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Abstract: The Bayesian linear model framework has become an increasingly
popular building block in regression problems. It has been shown to produce
models with good predictive power and can be used with basis functions that
are nonlinear in the data to provide flexible estimated regression functions.
Further, model uncertainty can be accounted for by Bayesian model averaging.
We propose a simpler way to account for model uncertainty that is based
on generalized ridge regression estimators. This is shown to predict well and
to be much more computationally efficient than standard model averaging
methods. Further, we demonstrate how to efficiently mix over different sets of
basis functions, letting the data determine which are most appropriate for the
problem at hand.
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1. Introduction

A key goal of regression modelling using Bayesian model averaging has been to
provide good predictions of the response variable at points & within some domain
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of interest X, given the data D, see e.g. Clyde et al. 1996; Smith and Kohn, 1996;
Denison, Mallick and Smith, 1998; Hoeting et al., 1999. The data is typically of the
form D = {y;, x;}} where y; is the response variable and x; = (z;1,. .., Tip) gives
the values of the p predictor variables with which the regression is to be performed.
Attention is often focused on the linear model

(1.1) Y =XB+e,

where Y = (y1,...,yn), X = {zi;}, B = (61,...,08p) is a vector of coefficients
and € is a vector of independent normal errors. The model averaging methods are
then motivated by assigning positive prior probability to the possibility that only
some unknown subset of predictors belong in (1.1), i.e. that only a submodel of
(1.1) is needed. More generally, such methods are obtained by putting positive
probability on the possibility that the mean of Y lies in some proper subspace of
the space spanned by X. The resulting model averaging estimates are a posterior
weighted sum of all possible model estimates, and have been recommended as a
natural alternative to the strategy of selecting a single high posterior submodel
which ignores model uncertainty (Draper 1995).

The form of the expected response y at a generic point @ = (z1,...,x,) under
such Bayesian model averaging is given by

p
(1.2) E(ylz, D) =Y Bz, where §; = > E(Bily,D)p(7|D),

i=1 yeM

where ~y is the index over the 2P possible models in the complete model space M.
Thus predictions made by model selection can be represented simply as a linear
combination of all the predictors, z1,...,x,, together with a set of coefficients,
B1,- .., By Such coefficients are weighted versions of the least squares estimates

(LSE) 3 for the full model, and we can write 8 = wi@- fori =1,...,p. In general,
each of these coefficients is shrunk by a different amount so that the w;s are not
equal. Further, if each of the possible models has a strictly positive prior probability
then w; is non-zero for all 7. Consequently all of the predictors are used to make the
final prediction of the response, offering the advantage of retaining the influence
of all the bases when prediction is the aim, see Copas (1983). This point is also
discussed by Lindley (1995), who argues that because the full model contains at
least as much information as any submodel, it should naturally be preferred. The
attractive predictive properties of shrinkage models is also borne out by the results
of Holmes and Denison (1999) who compare shrinkage and selection models in the
context of wavelet regression.

In this paper, we propose an alternative to model averaging, which places prior
uncertainty directly on the shrinkage w; of each of the predictor coefficients. While
retaining the advantage of using every predictor in the final predictions, our proce-
dure avoids the computational problems associated with placing prior probability
on each of the 2P possible subsets as is done with model averaging. Our model
essentially performs a generalized ridge regression (GRR) (Hoerl and Kennard,
1970; Goldstein and Smith, 1974; Hocking et al., 1976) with priors on the shrink-
age weights. We find that this model performs well in relation to model averaging
approaches, yet the computations involved increase only linearly in p rather than
exponentially. The significant decrease in computation time allows us to extend the
approach to modelling data with mixtures of basis functions. In this way we can
determine which set of basis functions (e.g. cubic regression splines or thin-plate
splines) are most supported by the data.
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In the next Section we give the details of our proposed model with Section 3
describing other related approaches to the problem. Section 4 demonstrates the use
of this model both on real datasets in a traditional linear model context, as well
as on simulated datasets, highlighting how nonlinear regression can be performed
in the linear model framework. In Section 5 we generalize the model to incorporate
different basis sets and Section 6 contains a discussion.

2. The generalized shrinkage model
2.1. The canonical regression model

Assuming from here on that X is of full rank, we begin by rewriting (1.1) in canon-
ical form. As X’X is positive-definite and symmetric there exists an orthogonal
matrix U such that U'X’'XU = D, where D is a diagonal matrix of the strictly
positive eigenvalues of X' X, i.e. D = diag(A1,...,A,). Hence, we find that

Y = XB+e
= X({UUB+e
(2.1) = Za+e,

where a = U’'B and Z = XU. Using this formulation, the LSE of « is given by
a=D717'Yy =diag(\{',... AN Z'Y.

