a test, replace F in the efficient score by a consistent estimate (see Section 4),
sum over the x’s, and treat the resulting statistic as N(0, nπ2/12) under the null
hypothesis and AN(

√
n(ρn−ρo), nπ

2/12) under local alternatives for which |ρn−ρo|
and ‖

√
fn −

√
f‖ are O(1/

√
n), or, estimate the variance of the score test statistic

by the sum of squares of the scores or by the ‘null variance’, as noted in Section 6.

4. Estimating F

We assume LAS1 and start by acting as if θ is known. Write Fn for the empirical
df of the data and Gn = 1 − Fn for the empirical survival function; we use the
form Fn(x) = #{i|xi ≤ x}/(n + 1), ∈ (0, 1) at the observations. Then an obvious

consistent estimate for F in Model (1) is F̃1 ≡ F
1/θ
n . Another is obtained by noting

that F̃1(−x) estimates F (−x) = G(x). Hence, F̃2(x) ≡ 1−F̃1(−x) = G̃1(−x) is also
consistent for F , as is any weighted average F̃ of F̃1 and F̃2. To assure symmetry at
0, use weights adding to unity: p(x) + p(−x) ≡ 1. Then, for x > 0 and θ specified,
F may be estimated by

F̃n(x; θ) = p(x)Fn(x)
1/θ + p(−x)

[
1− Fn(−x)1/θ

]
.(7)

(If such a weighted F̃n is not everywhere monotone, it can be adjusted by starting at
F̃n(0) =

1
2 and proceeding with estimation at successive positive x-values, forcing

monotonicity by never allowing any decrease.) Note that p is any function from
R to (0, 1) for which p(−x) = 1 − p(x). The choice p(x) ≡ 1

2 is a good choice in

the neighborhood of θ = 1 in that it minimizes the asymptotic variance of F̃n(x)
there, but other choices may be more suitable for more distant θ-values since, when
θ > 1, there tend to be more positive observations than negative ones, and hence
the first term in (7) would deserve higher weight than the second, and vice versa.
A variational argument (see Appendix) shows that the choice of p which minimizes
the pointwise variance of F̃n is

p0(·, θ, F ) =
G2−θ(1−Gθ) + F 1−θG− FG

F 2−θ(1− F θ) +G2−θ(1−Gθ) + 2F 1−θG− 2FG
for x > 0.(8)

The asymptotic variance of F̃n in (7) is given in the Appendix; when p ≡ 1
2 , it is

(1/(4θ2)){F 2−θ(1− F θ) +G2−θ(1−Gθ)− 2F 1−θG− 2FG}

(and interchange F and G for x < 0). Note that when θ = 1 this variance reduces
to 1

2 (F ∨G)|F − G| which is seen to be in agreement with [17]; see e.g. [18], page
746. The

√
n-consistency of (7) for F is sufficient for our needs.

For LAS2, the corresponding estimator of G = 1− F is given by

G̃n(x; θ) = p(−x)Gθ
n(x) + p(x)

[
1−Gn(−x)θ

]
.

for any p(x) + p(−x) = 1 where Gn ≡ 1 − Fn. The same weighting (8) again
minimizes the pointwise variance.

To estimate F when θ is unspecified or unknown, replace θ in (7) by a
√
n-

consistent estimate; see Section 5.
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5. Estimating θ

Efficient scores and information bounds for estimation of θ are not so easily derived
as in the testing case of Section 3; derivations appear in the Appendix, leading to

Proposition 3. The efficient (effective) score for θ, with subscript (m) for Model
(m), is

s∗(1)(·, θ, F ) =
1

2
(Λ/θ −GΛ− F Λ)/F =

1

2

{
(log(F/G) +

θ − 1

θ

logG

F

}
,(9)

s∗(2)(·, θ, F ) = −1

2
(θΛ− F Λ−GΛ)/G =

1

2

{
log(F/G) + (θ − 1)

logF

G

}
,(10)

where Λ = − logG is the cumulative hazard for F and Λ = − logF is the cumulative
reversed hazard. The respective information bounds for estimation of θ are I∗(1)(θ) =

π2/(12θ2) and I∗(2)(θ) = π2θ2/12. For estimation of ρ = log θ, multiply s∗(1) by θ

and s∗(2) by −1/θ, with information = π2/12 ≈ 0.822467 in each case.

