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Multiagent estimators of

an exponential mean

Constance van Eeden and James V. Zidek∗

University of British Columbia

Abstract: Some Bayesian agents must produce a joint estimator of the mean
of an exponentially distributed random variable S from a sample of realiza-
tions S. Their priors may differ but they have the same utility function. For
the case of two agents, the Pareto efficient boundary of the utility set gener-
ated by the class of all non-randomized linear estimation rules is explored in
this paper. Conditions are given that make those rules G-complete within the
class of non-randomized linear estimators, meaning that optimum non-random
estimators can be found on the Pareto boundary thereby providing a basis for
a meaningful consensus.
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1. Introduction

This paper extends the work of van Eeden and Zidek (1994) on the multiagent
decision problem of estimating the mean λ of an exponentially distributed random
variable S by a group of Bayesian decision makers. Here unlike the earlier work,
the size of that group G is finite. However, the setup is otherwise identical to that
in the earlier work whose salient results will be included in Section 2. However the
nature of the results here differs markedly from the earlier ones.

The need to estimate λ arises in diverse areas of application, notably in environ-
mental risk management. There λ can be the intensity of the homogeneous Poisson
process with a random inter–event time S, the events being the exceedance of a
threshold by a harzardous substance. Such an application is made by Tob́ıas and
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Scotto (2005) where the event is the exceedance of a regulatory standard by the
ozone field over Barcelona. They estimate the return period for such an exceedance
for a randomly selected year, a quantile which they find to be a linear function of
λ. Alternatively S could be the size of such an exceedance whose distribution can
be approximated by an exponential distribution with mean λ when that threshold
is sufficiently high.

Although Tob́ıas and Scotto (2005) consider only the case of a single (non–
Bayesian) agent, panels are commonly used in assessing regulatory standards. The
method described in this paper is viewed as a normative rather than a descriptive
approach by which such a panel of G Bayesians might ideally be used to select such
an estimator and an imperative to make rational joint decision seems a reasonable
requirement to impose on such a panel.

Facilitated by modern technology, decisions like the prediction of S are increas-
ingly been made by groups of agents and this paper develops a normative formu-
lation of the decision problem for such a group. To quote Parsons and Wooldridge
(2002): “In the last few years, there has been increasing interest in the use of tech-
niques from decision theory and game theory for analyzing and implementing agent
systems.” However it goes back a long way (see for example Radner, 1962).

Section 2 incorporates basic results of van Eeden and Zidek (1994) and sets up a
decision theoretical framework for a single agent. In particular, a conjugate utility
function for predicting S, is developed. That leads to an equivalent problem for the
estimation of λ, the unknown scale parameter of the distribution of S. With a judi-
cious approximation, the latter also has a conjugate utility function, providing the
mathematical tractability needed to enable analytical progress. The Bayes estimator
of λ is found and that in turn can be turned into a predictor of S. While recogniz-
ing that in practice the costs of incorrect prediction would in many situations be
context dependent, we believe subsequent analysis will provide useful guidance to
decision makers in situations where our utilities may be deemed unsuitable.

Section 3 considers the case of G > 1 agents and a number of general results are
given. However solutions of that problem proves much more challenging than that
for a single agent and hence our principle result on the so–called “group admissi-
bility” of a predictor concerns the case of just G = 2.

Amongst other challenges, optimal solutions for the multi– unlike the single –
agent problem can be randomized in situations where agent prior opinions are suf-
ficiently divergent. However as the number of observations increases, their opinions
will converge as reflected by their posterior distributions and eventually a non–
randomized predictor will prove jointly acceptable as a consensual choice. Section
4 addresses the question of how large n must be to achieve that consensus. The
pre-posterior probability of their attainment is found and shown to be 1 in certain
situations.

Section 5 then explores the implications of adopting three paradigms for the
multi – agent problem, comparing and contrasting the results obtained. Finally,
Section 6 discusses various aspects of the problem addressed in this paper and
returns to general issues presented in this introduction.

The Appendix contains the proofs of the lemmas as well as of one of the theorems.
Further details of the proofs can be found in van Eeden and Zidek (2005).