2.2. The model priors

As mentioned in the introduction, our approach is to place priors directly on the
amount of shrinkage, w;, where here the posterior mean estimate of «; is given by
af = w;a;. We do this by considering a normal prior on the coefficients, p(a) =
N(0,V), so that the posterior expectation is given by

3

(2.2) o =D+V H ' Zy =(D+V ) 'Da,
where V' = diag(vy, . ..,vp) gives the prior variances of the coefficients. Further, we
can write

d=t{(D+V Y)Y 'D}=tx{Z(Z'Z+V 1127},

where d is a measure of the degrees of freedom of the model (Hastie and Tibshirani,
1990). When d = p (i.e. V=1 = 0) the model relates to the least squares solution
to the data and when d =0 (i.e. V = 0) just a constant function is fit to the data.
As the degrees of freedom gives us a good idea about the smoothing properties of
the model, it is natural to consider a prior on this rather than on the variances of
the coefficients, V.

By letting W = diag(wy,...,w,), writing a* = Wa and equating this with
(2.2), we find that

W = diag ( A1vy Aptyp ) ,

1+)\1’l)17.“)1+>\p1}p

sov; = w; [{\i(1—w;)} and d = tr(W) = > w;. Hence, using this form for the model
we find that w; represents the degrees of freedom associated with the ¢th canonical
predictor. Also, we are naturally led to a specific functional relationship between
the prior variances and the degrees of freedom associated with each predictor.
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Following the results just shown, we place normal priors on the unknown coef-
ficient values «;, and we choose to define the priors hierarchically using the rela-
tionship p(a;, w;) = p(a;|w;)p(w;). Further, we assume that the prior over (o, w;)
is independent of the priors on the other coefficients and weights. This leads to the
conditional prior of the coefficients being given by

M= w) (_ A1 — wi)a2> |

2.3 i|w;) = i
(23) plasfwr) = | 5 o

for all real o; and ¢ =1,...,p.
As w; must lie in the unit interval, a natural prior is the Beta(a, b) distribution,

so that
(2.4) p(w;) = [(a+0) a1

Farp) W (mw)” forwi € [0,1]

The choice of @ and b (which must both be strictly positive) allow us to define a wide
variety of priors on the shrinkage and their choice will be critical to the performance
of the final model. Considerations for setting them are given in Section 3.4.

2.3. The model likelthood

We make the standard assumption that the elements of € are independently dis-
tributed N (0, 02) random variables, where o2 is the regression variance. Hence the
log-likelihood of the data given the model parameters is given by

1
(2.5) log p(D|e, 0?) = constant — g log 0% — ﬁHY — Zal?.
o
Further, as p(a|w) is conjugate to this likelihood we can perform the integral

[ p(D]a,w, 0?)p(a|w, 0%)de analytically (e.g. O’Hagan, 1994, Denison et al., 2002)
to obtain

Ww; )\i @f }

12
(2.6)  logp(D|w,o?) = constant — gloga2 +3 ; {log(l —w;) + >

We can see from (2.6) that if o2 is known, the log-likelihood can be decomposed
into p functions of w; alone. So, if we take the w; to be a priori independent, then
the w; are also independent a posteriori, and we can write

P

(2.7) p(w|D) = [] p(wiD).
i=1

Thus, inference about the w;s can proceed individually and we have reduced the

problem of finding a p-dimensional posterior distribution to determining p one-
dimensional posteriors. A similar approach was outlined in Chipman et al. (1997).

2.4. Posterior inference

We now proceed as if the regression variance, o2, is known, to be later replaced by
an estimate 52. We see from (1.2) that we need to find of = E(w;|D)a; for all i to
determine the mean of the predictive distribution on the response. We know that

1
0
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and from Bayes’ Theorem together with (2.4) and (2.6) we find that the posterior
density of w; is given by

w?_l(l —w;)b~
2.9 ’l,UlD =3 1 —
(29) D) = gt

where t; = v/\;q;/0. So, from (2.8) and (2.9) we find that the expected shrinkage
performed by our model is of the form

exp(%witf)

[SIC) VTN

exp(Fw;t?)dw;

1 1
fo w (1 — w;)? > exp(%wit?)dwi

fol w1 - wi)b_% exp(%witf)dwi .

(2.10) E(w;|D) =

Hence calculation of the of = E(w;|D)a; is straightforward and fast. It just involves
the determination of 2p one-dimensional integrals on [0,1].

We may also be interested in the maximum a posteriori (MAP) value of y given
@. From (1.2) and (2.7) this is just when each of the w; are set to their posterior
modes. The MAP value of w; is readily found by combining (2.4) and (2.6) and
partially differentiating this posterior with respect to w;. By setting the resulting
expression to zero we find that the turning points of w; are

(2.11) Wi — (t2+3—2a—2b) £ \/(t? +3 —2a — 2b)2 + 8t2(a — 1)
' b 2t7 :

By inspection of the second derivative we can find out which of these roots (if any)
correspond to a maximum in the posterior and lie between [0,1]. In the next section
we shall see how certain choices of a and b lead to interesting models.