Note that the first term in each of the score formulas, common to both, has the
sign of the argument x while each second term has the sign of (1 − θ); the two
effects apparently balance in expectation since the scores have expectation zero.
When θ = 1, both formulas reduce to 1

2 (Λ − Λ) = 1
2 log(F/G), in agreement with

(4); the information is likewise in agreement.
For estimation, it may be best to convert to ρ = log θ since it has an unrestricted

range and the corresponding information (and asymptotic variance for an efficient
estimate) is parameter-free. For comparison, the information for ρ when F is com-
pletely known is readily found to be unity, so there is a 17.75% loss in information
when F has to be estimated.

Summing the efficient scores leads to the full-sample efficient score S∗
(m)(x, θ, F )

(m = 1, 2). To find an efficient estimate θ̂ of θ, we need to find θ and the resulting
F̃n for which this total score is 0. Starting from an initial

√
n-consistent θ̃0, it is

tempting to cycle through computation of F̃n from (7) and then find the root θ̃ of the
total score—simple, since ‘total score = 0’ yields a linear equation in θ—and repeat
until adequate convergence; but convergence does not generally occur. Instead, we
solve the score equation S∗

n(x, θ, F̃n(θ)) = 0 for θ computationally, starting from

an initial θ̃0. The resulting solution is the efficient estimate θ̂n, and ρ̂n = log θ̂n.
Hence,

√
n(ρ̂n− ρ) is AN(0, 12/π2) (12/π2 ≈ 1.2159), but other variance estimates

may be more suitable when sample sizes are moderate. Further details are given in
the next section.

6. Calculating estimates; Fitting the model

For an initial estimate of θ in Model (1), the fact that F ≈ F
1/θ
n should be 1

2 at x = 0

suggests the estimate θ̃0 = log[(n+1)/(n−+ 1
2 )]/ log 2 with n− the number of nega-

tive observations. This estimate is
√
n-consistent, indeed AN(θ, [(2θ−1)/ log2 2]/n).

For Model (2), estimate 1/θ by the same formula but with n− replaced by n+, the
number of positive observations. However, we will focus on LAS1, using the sign-
change approach to deal with LAS2.

We use the following algorithm for fitting these models.
Step 1: Order the |x|’s as 0 < y1 < · · · < yn, carrying along the signs of the

corresponding x’s, so the reordered data are represented as xr = zryr with r the
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rank of |xr|. Then calculate the empirical (edf) at ±xr for each r as Fn(w) =
#{r|xr ≤ w}/(n + 1). These 2n numbers may be represented as functions of the
signed ranks zr, but it is more convenient to retain the edf notation; everything
that follows depends on the data only through these 2n numbers. Also, let Fn(0) =
1
2 [Fn(−y1) + Fn(y1)]; we use this in θ̃0 instead of (n− + 1

2 )/(n+ 1).

Step 2: Calculate θ̃0 and a preliminary estimate of F (at the 2n ±xi’s) as F̃n(·; θ̃0)
from (7) with p ≡ 1

2 .
Step 3: Update the estimate of F by first calculating p(x) for each x from (8)

using the current estimates of F and θ and then using (7) with p = p0.
Step 4: Update the estimate of θ by iteratively solving the score equation S∗

(m)(x,

θ, F̃n(·; θ)) = 0. Then iterate Steps 3 and 4 until adequate convergence, labeling the

final estimates as θ̂ and F̂ ; and ρ̂ = log θ̂.
To fit LAS2, repeat the LAS1 algorithm after replacing all sample values by

their negatives. The resulting F̂ (−x) estimates G(x) of (2) and the resulting (ρ̂, θ̂)
estimates (−ρ, 1/θ) of (2).

The asymptotic variance of ρ̂ (in either model) is 12/(π2n); however, we rec-
ommend use of the null variance, namely, the reciprocal of the null information
as in Section 3 (the sum of squares of the signed-rank scores an(j)), supported
by numerical studies reported in Section 7; there, the asymptotic variance when
n = 100 is found to be about 40% too small whereas the null variance is about 6%
too large; neither may be reliable when the model is incorrect, however. Recall that
the asymptotic information loss due to the necessity of having to estimate F was
about 18%; apparently, this is an insufficient evaluation unless samples are very
large. The null variance enables an asymptotic confidence interval for ρ and, by
exponentiation, a confidence interval for θ, and, being free of data dependence, will
be useful for sample size planning.