2. A single agent

This section reviews results presented by van Eeden and Zidek (1994) for the case
of a single Bayesian. A conjugate prior and utility function are assumed to gain
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mathematical tractability at the expense of completeness, to better enable us to
address conceptual issues in later sections.

Prior to posterior distribution

Since the decision–maker observes S1, . . . , Sn
i.i.d∼ exp (λ), the sufficient statistic

T =
∑n

i=1 Si contains all relevant sample information and has, conditionally on λ,
a gamma distribution with density

fT (t|λ) =
tn−1

λnΓ(n)
exp

(
− t

λ

)
, t > 0.

Further assume the Agent has a (conjugate) inverted gamma prior density for λ
given by

(2.1) π(λ|θ) =
βα−1

λαΓ(α − 1)
exp

(
− β

λ

)
, λ > 0,

where θ = (α, β) denotes the vector of hyperparameters. The mean of this prior is,
for α > 2, given by E(λ|θ) ≡ μ(λ|θ) = β/(α − 2) and this decision maker’s marginal
density function for T is

(2.2) fT (t|θ) =
Γ(α + n − 1)
Γ(n)Γ(α − 1)

(t/β)n−1

β(1 + t/β)(α+n−1)
, t > 0.

His posterior density function, conditional on the data, that is on the value of the
sufficient statistics T = t, is given by

(2.3) π(λ|t, θ) =
(β + t)α+n−1

Γ(α + n − 1)λα+n
exp

(
− β + t

λ

)
.

Finally, observe that this Agent’s posterior mean, conditional on the data, E[λ|t, θ] =
(β + t)/(α + n − 2) has the familiar form

E[λ|t, θ] =
α − 2

α + n − 2
μ(λ|θ) +

n

α + n − 2
λ̂MLE ,

a weighted average of the prior mean and the maximum likelihood estimator of λ.

Selecting a utility function

This subsection uses the prediction problem to suggest reasonable choices for util-
ity functions in the estimation problem. Prediction is often the ultimate goal of
inference even when it is recast as estimation as in Tobias and Scotto (2005). In
fact, Akaike (1981) citing his earlier work makes prediction the goal:

“Akaike (1977) introduced a principle of statistical model building, the entropy max-
imization principle, which regards any statistical activity as an effort to maximize the
expected entropy of the resulting estimate of the distribution of a future observation.
The principle is characterized by the introduction of the entropy criterion and the
predictive point of view.”

The specific problem of predicting observable exponentials was considered in a
Bayesian framework by Geisser (1985) although his goal was predictive intervals.
Moreover he did not consider the associated estimation problem. Beginning with
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his paper, the prediction of such exponentials, their close cousins, Pareto random
variables that commonly arise in applications in economics and finance, and others
has generated a large research literature (Al–Hussaini and Ahmad, 2003).

Following Akaike we begin by seeking an estimator λ̂ that yields a good proba-
bilistic forecasting (or predictive) distribution fS(s|λ̂) for S ∼ Exponential(λ) that
in turn would yield prediction intervals as well as a point predictor. Conditional on
λ, an Akaike criterion functional is given by

(2.4)

I =
∫

fS(s|λ) log

(
f(s|λ)

f(s|λ̂)

)
ds

=
∫

fS(s|λ) log f(s|λ)ds −
∫

fS(s|λ) log f(s|λ̂)ds =
λ

λ̂
− log

λ

λ̂
− 1,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

the Kullback-Leibler measure of the discrepancy between the true distribution and
the predictive distribution for S. Ideally λ̂ should be chosen as λ̂ = λ to minimize
(2.4), the so-called entropy loss function. However it and its associated utility func-
tion −I, being unbounded, are unrealistic. Moreover, its mathematical intractability
makes analysis of proposed estimators difficult.

Alternatively we could move from this celebrated approach to the more general
one in decision analysis, that optimum decisions maximize the expected utility.
Proceeding in this fashion we postulate a utility U(S, Ŝ) for the prediction problem.
Its expectation conditional on λ

(2.5) E[U(Ŝ, S)|t, λ]

would provide a profile of its performance as a function of λ.
Following the approach of Lindley (1976) we might select the utility for compu-

tational convenience as

(2.6) U(Ŝ, S) ≡ γ
1
2

√
2π

e

[
S

Ŝ
exp

(
1 − S

Ŝ

)]γ

.