3. Related models

This section contains descriptions of other Bayesian and non-Bayesian methods for
performing coefficient shrinkage. Throughout we show how these models relate to
the method we propose, highlighting how good candidates for the prior parameters
a and b can be chosen. We begin by describing Bayesian model averaging for linear
models and then highlight ridge and generalized ridge estimators.

3.1. Bayesian variable selection

A common approach to taking into account model uncertainty in a linear regres-
sion context is the Bayesian variable selection methodology originally described
in George and McCulloch (1993). This paper suggests assigning an indicator vari-
able v;(€ {0,1}) to each predictor and then performing a Gibbs step (Gelfand and
Smith, 1990) to sample each 7; during each iteration of the sampling algorithm.
We can do this simply as, when using standard conjugate priors, we can determine

p(Dly v =1)
DIy~ = 0) +p(Dly=%, v = 1)

p(vi = 1D,y =
( | )=

analytically, where y~* refers to all the components of v except the ith one.
This approach has been applied successfully to simple linear regression (Hoeting
et al., 1999) as well as nonlinear regression approaches such as spline fitting (Smith
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and Kohn, 1996) and wavelets (Clyde et al., 1998). Both Hoeting et al. (1999) and
Smith and Kohn (1996) adopt the g-prior specification suggested by Zellner (1986),
taking

p(By,0%) = N(B|0,co?(X! X,)~")Gamma(o3(0,0),

where the v subscripts denote the design matrix made up of only the columns of
X for which «; = 1. In canonical form this reduces to a prior on each coefficient
plailo?) = N(0, (co?)/A;). Hence the posterior expectation for each coefficient given

the model is
Vi€ ~

Qa
c+1
for all 4, and all the coefficients in the model are shrunk by a constant factor.

Multiple shrinkage of the coefficients occurs when we take into account model un-
certainty. For moderate size p, (e.g. p < 20), modern computation can be exploited
to determine p(y|D) analytically, allowing the exact calculation of

E(ylz,D) = Y E(yl@,D,7)p(+|D).
yeM

E(Oéi"yiv Da 02) =

19

Clyde, DeSimone and Parmigiani (1996) suggested that orthogonalization of the
model space is justified when prediction is the aim. They give results demonstrat-
ing how their orthogonalization approach can outperform predictions obtained by
competing approaches such as stochastic search variable selection of George and
McCulloch (1993). We extend their work by placing priors on the degrees of free-
dom associated with each basis function, w;, rather than assuming that the prior
variance of the coeflicients is known given the set of indicators v1,...,7p.

3.2. Ridge and minimax estimators

By setting wy = -+ = w, = w(€ [0,1]), both ridge and minimax estimators can
be motivated from a Bayesian point of view under the prior p(a) = N(O7 ﬁ[)
Ridge estimators are obtained as posterior means of o for fixed choices of w. Such
estimators can perform well in some regions of the parameter space, Dempster et al.
(1977), and Volinsky (1997) has demonstrated how ridge estimators may outperform
standard Bayesian model averaging for certain prediction tasks. However, ridge
estimators can also perform poorly in other regions.

Alternatives that avoid such poor performance, are minimax estimators, which
uniformly dominate the LSE in terms of weighted or predictive squared error loss

P
(3.1) PMSE(a) = E||Y = Y|*/0® =Y ME{(d& — a;)*}/0?,

i=1
These can be obtained with a further Bayesian treatment of w. For example, plug-
ging an Bayes estimate of w into the posterior mean of a yields the celebrated
James-Stein estimator (James and Stein 1961). Strawderman (1971) obtains a
proper Bayes minmax estimator by adopting the prior setup

w

Fg) and ) = (- d)1-w)

plaw) =N (O,
for some d € [0, 1). Using this model Strawderman finds that
p+2—2d 2

EwD)=1- - ,
D) T Tfol(l —w) 2P~ 4 exp(3wT)dw
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where T' = Y77 (with ¢; = /A;@;/0 as above). This estimator is shown to be
minimax for p > 5if d € [%, 1) and for p > 6 for all d € [0,1). By using particular
finite mixture priors on a, George (1986) obtains minimax multiple shrinkage es-
timators which correspond to model averaging estimators. A key aspect for all of
these estimators, is the restriction wy = - -+ = w, = w which allows the estimators
to “borrow strength” across predictors. Without this or similar restrictions, the
minimax property is lost.

3.3. Generalized ridge estimators

Generalized ridge regression (GRR) estimates mimic the model we propose much
more closely. These generalize the estimators in the previous subsection by allowing
a separate “ridge” parameter for each predictor. A possible setup is to take

Wi

(3.2) plag|lw;) = N (O, = w)
as in Section 2.2. However, unlike the model we propose, GRR estimators do not
express any uncertainty in the w;. Instead, it is chosen to be a deterministic function
of the data which can be expressed as w; = W(t;). Here we give, in terms of a
generic t = \/X&/ o value, functions that correspond to some of the most popular
GRR methods. For further details and motivation see the references given, and for
a comparison of their efficacy see Lawless (1981).