To evaluate the fit of each model and to choose between them, compute a measure
of fit for each, using a norm such as sup, 
1, 
2, or a weighted version thereof, to
compare the edf Fn with the fitted versions of (1) and/or (2), evaluated at the
n observations, the negatives thereof and 0. Graphs of the fits along with Fn, on
the df or cumulative hazard scales, are recommended. To choose between the two
models, choose the one with the better fit. (See the example in Section 8.)

A Fortran program for carrying out testing, estimation and model fitting is
available from the first author.

7. A Monte Carlo study

We have evaluated these estimation and fitting methods in a Monte Carlo simula-
tion study, summarized briefly here. For each of five values of ρ , we generated 10,000
samples of size n = 100 from LAS1, and similarly for five values of ρ and n = 30.

In each case, we generated ui from U(0, 1); then xi = 2u
exp(−ρ)
i − 1 is a simulated

observation from (1) with parameter θ = exp(ρ) and F uniform on (−1, 1). (Since
the inference methods are invariant to F ∈ F0, we conveniently chose F to be uni-
form.) Moreover, −xi is a simulated value from LAS2 with parameter θ = exp(−ρ);
hence, simulation studies for LAS1 have LAS2 interpretations as well.

For each sample, we tested the null hypothesis H0 : ρ = 0 by SL, NS and W ,
estimated ρ along with three estimates of its standard error (SE)—‘estimated SE’
is based on summing the squares of the fitted scores, ‘null SE’ is based on summing
the squares of the null hypothesis scores, and ‘asymptotic SE’ = π/

√
12n—and

checked whether the true ρ fell outside 95% confidence intervals based on respective
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Table 1

Summary of Simulations of Model 1, part 1: n = 30, MCreps = 104

ρ ρ̂ θ θ̂ rejections of ρ = 0 by incorrect CI’s, using SE =
SL NS W est. null asym.

-0.6 -0.4387 0.549 0.645 74.75% 74.32% 71.87% 3.29% 5.98% 16.52%
-0.4 -0.2967 0.670 0.743 43.25% 42.88% 41.09% 2.87% 3.82% 11.56%
0.0 0.0437 1.000 1.045 4.90% 4.94% 4.84% 4.39% 3.26% 10.04%
0.4 0.4546 1.492 1.576 51.38% 51.20% 49.28% 11.58% 5.66% 13.82%
0.6 0.6921 1.822 1.998 87.05% 86.72% 85.28% 19.59% 9.17% 18.14%

SE estimates. We also calculated four 
2 fits, comparing the estimated F with the
true F , the fitted df with the true df (1), the edf with the true df (1), and the
fitted df with the edf; the first three of these measure quality of fit with the true
(known) model while the fourth compares the fit of the semiparametric LAS1 model
versus a fully nonparametric model. Tables 1–4 provide a summary report of these
simulation studies.

In Tables 2 and 4, ‘bias’ = ρ̂ − ρ, ‘MC SE’ is the standard deviation of the
104 estimates of ρ, all other SE’s are squareroots of the averages of the 104 esti-
mated variances, and the 
2 values were averaged in squared form before extracting
squareroots.

From Tables 1 and 3, it is seen that all three tests have valid significance levels
(5%) and the powers at all non-zero ρ-values are in the order implied by the AREs
in Section 3, namely SL > NS > W , but with W faring better than suggested by
the asymptotics. For confidence interval construction, the most reliable SE is the
null one, which is indeed quite reliable for |ρ| ≤ 0.4 (0.67 ≤ θ ≤ 1.50, say) or so
with these sample sizes, but the estimated SE is a contender.

From Tables 2 and 4, we see that ρ̂ is positively biased, especially as ρmoves away
from 0. Again we see that the null SE is reasonably reliable (by comparing with
the MC SE), and hence should be quite suitable for sample-size planning as well
as confidence interval construction. The slowness of convergence to the asymptotic
SE is notable, and was also reported in Section 3. Simulations with n = 500 (not
shown) do show continued improvement. Still, this estimation problem has n + 1
parameters (F at the |x|’s and ρ) and only n observations. Notice that the fits of
the estimated df to the true df are somewhat better than those of the edf to the
true df, as they should be.

The upward bias of ρ̂ remains a puzzle, awaiting further ongoing investigation.