Its utility profile function of λ can now be computed as

(2.7)

E[U(Ŝ, S)|t, λ] =
1√
2π

γ
1
2 e

∫
fS(s|λ)

[
s

Ŝ
exp

(
1 − s

Ŝ

)]γ

ds

=
1√
2π

γ
1
2 e1+γ

[
1
Ŝ

]γ 1
λ

∫
sγ exp

{
−s

(
1
λ

+
γ

Ŝ

)}
ds

=
1√
2π

Γ(1 + γ)e1+γγ−γ− 1
2
Ŝ

λ

(
1 +

Ŝ

γλ

)−(1+γ)

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Formally substituting λ̂ for Ŝ in (2.7) yields a utility function for the estimation of
λ. In particular it is maximized by the choice λ̂ = λ as would be required of any
reasonable such utility.

Although that utility is not very tractable, we can find one that is by letting
γ → ∞.

Arriving at the approximation requires Stirling’s approximation, which says that
(when γ is large) Γ(1 + γ) ∼

√
2π exp (−γ)γγ+ 1

2 . The result after the substitution
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Fig 1. Approximate and exact utility functions for estimating λ for varying γ, plotted against the
λ-Ratio, λ̂/λ.

is a conjugate utility (Lindley, 1976)

(2.8) u(λ̂, λ) =
λ̂

λ
exp

(
1 − λ̂

λ

)
.

Figure 1 shows that the utility in (2.8) provides a good approximation to that in
(2.7) even for fairly small values of γ.

However it has a disturbing feature seen on examining the utility for prediction in
(2.6). As γ → ∞ the latter increasingly concentrates on a shrinking neighborhood
of Ŝ − S = 0 while predictions outside that narrow region go unrewarded, not a
seemingly realistic utility for prediction even in the pre–asymptotic case where γ is
large. This finding calls into question the merit of that in (2.8) for estimating λ.

However, (2.8) derives from another prediction utility that is applicable in the
situation described below. To see how it arises, we seek a solution U0(Ŝ, S, λ) of∫ ∞

0

1
λ

e−s/λU ∗(Ŝ, s, λ)ds =
Ŝ

λ
e1−Ŝ/λ

and find

U0(Ŝ, S, λ) =
eŜ

λ
I(

Ŝ

S
< 1).

To verify this claim note that∫ ∞

0

1
λ

e−s/λ eŜ

λ
I(

Ŝ

s
< 1)ds =

Ŝ

λ
e

∫ ∞

Ŝ

1
λ

e−s/λds =
Ŝ

λ
e1−Ŝ/λ.

This utility (which is also scale invariant like its predecessor) covers the decision
problem where the analyst is asked to provide an interval estimator [Ŝ, ∞) for S,
Ŝ being as close as possible but below S. A less stringent family of utilities for the
same situation would be

Uδ(Ŝ, S, λ) =
e min {Ŝ, S}

λ
I(

Ŝ

S
< 1 + δ)
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for any δ > 0. In any case, by formal substitution of λ̂ for Ŝ in (2.8) we obtain a
utility function for estimation that is the subject of further analysis in this paper,
knowing that selecting a λ̂ immediately yields a predictive lower bound for S as
described above.

Estimating λ

With the conjugate utility for λ derived in the last subsection, we can now find this
Bayesian’s predictor. However, before doing so, we present a lemma that will be
useful in computing its conjugate utility and in the next section as well.

Lemma 2.1. For the utility function (2.8), posterior (2.3) and an estimator of the
form λ̂(t) = c1t + c2, c1 ≥ 0, c2 ≥ 0, the expected marginal utility is given by

(2.9) U(λ̂, θ) = E u(λ̂, λ) =
eβα−1{c2(c1 + 1)(α − 1) + c1n(c2 + β)}

(c1 + 1)n+1(c2 + β)α
.

The next theorem gives the Bayes rule for the conjugate utility (2.8).

Theorem 2.1. For the utility function (2.8) and the prior (2.1), the Bayes esti-
mator λ̂B of λ is given by

(2.10) λ̂B(t) =
t + β

α + n − 1
.