GRN (e.g. Hoerl and Kennard, 1970): W (¢) = (1 +¢=2)~%

GRI1 (e.g. Hoerl and Kennard, 1970): W (¢) = {1+ (1 +¢=2)?/t?} L.

GRI (Hemmerle, 1975): W (t) = [{1 — VI — 4¢-2} L]~ for 2 > 4 else W(t) = 0.
GRP (e.g. Mallows, 1973): W (t) = 1 for t2 > 2 else W (t) =

GRC (Mallows, 1973): W (t) =1 —t~2 for t> > 1 else W(¢) = 0.

) for i=1,...,p,

GRR models gained some popularity about thirty years ago (e.g. Hoerl and
Kennard, 1970; Hocking et al., 1976) and were originally motivated because the
minimax estimators found gave only modest improvements in MSE over the LSE.
One drawback with GRR models is that it is known that they are not minimax
(Thisted, 1978), and so cannot dominate the LSE in all situations.

We can compare GRR estimators in terms of their predictive mean-squared error
(Lawless, 1981) as

PMSE(B) = ||Y - Y|I> = [|IX(B-B)II” = ZA E{(@ — a;)?} /o,
which, assuming normality and taking o as known (or fixed), we find that

(3.3) PMSE(B Z/ {W(zi)zi — pi}Y*dFy, (2:),

where each z; ~ N(y;,1) = F},,. These one-dimensional integrals, although not an-
alytically tractable, can easily be solved by standard numerical analysis techniques.

In Fig. 1 we display (as in Fig. 1 Lawless (1981)) the PMSEs for the five given
GRR methods (for p = 1) over the range of values of p on which they differ
significantly. Note that the PMSE associated with the LSE is one for all values
of p. Also, we see that GRN appears the most stable GRR estimator over a wide
range of values, significantly reducing the PMSE at low values of ¢ and only having
noticeably worse performance than the LSE for 2 < pu < 6.
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Fic 1. Theoretical PMSE curves for the GRR estimators of Section 3.3. Here the curve for GRN
has the lowest mode.

In general, we see that GRR estimators perform best when the dataset corre-
sponds to many low values of p(< 1.5) as well as high values p > 8. This is because
great gains in terms of PMSE are possible at the low values of p and negligible
losses occur at high values. This falls in line with general thinking which suggests
that GRR estimates are particularly effective when X'X is ill-conditioned.

We can compare the performance of GRR models and an orthogonalized Bayesian
model for which we estimate o2 and take the g-prior specification for the coefficients,
so that p(a) = (0,cD~1). Consider the posterior expectation of the ith coefficient
we see that

E(oi|D) = p(vi = 1|D)E(as|vi, D)
h(lh‘) c
1+ h(ps) Ty

where .
(c+1)"2 exp{0.5cu?/(1+¢)}
(c+1)"2 exp{0.5cu2/(1 +¢)} +1°

From this expression, we can analytically determine the shrinkage performed by
the Bayesian model for any value of p. This is given by

_ M e
S l+h(p) 1+

h(p) =

W(w)

and this function can be directly compared with those for the other GRR estimators.
In Fig. 2 we plot the PMSEs for the orthogonalized Bayesian model for various
values of c. Note that the default choice for c is often the size of the dataset n. We see
that as ¢ increases the PMSE properties become increasingly poor for 1.5 < p < 5.5.
However, improvements are found for g < 1 for larger values of c. Fig. 2 suggests
that we need to determine Bayesian models with much better PMSE properties
than the orthogonalized model in order to predict consistently well.
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Theoretical MSE

FiGc 2. Theoretical PMSE curves for the orthogonalized Bayesian model for various values of ¢
(as well as the GRN curve for reference with Fig. 1): GRN (thick solid line); ¢ = 50 (dashed);
¢ =200 (dotted); c = 500 (dot-dashed) and ¢ = 1000 (thin solid).

3.4. Setting of the shrinkage prior

This subsection highlights how certain GRR models are special cases of Bayes
estimators using the proposed models. These relate to certain choices of a and b
in the Beta(a,b) prior on the w;, and making inference with the posterior mode.
We include this subsection only to demonstrate some features of the model as we
do not suggest using the posterior mode to minimise predictive squared error. This
would only be chosen under a 0-1 loss function. Note that we let w; denote any
posterior mode of w; that lies in the unit interval.

1. a =1,b > 0: w; = max{1l — (2b — 1);1]2,0}. So for the special case when
b = 1 we perform exactly the same shrinkage as GRC when using the MAP
value of w; to make inference. Also, this specification corresponds to choosing
a uniform prior on the shrinkage. Further, for b > 1 the amount of shrinkage
of a; is always greater than GRC and for 0 < b < 1 the shrinkage is always
less than GRC. Also note that for 0 < b < % the MAP estimate is degenerate
and corresponds to taking w; = 1 for all ¢ (i.e. we choose to fit with the least
squares estimates in every dimension). It is also worth pointing out that for
0 < b <1 we are assigning a Strawderman prior on w; with d = 1—b, although
he advocates always using the expected shrinkage to make inference.