8. An example

We illustrate with an example appearing in the textbook by [16] (taken from [12]
and also appearing in [9]). The sample size is small (n = 14), but it still serves

Table 2

Summary of Simulations of Model 1, part 2: n = 30, MCreps = 104

ρ bias SE’s ×100 �2-fits ×100
×100 MC est. null asym. est. F est.df edf fit-edf

-0.6 16.13 16.75 31.27 21.84 16.56 4.69 6.64 7.05 3.77
-0.4 10.33 17.88 28.12 21.84 16.56 4.31 6.44 7.24 3.41
0.0 4.37 19.33 23.29 21.84 16.56 3.90 6.60 7.33 3.22
0.4 5.46 21.58 19.10 21.84 16.56 3.68 7.00 7.01 3.47
0.6 9.21 23.97 16.93 21.84 16.56 3.72 7.07 6.68 3.72
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Table 3

Summary of Simulations of Model 1, part 1: n = 100, MCreps = 104

ρ ρ̂ θ θ̂ rejections of ρ = 0 by incorrect CI’s, using SE =
SL NS W est. null asym.

-0.4 -0.3518 0.670 0.703 92.41% 92.33% 90.38% 3.22% 5.66% 13.38%
-0.2 -0.1735 0.819 0.841 40.73% 40.33% 37.81% 3.16% 4.30% 11.14%
0.0 0.0162 1.000 1.016 4.75% 4.86% 4.89% 3.84% 3.88% 10.00%
0.2 0.2148 1.221 1.240 44.69% 44.54% 42.44% 5.48% 3.72% 9.90%
0.4 0.4230 1.492 1.527 96.87% 96.76% 95.74% 9.03% 4.56% 11.08%

usefully as an illustration, with Model (1) but not Model (2) apparently fitting well.
The data represent reductions, over 25-week periods, in the forced vital capacity
(FVC) in 14 patients with cystic fibrosis, measured while undergoing drug therapy
and placebo, in turn. Differences, for drug therapy minus placebo therapy, form the
sample of data, with values ranging from −178 to 680.

Some of the output from a Fortran program analyzing these data is summarized
here. One-sided p-values for testing symmetry-at-0 by signed rank tests SL and W
were 0.019, by NS and K were 0.018 and by the sign test S 0.031; 2-term Edgeworth
corrections (see [9]) reduced each somewhat (between 0.001 and 0.003 units).

The θ parameter was estimated to be 2.19 (ρ̂ = 0.782—Table 5). Three versions
of the standard error for ρ̂ are shown in Table 5 along with the resulting confidence
intervals for θ. Based on simulation studies (Section 7), the null SE is perhaps the
most dependable. Here, however, the sample size is too small to consider these more
than rough guides.

The empirical and fitted model distribution functions are graphed in Figure 1.
Three measures of fit were computed, based on sup, 
1 and 
2 norms, each measuring
the difference between the empirical and the fitted model at the ±xi’s and 0. We
found sup = 0.085, 
1 = 0.058 and 
2 = 0.054. The estimated F is also graphed
in Figure 1; it is unimodal and long-tailed and represents (according to LAS1)
what the distribution would have looked like if the drug therapy were completely
ineffective.

Since the simulation studies showed considerable bias when θ is not close to
unity, this value of θ̂ = 2.19 might better be interpreted as somewhat smaller, say
1.5. The formal interpretation of θ = 1.5 is that the probability of a difference, drug
therapy minus placebo, being near x given that it is at most x has been increased
by 50% relative to what it would have been for an ineffectual treatment—for every
x. For comparison, when fitting LAS2 to these data, we found θ̂ = 1.59, ρ̂ = 0.467
(estimated SE = 0.521, with null and asymptotic SEs as before), so all three of the
confidence intervals would include 0, in contradiction to each of the SL, NS and
W tests. Moreover, each measure of fit was larger than for LAS1; in particular,

2 = 0.072. This illustrates potential use of measures of fit for choosing between
LAS1 and LAS2.