The following corollary follows immediately from Lemma 2.1 with c1 = (α+n −
1)−1 and c2 = β(α + n − 1)−1.

Corollary 2.1. The maximum value of the expected posterior utility is given by

(2.11)
eΓ(α + n)

Γ(α + n − 1)
(α + n − 1)α+n−1

(α + n)α+n
.

Note that

λ̂B(t) =
t + β

α + n − 1
=

α + n

α + n − 1
E (λ | t),

where E (λ | t) is the Bayes estimator of λ for squared-error loss. Further, from (2.11)
it is seen that the maximum expected posterior utility does not depend upon the
data and depends on the prior only through α. This implies that the preposterior
Bayes expected utility is also given by (2.11). In the next section each agent of a
group of agents using the same (α, n) obtain, with their possibly different Bayes
estimators, the same expected posterior as well as expected marginal utility.

3. The multiagent prediction problem

In this section the conjugate utility function (2.8) is used. The Bayes estimator is
obtained and a G-complete-class result is presented.

Now consider a group consisting of G (Bayesian) agents and look at the problem
of finding a G-complete class of estimators of λ using the expected marginal utility
as the basis for comparisons between estimators. More specifically, the problem is
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to find a class C of estimators of λ such that, for each estimator λ̂ ∈ C̄, there exists
a λ̂1 ∈ C with ⎧⎨

⎩
U(λ̂1, θ) ≥ U(λ̂, θ) for all θ ∈ Θ

U(λ̂1, θ) > U(λ̂, θ) for some θ ∈ Θ.

We have succeeded in finding such a G-complete-class result for the special case
where the group G consists of two agents and the estimators under consideration
are of the form λ̂(t) = c1t + c2. However, for the proof of our G-complete-class
result the following lemmas for the general case of an arbitrary number of agents
are needed.

In Lemma 3.1 and Lemma 3.2, the expected utility U(c1T + c2, θ) is studied as
a function of c1 and c2 for ci ≥ 0, i = 1, 2.

Lemma 3.1. Under the conditions of Lemma 2.1

d

dc1
U(c1T + c2, θ)

⎧⎨
⎩

>
=
<

⎫⎬
⎭ 0 ⇐⇒ c2

⎧⎨
⎩

<
=
>

⎫⎬
⎭ β

1 − c1n

c1(α + n − 1) + α − 2
.

Lemma 3.2. Under the conditions of Lemma 2.1

d

dc2
U(c1T + c2, θ)

⎧⎨
⎩

>
=
<

⎫⎬
⎭ 0 ⇐⇒ c2

⎧⎨
⎩

<
=
>

⎫⎬
⎭ β

1 − (n − 1)c1

c1(α + n − 1) + α − 1
.

Now let (see Lemma 3.1 and Lemma 3.2)

h1(c) =
1 − cn

c(α + n − 1) + α − 2
0 ≤ c ≤ 1/n

h2(c) =
1 − c(n − 1)

c(α + n − 1) + α − 1
0 ≤ c ≤ 1/(n − 1)

and let n > 1 while α > 2. Then h1 and h2 are each continuous and strictly
decreasing in c with⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

h1(c) > 0 ⇐⇒ c < 1/n

h2(c)) > 0 ⇐⇒ c < 1/(n − 1)

h1(0) = 1/(α − 2) h1(1/n) = 0

h2(0) = 1/(α − 1) h2(1/(n − 1)) = 0.

Further, for 0 ≤ c ≤ 1/n,

(3.1) h1(c)

⎧⎨
⎩

>
=
<

⎫⎬
⎭ h2(c) ⇐⇒ c

⎧⎨
⎩

<
=
>

⎫⎬
⎭ 1

α + n − 1

and the pair (c1, c2) with

c1 =
1

α + n − 1
and c2 =

β

α + n − 1
= βh1

(
1

α + n − 1

)
= βh2

(
1

α + n − 1

)

gives the Bayes estimator λ̂B .
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Fig 2. Behavior of U(c1T + c2, θ) as a function of c1 > 0 and c2 > 0.