2. a = b > 0: This setting is attractive as it ensures that the prior on w; is
symmetric and E(w;) = 3. The amount of prior mass located around 0 and
1 depends on the magnitude of b(= a). We feel that values of b less than 1
are most appropriate as they relate to priors which have more prior mass at
the extremities than at % Thus the LSE are more likely to be shrunk either
a small amount or a large amount and unlikely to be shrunk by values near
%. Here we just highlight the special case we obtain when we take b = 0.75.

Here we find that the MAP shrinkage function is w; = 0.5 + /pu? — 2/(2u)
for u? > 2 and zero otherwise. Note that this shrinkage function is most
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Theoretical MSE
n
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Fic 3. Theoretical PMSE curves for some Bayesian mean GRR estimators with various settings
of a and b (as well as the GRN curve for reference with Fig. 1): GRN (thick solid line); a =b=1
(dashed); a =1,b — 0 (dot-dashed); a = b = 0.75 (dotted) and a = 2,b — 0 (thin solid).

closely related to GRP except that it does not suggest such a strong “shrink-
or-select” approach. The threshold for having non-zero coefficients is identical
but shrinkage is still performed on those retained in the model.

Undoubtedly other interesting settings are available that relate to previous work
but these two classes are given as examples of how the methodology relates to other
GRR approaches.

In Fig. 3 we display the PMSE curves for various settings of a and b taking our
estimate to the shrinkage to be the posterior expectation. We find that for settings
a =1 and a = 2 together with b — 0 (which in practice we took as b = 0.001) we
obtain estimators that are more stable than GRN in the sense that they are more
conservative at low values of p but have less errors at middling values. In fact as
a increases and b stays around zero we get progressively flatter PMSE curves as
less shrinkage is performed at all values of u. Also, we see that in some cases, for
instance a = b = 1, inference using the posterior mean can lead to quite unstable
shrinkage estimators when compared with the MAP estimator (GRC in Fig. 1). In
these cases (a = b =1 and a = b = 0.75) the most significant source of error is
when the posterior mean estimate shrinkage is too great for large values of u. In
comparison, for these values the MAP estimate performs no shrinkage at all.

4. Examples
4.1. Simulated example

This simulation study is not intended to be exhaustive but illustrative. We shall try
and show why the model we propose predicts better than the standard Bayesian
model averaging approach using model selection. We shall use a simple curve-fitting
example. Although this involves the estimation of the response with respect to a
single predictor variable when using flexible (nonlinear) basis functions that depend
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FI1G 4. A realization of the first simulated dataset with o = 0.3 together with the truth (solid line).

on the predictor value this is identical to a multiple regression problem. Hence we
observe data D = (y;,x;)}_; and we assume the relationship

p
i =Y BiB;(x:) + &,
=1

where ¢; ~ N(0,0?%) and the {Bj,..., B,} are a set of basis functions that are fixed
before the analysis.

Smith and Kohn (1996) suggest using the cubic regression spline basis. In this
example we shall use a spline basis but choose fewer basis functions than they
suggest so that we can perform the analysis exactly rather than approximately via
simulation. This ensures that the comparison between methodologies is more trans-
parent and does not depend on how various parameters that control the simulation
algorithm are set. Hence, for this example we took

B](x) :xjv j:17273 and B](x) = [x_(j_g)/(p_2)]ia j=4,-.-,p,

where [a]; = max(a,0) and the size of the complete model space only involves
2P models. The prior we assign over the coefficients is 3 ~ N(0,n02(X'X)"!) as
suggested in Kohn, Smith and Chan (2000) and Gustafson (2000).

For this example we use a similar test function to that given in Fan and Gijbels
(1996) and take

yi = 2x; +exp{—64(2z; — 1)*} +¢; i=1,...,n,
where the x; ~ U[0,1], €; ~ N(0,0?) and n = 200. An example of such a dataset is
given in Fig. 4.
To approximate the error of the reconstructions to the true function we calculate
the sum of squared errors (SSE) given by as

200

SSE = S {/(i/200) — (i/200)}?,

=0
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TABLE 1
Results in terms of SSE over 100 randomly generated datasets for the simulated example with
n = 200 and using the cubic regression spline basis with various values of o and p. Standard
errors of the estimates are superscripted. For each setting the result with the lowest ISE is given

in italics.