Table 4

Summary of Simulations of Model 1, part 2: n = 100, MCreps = 104

ρ bias SE’s ×100 �2-fits ×100
×100 MC est. null asym. est. F est.df edf fit-edf

-0.4 4.82 10.79 13.67 11.43 9.07 2.31 3.46 3.92 1.92
-0.2 2.65 10.77 12.63 11.43 9.07 2.21 3.49 4.00 1.84
0.0 1.62 10.65 11.72 11.43 9.07 2.12 3.55 4.02 1.84
0.2 1.48 10.62 10.88 11.43 9.07 2.05 3.62 3.97 1.89
0.4 2.30 10.94 10.01 11.43 9.07 1.99 3.70 3.86 1.99
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Table 5

Estimates of θ and ρ and Confidence Intervals for θ in the Example

estimate θ̂ ρ̂ SE∗ method for SE 95% CI for θ
initial 2.10 0.742 0.333 estimated SE 1.38, 3.47
final 2.19 0.782 0.236 null SE 1.13, 4.23

asymptotic SE 1.36, 3.51

∗Estimated SE’s; the null SE = 0.336, the asymptotic SE = 0.242.

9. Final comments: A regression extension

As an extension to Model (2), consider the semiparametric regression model with
covariate (vector) z :

Gβ,F (x|z) = G(x)exp (−βz), F = 1−G ∈ F0,(11)

a proportional hazards regression model with symmetric-at-0 baseline F . (An alter-

native model would extend Model (1).) If F were known, β̂ would be the solution
to (1/n)

∑
i zi exp(−βzi)Λ(xi) = z̄, Λ the cumulative hazard corresponding to F .

Otherwise, a consistent estimate of Λ in this model would be needed, along with
associated information bounds and efficient scores for β.

A simpler version of (11) is a 2-sample extension of (1) or (2), with a common F
but differing θ-values, e.g., as a model for ‘after’ minus ‘before’ treatment measures
in males and females. If the common F requirement is abandoned, this could easily
be analyzed by applying the methodology herein to each group, leading to group-
specific estimates with independence between groups. But small groups and/or
continuous covariates will require new methods to analyze the full regression model
(11). Further experience with applications is first needed.

Fig 1. Fitting of LAS1 to the empirical distribution and estimator of F in the example.
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In summary, the only earlier semiparametric model for paired-data differences
is the shift model, requiring symmetry throughout. Resulting evaluations are de-
pendent on the shape of the underlying symmetric F . The LAS models treated
here have skewed alternatives, with the further advantage of evaluations free of
dependence on F . The parameter has both a hazard and skewness interpretation.

Further investigations will include (i) seeking methods to reduce estimation bias,
(ii) gaining experience with applications, (iii) evaluations when the LAS model is
incorrect and (iv) development of the regression extension.

Appendix A: Information bounds and efficient scores for θ

The calculations in this section use the results and methods of [1] and [2, 3]. In
particular we use the obvious “reverse” versions R and L of the R and L operators
discussed in [2, 3], pages 420–424.

Suppose Model (1) holds: Fθ(x) = F (x)θ where F is continuous and symmetric
about 0 and θ > 0. We further assume that F has (symmetric) density f with
respect to Lebesgue measure. Thus the density of the observations is given by

f(x; θ, F ) = θF (x)θ−1f(x) = θe−θΛ(x)λ(x) where Λ(x) =
∫ ∞
x

F−1 dF = − logF (x)

and λ = f/F ; also, write Λ = − log(1− F ). Thus the logarithm of the density is

log f(x; θ, F ) = log θ + (θ − 1) logF (x) + log f(x) = log θ − θΛ(x) + log λ(x).

Letting {fη} and {λγ} be parametric families through f and λ, we find that the
scores for θ and f (or λ) are given by

l̇1(x) ≡ l̇θ(x) =
1

θ
+ logF (x) =

1

θ
− Λ(x),(12)

l̇2b(x) ≡ l̇fb(x) = b(x) + (θ − 1)

∫ x

−∞ b(y) dF (y)

F (x)
= a(x)− θ

∫ ∞

x

a(s) dΛ(s),

where

b(x) ≡ ∂

∂η
log fη(x)|η=0, a(x) ≡ ∂

∂γ
log λγ(x)|γ=0.

By symmetry of all the densities f (and hence also fη) under consideration,

b ∈ H0 ≡ L0,even
2 (F )

=

{
b :

∫
b dF = 0,

∫
b2 dF < ∞, b(x) = b(−x) for all x ∈ R

}
.