Now let
(3.2)

S1(β) = {(c1, c2) | 0 ≤ c1 ≤ 1/n, 0 ≤ c2 ≤ β min {h1(c1), h2(c1}}
S2(β) = {(c1, c2) | 0 ≤ c1, c2 > β max {0, h1(c1), h2(c1}}
S3(β) = {(c1, c2) | 0 < c1 < 1/(α + n − 1), βh2(c1) < c2 ≤ βh1(c1)}
S4(β) = {(c1, c2) | 1/(α + n − 1) < c1 ≤ 1/(n − 1), βh1(c1) < c2 ≤ βh2(c1}.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Then it follows from Lemma 3.1, Lemma 3.2 and (3.1) that U(c1T + c2, θ) is, for
each fixed β,

(3.3)

(i) increasing in c1 and in c2 on S1(β)
(ii) decreasing in c1 and in c2 on S2(β)
(iii) increasing in c1 and decreasing in c2 on S3(β)
(iv) decreasing in c1 and increasing in c2 on S4(β).

⎫⎪⎪⎬
⎪⎪⎭

Finally, the next lemma gives the behaviour of U(cT + c2, θ) as a function of c
for c2 = βh1(c) as well as for c2 = h2(c).

Lemma 3.3. For

(3.4) 0 ≤ c ≤ 1
n

, c2 = βh1(c),

as well as for

(3.5) 0 ≤ c ≤ 1
n − 1

, c2 = βh2(c),

U(cT + c2, θ) is, for c ≥ 0 and c2 ≥ 0, increasing in c for c < 1/(α + n − 1) and
decreasing in c for 1/(α + n − 1) < c.

The above given properties of U(c1T + c2, θ) as a function of c1 and c2 are
summarized in Figure 2, where the arrows indicate the direction in which U(c1T +
c2, θ) increases.
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Fig 3. Behavior of U(c1T +c2, θj), j = 1, 2 as a function of c1 and c2 and βj when β1(α − 2)−1 ≤
β2(α − 1)−1.

The following theorem gives our complete class result.

Theorem 3.1. Consider a group consisting of two Bayesians, each using the utility
function (2.8) with the posterior (2.3) with the same α (α > 2) but with different
β’s, β1 and β2 with β1 < β2. Let n > 1. Then the class

C = {λ̂(T ) = c1T + c2 | (c1, c2) ∈ S∗ }

where S∗ is the closure of the set {(c1, c2) |(c1, c2) ∈ S1(β)∩S2(β)}, is a G-complete
class of estimators of λ within the class of linear estimators.

Proof. First note that S∗ is not empty and contains points (c1, c2) with c1 < 1/(α+
n − 1), points (c1, c2) with c1 > 1/(α + n − 1), as well as all points (c1, c2) with
c1 = 1/(α + n − 1), β1/(α + n − 1) ≤ c2 ≤ β2/(α + n − 1). This can be seen as
follows. First note that, by the definitions of S1(β) and S2(β)

S∗ = {(c1, c2) | 0 ≤ c1 ≤ 1/n, β1M(c1) ≤ c2 ≤ β2m(c1)}

where m(c) = min{h1(c), h2(c)} and M(c) = max{h1(c), h2(c)}.
Further (see (3.1))

β2m

(
1

α + n − 1

)
− β1M

(
1

α + n − 1

)
= (β2 − β1)h1

(
1

α + n − 1

)
> 0.

That S∗ is not empty then follows from the fact that β2m(c) − β1M(c) is con-
tinuous in c on 0 ≤ c ≤ 1/(n − 1).

Figures 3 and 4 summarize the properties of U(c1T +c2, θj), j = 1, 2 as functions
of c1 and c2, as well as the relationships between the sets Si(βj), i = 1, . . . , 4,
j = 1, 2.
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Fig 4. Behavior of U(c1T +c2, θj), j = 1, 2 as a function of c1 and c2 and βj when β1(α − 2)−1 >
β2(α − 1)−1.