P o BMA GRN BGR1 BGR2 STR LSE

8 0.2 2.6940'018 2‘5400.01() 2.5430.016 2.5470.016 2.5600'017 2.5600'017
8 03 3.2830:053 3 (220-046 2 9750.046 3 160-045 3 (370-042 3 0450.043
10 0.2 1.3460-024 1 .2720.022 1 9450.022 1 9680-022 1 990.023 1 9990.023
10 0.3 1.8030-037  1.6710:038 1 6700-038 1 6870-038 1 .7640-041 1 7650.041
12 02 0.707°-027  0.7320-031 7210031 (,7290.032  ( 7660-033 (7670033
12 0.3 1.2200-050  1.2950.048 7 3770.050 7 3540.051 7 4590.055 7 4650.055
14 0.2 0.4850-019  0.6110-025  (.6230-026  (,6420-026  (.6960-027  (0.6990-027
14 0.3 1.0649-049  1.3520.063 1 .3670.062 1 4150.064 1 5540.073 1 5650.073

where f(x) is the mean of the predictive density of y at xz. Remember that the
posterior mean prediction should minimise squared-error loss.

In Table 1 we display the results taking n = 200 and differing values of ¢ (0.2
and 0.3), and differing number of basis functions (p = 8,10,12,14). In this table
BMA stands for the Bayesian posterior weighted selection model of Section 3.1,
GRN the method given in Section 3.3, BGR1 and BGR2 the method proposed
taking b = 0.001 with a = 1 and a = 2 respectively, STR the Strawderman method
of Section 3.2 with a = 0.5 so that it is minimax for p > 5 (Strawderman, 1971)
and LSE is just the standard least-squares method with no shrinkage. In all the
simulations o is set to its true value with 0.2 corresponding to a low noise setting
(signal-to-noise ratio (SNR) of 10) and 0.3 corresponding to a high noise setting
(SNR of 4).

We see from Table 1 that the BMA performs poorly in terms of prediction
across the simulations, sometimes even worse than the simple LSE. The best two
models are GRN and BGR2 and from Fig. 3 we can see why these should perform
similarly. We know that the basis functions for these types of splines are highly
correlated leading to an ill-conditioned X’X matrix. This is why generalized ridge
shrinkage seems to be performing well, especially for those shrinkage methods that
perform well over small values of p. Further, with the high noise setting we see a
degradation of performance of the methods from p = 12 to p = 14, most probably
due to numerical instabilities. This suggests that we cannot add more potential
knot sites with impunity and this setting is important in obtaining good results.

In Table 2 we repeat the experiment of Table 1 using models with the same
number of knot points but with thin-plate spline basis functions, rather than the
cubic ones. These take the form

By(z) = @, and Bj(w) = {z — (j — 1)/p}*log|z — (j = 1)/pl, j=2.....p,

and lead to better conditioned X’X matrices. From Table 2 we can also see that
these basis functions approximate the true curve better for the same value of p.
Now, because of the better conditioning of X’X the best model appears to be
BGR1 which performs better over a wide range of values of u. Also, the models
that perform the least shrinkage (STR and LSE) also perform well. This is to
be expected as we are less likely to have as many small eigenvalues of X’X now.
However, the better conditioned matrix has not helped BMA as it actually performs
worse than least-squares estimate for every setting of p and o.

In Fig. 5 we plot the SSE for the BMA method with various settings of ¢. Smith
and Kohn (1996) and Gustafson (2000) both suggest taking ¢ = n(= 200) and we
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TABLE 2
Same as Table 1 but using the thin-plate spline basis.

P o BMA GRN BGR1 BGR2 STR LSE

6 0.2 2‘704().()28 2.6180'024 2.6100'024 2.6010'025 2.595(].()2‘5 2.595().02‘3
6 0.3 3.0250-037  2.9070-035 28840034 9 g7(0.034 9 gg10.035 9 gg40.035
8 0.2 1.1120:026 1 0760021 1 0660-021  1.0619-021  1.0630-020  1,0630-020
8 0.3 1.5520-048 7 4790.041 1 3970.041 7 99,0.041 7 4160.042 7 4270.042
10 0.2 0.5369-920  .5710-018 (0 5690-018  ( 5680-018  (5740.018 () 5740.018
10 0.3 0.8820-036  1,0440-041 1 0320-041 1 92g80-040 ] 0550-042 1 0610-043
12 0.2 0.3710-018  (.5270-018 (9 5280.019  ( 5240.018 (9 5970.018 () 5980.018
12 0.3 0.749°-034 11200053 1,1040-049 10950048  1.1370-047 1 1460-048

241 3 i

Fic 5. The average SSE from 100 randomly generated dataset for the simulated example with
7 knots at 0.125 to 0.875, inclusive. The diamonds on the solid line are the average SSE for
the BMA model using thin-plate splines with ¢ given on the horizontal axis. The squares on the
dashed line are the same but for the cubic spline model. The horizontal lines are the results for
the BGR1 model (solid — thin-plate, dashed — cubic).

see that this is one of the better values for these two datasets. However, whatever
value of ¢ is chosen, neither of these models ever beat, in terms of SSE, the BGR1
method displayed or the BGR2 one which is not shown. This suggests a weakness
of the BMA framework which we now try and explain.