We know that a and b are related by the R operator:

a(x) = Rb(x) = b(x)−
∫ x

−∞ b dF

F (x)
= −EF

{
b(X)− b(x)|X ≤ x

}
.(13)

Since b(x) = L ◦Rb(x) ≡ Rb(x)−
∫ ∞
x

Rb dΛ = b(x)−
∫ x

−∞ dF/F (x)−
∫ ∞
x

Rb dΛ,

it follows that
∫ x

−∞ b dF/F (x) = −
∫ ∞
x

Rb dΛ, and hence

l̇2b(x) = Rb(x) + θ

∫ x

−∞ b dF

F (x)
= Rb(x)− θ

∫ ∞

x

Rb dΛ

(14)

= Rb(x)−
∫ ∞

x

Rb d(θΛ) = LθRb(x),
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where Lθ is the (reverse) martingale or L−operator corresponding to Fθ with reverse
cumulative hazard θΛ.

Our goal is to find b∗ ∈ H0 satisfying l∗1 ≡ l̇1 − l̇2b
∗ ⊥ l̇2b for all b ∈ H0, and to

calculate the information for θ when F is symmetric but otherwise unknown given
by

I(θ) = Eθl
∗2
1 .

It follows from (12) that the information for θ when F is known is I0(θ) = θ−2,
so that I(θ) ≤ I0(θ) = θ−2 and 1/I(θ) ≥ 1/I0(θ) = θ2. On the other hand,
1/I(θ) ≤ (2θ − 1)/(log 2)2, the asymptotic variance of the preliminary estimator of
θ discussed in Section 5.

Thus we need to find b∗ satisfying

0 = E
{(

l̇1 − l̇2b
∗)l̇2b} for all b ∈ H0

=
〈
l̇1 − l̇2b

∗, l̇2b
〉

=
〈
l̇T2

(
l̇1 − l̇2b

∗), b〉
H0

where now l̇T2 = S ◦ l̇T2,0 where l̇T2,0 : L0
2(Fθ) → L0

2(F ) is the adjoint of l̇2 in
the unconstrained problem (with no symmetry imposed) and where S : L0

2(F ) →
L0,even
2 (F ) = H0 is defined by

Sh(x) =
1

2
(h(x) + h(−x)).

Thus we want to calculate b∗ = (l̇T2 l̇2)
−1 l̇T2 l̇1. Now l̇2,0 = Lθ ◦R, so l̇T2,0 = R

T ◦LT

θ =

L ◦Rθ using R
T
= L and L

T

θ = Rθ. Thus l̇
T
2 = S ◦ L ◦Rθ, and we find that

l̇T2 l̇1(x) = S ◦ L ◦Rθ l̇1 = S ◦ L ◦Rθ

(
θ−1Lθ(1)

)
= S ◦ L

(
θ−11

)
= θ−1S(1− Λ)

= θ−1

{
1− Λ(x) + Λ(−x)

2

}
.

On the other hand, l̇T2 l̇2b = (L ◦Rθ) ◦ (Lθ ◦R)b = L ◦Rb = b−EF b = b if EF b = 0.
Hence (l̇T2 l̇2)

−1b = b, and we conclude that

b∗(x) = l̇T2 l̇1(x) = θ−1

(
1− Λ(x) + Λ(−x)

2

)
.(15)

Note that Λ(−x) = − logF (−x) = − log(1 − F (x)) = Λ(x), and hence if X ∼ F ,

Λ(−X) = − log(1 − F (X))
d
= − log(1 − U)

d
= − log(U) ∼ Exponential(1). Thus

EF b
∗(X) = 0.

We now substitute expression (15) for b∗ into the formula for l∗1 (after (15)), and
then apply (15) and (13) to obtain

l∗1(·) = l̇1 − l̇2b
∗ = (1/θ)− LθRb∗ = Lθ

(
1

θ
−Rb∗

)
(16)

= Lθ

(
1

θ
− b∗ +

∫ ·
−∞ b∗ dF

F

)
.

We next calculate, from (15),

θ

∫ ·

−∞
b∗ dF/F = 1− 1

2F

∫ ·

−∞

(
Λ(y) + Λ(−y)

)
dF (y) =

1

2F
(1− F )Λ− 1

2
Λ(17)
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since Λ(x) = Λ(−x) and, by easy calculation,∫ ·

−∞

{
Λ(y) + Λ(−y)

}
dF (y)

=

∫ ·

−∞

{
− logF (y)− logF (−y)

}
dF (y)

=

∫ ·

−∞

{
− logF (y)

(
1− F (y)

)}
dF (y) since 1− F (−y) = F (y)

=

∫ v

0

− log u(1− u) du|Fv=0

= (1− F ) log(1− F )− F logF + 2F.