The two cases considered are

(i)
β1

α − 2
≤ β2

α − 1
in Figure 3

(ii)
β1

α − 2
>

β2

α − 1
in Figure 4.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.6)

To study the shape of S∗, let H(c) = β2m(c) − β1M(c). First, consider the case
where 0 ≤ c ≤ 1/(α + n − 1). Then

(3.7)

H(c) = β2h2(c) − β1h1(c)

= β2
1 − c(n − 1)

c(α + n − 1 + α − 1)
− β1

1 − cn

c(α + n − 1) + α − 2
.

⎫⎪⎬
⎪⎭

When β2/(α − 1) ≥ β1/(α − 2), it follows from (3.7) that H(c) > 0 for 0 ≤
c ≤ 1/(α + n − 1) because 1 − c(n − 1) ≥ 1 − cn > 0 and α − 2 < α − 1. When
β2/(α − 1) < β1/(α − 2), H(0) < 0, H(1/(α+n − 1)) > 0 and H(c) = 0 has exactly
one root, co, say, in the interval [0, 1/(α + n − 1)] because H(c) ≥ 0 if and only if

(α+n − 1)(nβ1 − (n − 1)β2)c2 +

[(α+n − 1)(β2 − β1)+β1n(α − 1) − β2(n − 1)(α − 2)]c+β2(α − 2) − β1(α − 1) ≥ 0.

Moreover, H(c) < 0 for 0 ≤ c ≤ co and H(c) > 0 for co < c ≤ 1/(α + n − 1).
Now consider the case where 1/(α + n − 1) ≤ c ≤ 1/n. Then

H(c) = β2h1(c) − β1h2(c)

= β2
1 − cn

c(α + n − 1) + α − 1
− β1

1 − c(n − 1)
c(α + n − 1) + α − 2
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with H(1/(α + n − 1)) > 0 and H(1/n) < 0. That H(c) = 0 has exactly one root,
c∗
o say, in the interval (1/(α + n − 1), 1/n) follows from the fact that H(c) ≥ 0 if

and only if

(α+n − 1)(β1(n − 1) − β2n)c2 +

[(β2 − β1)(α + n − 1) − (β2n(α − 1) − β1(n − 1)(α − 2)]c+β2(α − 1) − β1(α − 2) ≥ 0.

Further, of course, H(c) > 0 for 1/(α + n − 1) < c < c∗
o and H(c) < 0 for c∗

o < c ≤
1/n.

It now needs to be shown that, for every (c1, c2) not in S∗, there exists (c′
1, c

′
2) ∈

S∗ such that

(3.8)
U(c′

1T + c′
2, θj) ≥ U(c1T + c2, θj), j = 1, 2

U(c′
1T + c′

2, θj) > U(c1T + c2, θj) for some j ∈ {1, 2}.

⎫⎬
⎭

Such (c′
1, c

′
2) can be obtained as follows (see also Figures 3.1–3.3). Start, e.g., with

(c1, c2) ∈ S1(β1). Then because S1(β1) ⊂ S1(β2), (c1, c2) ∈ S1(β2). Thus, one can,
keeping c1 fixed, increase each of the expected utilities by increasing c2 until (c1, c2)
satisfies

c2 = β1m(c1) = β1 min {h1(c1), h2(c1)}.

Then

(i) if c1 ≤ 1/(α + n − 1), one can increase c1 while keeping c2 fixed. Each of the
expected utilities then increases until (c1, c2) satisfies c2 = β1h2(c1). One then
has reached S∗ or, if not (as might be the case when β1/(α − 2) > β2/(α − 1)
one can “slide down” the curve c2 = β1h1(c1) and thus increase each of the
expected utilities, until S∗ is reached;

(ii) if c1 > 1/(α + n − 1), one can further increase c2 until (c1, c2) satisfies c2 =
β1h2(c1). Then one either has reached S∗, or one can “slide up” the curve
c2 = β1h2(c1), increasing each of the expected utilities, until S∗ is reached.

Similar reasoning works for the other cases.

Remarks.

(i) We do not know whether C contains a proper subset which is G-comp1ete
within the class of linear estimators.

(ii) In the above only nonrandomized estimators were considered. We do not have
a similar result for the class of all estimators.