The difference in performance of the methods is mainly due to the conditioning
of the X’X matrix and how the methods cope with the values of p in different
ranges. We find that the eigenvalues and p values for a typical dataset using cubic
splines with p = 10 are given by

A 3.48 x 1077,4.39 x 1077,1.94 x 107%,7.10 x 107%,3.17 x 1075
0.000270,0.00317,0.111, 5.96, 145
R 3.85,0.499,6.41, —1.46,6.70,0.174, 5.81,2.07, —16.4, 57.4.

We immediately see that the condition number for the matrix is large (4.17 x 10% =
[A10]/]A1])- This suggests that ridge techniques should perform well as they auto-
matically condition the matrix that needs to be inverted to obtain the coefficient
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estimates, in contrast to the LSE and the BMA method described here. Also, as
only two of the y are low we cannot improve greatly over LSE but modest im-
provements are possible. Remember that examples for which there are many small
u values will be particularly well suited to the methods we suggest.

In contrast, for the thin-plate spline model we find

A 0.000238, 0.000292, 0.00127, 0.00144, 0.0157, 0.0174, 0.359, 2.08, 6.07, 83.0
101,12.9, 164, —20.9, 149, 1.40, 61.7, 8.95, —16.5, 43.5.

As well as the condition number being far smaller for this basis set we see that the
1 values are in general high. As GRR estimators and the LSE are almost identical
for p > 10 both approaches give similar results (Table 2). This demonstrates how
the efficacy of the methods, measured via the PMSE, are dependent on product
of the square-rooted eigenvalues and the least-squares estimates, not just on the
absolute values of the eigenvalues as is sometimes assumed.

4.2. Boston Housing Data

The Boston Housing Data of Harrison and Rubenfeld (1978) is a well-known bench-
mark test dataset. The regression problem involves predicting the median price of
owner occupied homes in Boston on the basis of 13 predictor variables listed in
Table 4.1 of Denison et al. (2002). The overall model we chose to fit was a standard
linear one where each predictor variable had an associated slope coefficient.

The dataset contains 506 datapoints in total but, following Quinlan (1993), to
test the predictive power of the various methods we adopt a ten-fold cross-validation
approach. Hence, in each case we fitted a linear model to each training dataset and
then determined the SSE over the corresponding test sets.

From Table 3 we see that the ridge methods perform acceptably, but only on a
par with the LSE, which predicts well, probably due to the better conditioning of
the X’X matrix in this “typical” linear regression problem. However, BMA again
fails to demonstrate significant advantages over the other, much simpler, methods
when we are looking to make predictions. Nevertheless, BMA would provide us with
information about subsets of the 13 predictors that predict acceptably: information
that is not so easy to come by with the other ridge methods. Note that the results
for the BMA approach took around 2587 million floating point operation whereas
much less than a million were required for BGR1 and BGR2.

TABLE 3
Results in terms of SSE for the Boston housing dataset using 10 splits of the data into training
and test sets.

CV Set BMA GRN BGR1 BGR2 STR LSE
20.42  20.70 20.61 20.45 20.16  20.12
22.61 21.42 21.48 21.64 22.27  22.12
25.63 25.01  25.10 25.18 25.37 2548
80.47  30.96 30.91 30.85 30.77  30.75
19.25  18.98  19.02 19.04 19.05  19.04
30.39  30.65 30.60 30.53 80.36  30.38
30.89 31.18 31.11 31.00 30.76  30.79
18.70  18.04 18.10 17.99 17.80  17.74
16.40  15.67 15.45 15.41 15.44  15.59
13.57 18.55 13.60 13.63 13.81  13.78
Mean 22.83  22.62 22.60 22.57 2258  22.58

5000 Utk W=
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5. Mixing over basis sets

As we can see from the results in Tables 1 and 2, the two sets of basis functions give
different results in terms of SSE for similar numbers of knots. In fact, it is known
that no one method will dominate all others for every problem so the basis set to
use is certainly important.

We also see the strong dependence between the number of candidate knot sites
and the prediction errors. So, in order to provide good predictions this too should
be chosen with care. We should not just put down far more knots than we need as
this has implications in terms of the condition number of the design matrix.

Fortunately, as the method we employ for shrinkage estimation is so quick we
can allow the method to determine the number of candidate knot sites to use and,
potentially as important, the basis set to use. In the past both of these choices have
been, to at least some extent, left to chance and not well discussed.

To tie in with the earlier work in this paper we shall restrict ourselves to outlining
the approach with the two basis sets described earlier: the cubic regression spline
and the thin-plate spline. Further, we allow the number of candidate knot sites to
vary from 4 to 30 knots, evenly spaced along [0,1]. We shall consider a second test
function and simulated 200 points from the model

y; = sin(6x;) + 2exp(—64(2z — 1)?) + ¢,

where the ¢; are independently distributed N (0,0.3%) random variables, z; ~ U[0, 1].
An example of such a dataset is given in Fig. 6.