Thus, from (15), (16) and (17), we find that

l∗1(x) =
1

2θ
Lθ

(
1

F (x)
Λ(−x)

)
.(18)

This yields, using L
T

θ = Rθ and Rθ ◦ Lθ = I,

I(θ) = Eθl
∗2
1 (X)

=
1

4θ2

〈
Lθ

(
1

F (x)
Λ(−x)

)
, Lθ

(
1

F (x)
Λ(−x)

)〉
L0

2(Pθ,F )

=
1

4θ2

〈
RθLθ

(
1

F (x)
Λ(−x)

)
,

(
1

F (x)
Λ(−x)

)〉
L2(F )

=
1

4θ2

〈(
1

F (x)
Λ(−x)

)
,

(
1

F (x)
Λ(−x)

)〉
L2(F )

=
1

4θ2

∫ 1

0

(log(1− u))2

u2
du =

π2

12θ2
.

To go further with the calculations, we proceed with calculation of Lθ(Λ(−x)/
F (x)). By definition,

Lθ

(
Λ(−x)

F (x)

)
=

1

F (x)
Λ(−x)− θ

∫ ∞

x

1

F (y)
Λ(−y) dΛ(y)

=
Λ(−x)

F (x)
− θ

∫ ∞

x

− log(1− F (y))

F (y)2
dF (y)

=
Λ(−x)

F (x)
− θ

{
Λ(x) +

(1− F (x))

F (x)
Λ(−x)

}

=
1

F (x)

{
Λ(x)− θ

(
F (x) Λ(x) +G(x) Λ(x)

)}
since

∫ 1

v
[− log(1 − u)]/u2 du = −[(1 − v)/v] log(1 − v) − log v, G = 1 − F and

Λ(−x) = Λ(x). Hence, (18) becomes

l∗1(x) =
1

2F (x)

{
1

θ
Λ(x)−G(x)Λ(x)− F (x) Λ(x)

}
,

as claimed in Proposition 3. The efficient score for Model (2) is seen to be −l∗1(x)
with θ replaced by 1/θ and F and G interchanged, as in Proposition 3.
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Appendix B: Ideal weights for estimation of F

We derive the formula for p0(x; θ, F ) in (8), the weights minimizing the variance of
F̃n in (7). We only need it for x > 0. To this end, for x > 0,

√
n
(
F̃n(x)− F (x)

)
= p(x)

√
n
(
F
1/θ
n (x)− F (x)

)
− p(−x)

√
n
(
Fn(−x)1/θ − F (−x)

)
= p(x)

F
1/θ
n (x)− F (x)

Fn(x)− F θ(x)

√
n
(
Fn(x)− F θ(x)

)
− p(−x)

Fn(−x)1/θ − F (−x)

Fn(−x)− F (−x)θ
√
n
(
Fn(−x)− F (−x)θ

)
→d p(x)θ−1F (x)1−θ

U
(
F (x)θ

)
− p(−x)θ−1F (−x)1−θ

U
(
F (−x)θ

)
≡ W(x)−W(−x) ≡ V(x),

where U denotes a standard Brownian bridge process. Now

Var
(
V(x)

)
= Var

(
W(x)

)
+Var

(
W(−x)

)
− 2 Cov

(
W(x),W(−x)

)
= θ−2

(
p2A+ q2B − 2pqC

)
,

where

A ≡ θ2 Var
(
W(x)

)
/p(x)2

= F (x)2(1−θ)F (x)θ
(
1− F (x)θ

)
= F (x)2−θ

(
1− F (x)θ

)
,

B ≡ θ2 Var
(
W(−x)

)
/p(−x)2

= G(x)2−θ
(
1−G(x)θ

)
with G(x) = F (−x),

C ≡ θ2 Cov
(
W(x),W(−x)

)
/
(
p(x)p(−x)

)
= F (x)1−θG(x)1−θ(G(x)θ

(
1− F (x)θ

)
= F (x)1−θG(x)− F (x)G(x)

and where q(x) = p(−x) = 1− p(x).
To minimize this variance w.r.t. choice of p(x), we find

1

2
θ2

∂

∂p
Var(V) = pA− (1− p)B − (1− 2p)C

which, when set to 0 and solved for p = p0, yields p0 = (B + C)/(A + B + 2C),
verifying (8).
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