4. Consensual choice

In this section we consider the case where the group consists of two Bayesians, Bi,
i = 1, 2, with the same conjugate utility function, while their priors have the same
α > 2 but different β’s. They have the same data, t, available. Then (see (2.10))
Bi’s preferred decision is λ̂i = (t + βi)/(α + n − 1), i = 1, 2 and the question we are
looking at in this section is what decision λ̂ these two Bayesians could agree upon
as a compromise between their λ̂i.
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To find an answer to this question we study (see (A.2)) the joint behavior of the
expected posterior utilities Ui(x, θi | t), i = 1, 2 as a function of x. To simplify the
notation we put, for i = 1, 2, δi = βi + t and Ui(x) = Ui(x, θi | t). Then

Ui(x) = Ki
x

(δi + x)α+n
, i = 1, 2,

where the Ki, i = 1, 2, are positive constants independent of x. Further we suppose,
without loss of generality, that λ̂1 < λ̂2.

The theorems below give the needed properties of U2(x) as a function of U1(x)
for x > 0.

Theorem 4.1. For x > 0

dU2

dU1
(x) ∝ λ̂2 − x

λ̂1 − x

(
δ1 + x

δ2 + x

)α+n+1

> 0 when x < λ̂1

= ∞ when x = λ̂1

< 0 when λ̂1 < x < λ̂2

= 0 when x = λ̂2

> 0 when x > λ̂2.

This theorem follows directly from Lemma A.1.
The following theorem, which follows directly from Lemma A.2, gives the convexity-

concavity properties of U2 as a function of U1 for x < λ̂1 as well as for x > λ̂2.

Theorem 4.2. For x < λ̂1 U2(x) is a convex function of U1(x), while for x > λ̂2

U2(x) is a concave function of U1(x).

The next theorem gives the convexity-concavity properties of U2(x) as a function
of U1(x) for λ̂1 < x < λ̂2.

Let A, B and C be given by (A.7), let (see Lemma A.5) s(α, n) = 8(α+n)/(α+
n − 1) and let r(α, n) be the unique solution > 1 to r2 + (2 − s(α, n))r + 1 = 0.
Then

(4.1) r(α, n) = 3 +
4

α + n − 1
+

√(
3 +

4
α + n − 1

)2

− 1

and the following theorem follows from Lemma A.7.

Theorem 4.3. On (λ̂1, λ̂2)

1) when λ̂2/λ̂1 ≤ r(α, n), U2(x) is a concave function of U1(x);
2) when λ̂2/λ̂1 > r(α, n), U2(x) is a concave, convex, concave function of U1(x)

on, respectively, (λ̂1, x1], (x1, x2), [x2, λ̂2), where x1 < x2 are the roots to
Ax2 + Bx + C = 0.

Remark. By Theorem 4.3 above we have concavity on (λ̂1, λ̂2) if and only if

λ̂2

λ̂1

≤ r(α, n)

or (see Lemma A.5) if and only if(
λ̂1 + λ̂2

)2

λ̂1λ̂2

≤ s(α, n).
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This result is not in agreement with Theorem 4.3 of van Eeden and Zidek (1994)
who have concavity on (λ̂1, λ̂2) if and only if

(
λ̂1 + λ̂2

)2

λ̂1λ̂2

≤ 4C2
0

where

4C2
0 =

(α + n)2 − (α + n) + 2
α(α + n)2

α(α + n)2 �= s(α, n).

The 1994 result is incorrect.

From the theorems 4.2 and 4.3 it follows that, when λ̂2/λ̂1 ≤ r1(α, n),

C = {λ̂ | λ̂1 ≤ λ̂ ≤ λ̂2}

is a complete class of decision rules within the class of all rules. But when λ̂2/λ̂1 >
r1(α, n), some of the rules in C can be improved upon by randomized rules. So in
the latter case, optimality would force the two Bayesians into the practically objec-
tionable position of having to resort to randomized rules to arrive at a consensual
choice.