Let K denote the number of candidate knot sites and Ms and M denote the
thin-plate and cubic regression spline models. In this way we have introduced extra
randomness into our model and now we wish to make inference about p(w, K, M|D),
rather than just the posterior distribution of the weights.

To compare the relative merits of the different basis sets and numbers of candi-
date knot locations we can determine the model with the largest marginal likelihood

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F1G 6. A realisation of the second simulated dataset (o = 0.3) together with the truth (solid line).
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Fic 7. The log marginal likelihood for the thin-plate (circles) and cubic (squares) spline models
with varying numbers of candidate knot locations.

given K and the model M. This is just the product of the denominators in (11).
Recall that this is simple to compute as it just involves a product of univariate
integrals. Note that picking the model with the largest marginal likelihood (ML),
conditioned on K and M, is equivalent to picking the maximum a posteriori model
under uniform priors on K and the basis set to use.

The simplest way to calculate the ML is using Monte Carlo integration. We can
do this by first determining the eigenvalues and least squares estimates relating
to a model with a specified K and basis set. This allows us to calculate the u; =
Vi@;/a (i = 1,...,p) for that model. Then, by generating J (a large value we
typically take as 10,000) Beta(a,b + 0.5) random variables W', ..., W7 we find
that the log ML, up to an additive constant, is given by

T+ 1], J 1, )
plog{ Flat b5 1) } +5 ; pi + 2log ;exp[Q(W - i)
Using this form avoids overflows in the exponential term.

To perform the analysis we used the BGR1 prior (a = 1,b = 0.001) and took & to
be the median absolute deviation of the residuals given the thin-plate spline model
with 30 knots. Note that the results shown took only one minute of computing time
to produce using MATLAB.

In Fig. 7 we display the log marginal likelihood for both the thin-plate spline
and the cubic spline models for each value of K. We see that the model with the
largest ML is the one that uses the thin-plate spline basis set with 11 candidate
knots. Note this only means that the shrinkage is performed with these 11 thin-
plate spline bases and that not all of these basis functions will have a significant
coefficient. With 11 bases it seems that a balance has been reached between the
flexibility of the model and the poor conditioning of the X’X matrix.
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F1G 8. The same as for Fig. 7 but for the sum of squared errors (SSE).

Fig. 8 gives the SSE for each of the models under consideration. We see that
the one with the largest ML is indeed the one with the lowest prediction error rate
(SSE=1.123 with K = 11 and under Mr). From experience with the model, we
note that this appears to often be the case.

We know that Bayesian prediction should be done with reference to the posterior
predictive distribution p(y|x, D) with all the random parameters integrated. This
is straightforward in this context as it just involves further summations of the
marginal likelihood determined earlier over the possible values of K and the two
models under consideration. Unsurprisingly, using the fully marginalised posterior
predictive reduces the SSE even further to 1.097 from 1.123 for the best error rate
using any single model looked at. This mean estimate produced in this way is
plotted in Fig. 9. This sort of increased predictive performance is typically found
when averaging over models.

Even though these results were found using only one simulation they are typical
of what we would expect to see. We have already demonstrated the efficacy of the
model for prediction so this section is included mainly to show how, by using such
an efficient model averaging scheme, we can average over possible candidate basis
sets. Further, we can even take into account the misspecification associated with
using a single set of candidate knot sites which can be significant and cannot be
chosen arbitrarily large.

6. Discussion

We have proposed a new method for performing generalized shrinkage which as-
sumes that the prior on the coefficients is a Beta mixture of normal distributions.
This method proposed is computationally efficient and has been shown to outper-
form standard BMA models for spline fitting, a context for which they have recently
gained a lot of popularity (e.g. Smith and Kohn, 1996; Denison, Mallick and Smith,
1998; Gustafson, 2000).



232 D.G.T. Denison and E.I. George

25

Fic 9. The expectation of the mean of the posterior predictive distribution (dashed line) found by
averaging over both the number of candidate knots and the two basis sets. The true curve is given
by the solid line.

Standard Bayesian model averaging does not always perform so poorly as the
results in this paper suggest. We have come across examples when it outperforms
the simple GRR methods when the p; for the datasets are of similar size and roughly
between 1 and 10. These are the situations where GRR methods are at their worst
(see Figs. 1 and 3). Nevertheless we have shown that we cannot blindly put our
faith in model averaging. Its performance is dependent on the dataset we wish to
analyse.

This paper is not intended to criticise Bayesian model averaging per se. It only
demonstrates weaknesses in the usual model averaging framework employed (Sec-
tion 3.1). The Bayesian GRR methods we adopt also incorporates model uncer-
tainty as we also make inference using the posterior expectation of the unknown
parameters. Also, both methods perform multiple shrinkage of the coefficients. How-
ever, we feel that in our framework the unknowns are more interpretable and lead
to priors on the coefficients which turn out to be scaled Beta mixtures of nor-
mal distributions rather than the conjugate normal density. Such mixture densi-
ties have been shown to be particularly effective for prediction (e.g. Clyde and
George, 2000).
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