We now turn to the following question (which could be asked before the data are
collected): “Conditional on λ, what is the probability that for two Bayesians using
the same data, λ̂2/λ̂1 ≤ r1(α, n)?”. In other words: “Conditional on λ, what is
the probability that the optimal consensual choice of two Bayesians can be reached
with a nonrandomized rule?”. This probability is given by

(4.2) Pλ

(
T

λ
≥ β2 − r(α, n)β1

λ(r(α, n) − 1)

)
= Pλ

(
T

λ
≥ β2 − β1

λ(r(α, n) − 1)
− β1

λ

)
,

where, by the assumption made above, λ̂1 < λ̂2, β1 < β2.
Clearly, if the priors of the two Bayesians are not too far apart in the sense that

(4.3) β2 ≤ β1r(α, n),

they are sure to be able to reach consensus.
More properties of the probability (4.2) are given in the theorems 4.4 and 4.5

for which the following result is needed.

Lemma 4.1. For n = 1, 2, . . .,

3 +
√

8 < r(α, n + 1) < r(α, n)

< r(α, 0) = 3 +
4

α − 1
+

√(
3 +

4
α − 1

)2

− 1.

⎫⎪⎪⎬
⎪⎪⎭

The proof of this lemma follows immediately from (4.1).

Theorem 4.4. If, for some No ≥ 0,

(4.4) r(α, No + 1) <
β2

β1
≤ r(α, No),
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then the probability of consensus equals 1 for every n ≥ No. In particular, if

β2/β1 ≤ 3 +
√

8,

the probability of consensus equals 1 for all n ≥ 0.
Finally, if

β2/β1 > 3 +
4

α − 1
+

√(
3 +

4
α − 1

)2

− 1

the probability of consensus is less than 1 for all n ≥ 0.

Proof. The results follow immediately from (4.2) and (4.4).

Theorem 4.5. If the prior β’s do not satisfy (4.3), then (4.2) is less than 1 and
the following hold:

i) for fixed α, n and λ, (4.2) increases as β2 − r(α, n)β1 decreases, i.e. as the
priors get closer together, the probability (4.2) increases;

ii) for fixed α, n, β1 and β2, the probability (4.2) increases as λ increases;
iii) for fixed α, λ, β1 and β2, the probability (4.2) converges to 1 as n → ∞.

Proof. The first result follows from (4.2). To see the second result, note that the
distribution of T/λ does not depend on λ. For the third result, let

An =
r(α, n) − 1

β2 − β1
.

Then it follows from (4.1) that
√

nAn → ∞. The result then follows from the fact
that (4.2) can be written as

Pλ

(
T − nλ

λ
√

n
≥ 1

λAn
√

n
− β1

λ
√

n
−

√
n

)

and the asymptotic normality of (T − nλ)/λ
√

n.

5. Multiagent estimation

The previous two sections explored the Pareto boundary from which the agents
would select their joint estimator of λ with the knowledge, based on our analysis
of Section 2, that the result would also solve a prediction problem. However, we
have side-stepped the question of how the joint estimator might be chosen. That
depends on the normative decision paradigm. Here are some possibilities:

1. The Organization is a third intelligent agent, i.e. a “supra Bayesian” (see, for
example, Genest and Zidek (1986)), capable of combining the data and prior
opinions (as data!) with his, her or its own prior and thereafter developing a
conventional Bayes estimator.

2. The Organization can “pool” the separate posterior distributions to create a
single posterior, again for use in a conventional analysis as above.

3. The problem can be treated as a multiagent decision problem where the
agents would have an individually preferred (Bayesian) estimation strategy
but would be forced to seek a compromise in a group decision problem.
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However, selection of the best paradigm for a particular application would depend
on the context. This section reviews the implications of choosing each of these
paradigms.

First consider Paradigm #1. Suppose the G agents share with the supra -
Bayesian, the conjugate prior (2.1) only with varying hyperparameters, so that
Agent i has hyperparameters, (αi, βi), i = 1, . . . , G while the supra-Bayesian has
(α0, β0).

One common interpretation of conjugate priors leads us to an estimator for the
supra-Bayesian. Thus, the supra-Bayesian (Agent 0) might well assume that the
hyperparameters actually represent prior knowledge gained from the equivalent of
repeated observations of the exponential random variable itself. Consequently the
{αi} represent the number of prior observations Agent i has made (that is, the
amount of prior information i has) while the {βi} represent the values of their
respective sufficient statistics, their prior counterparts of T , in other words.

Assuming independence of the agents’ prior data leads to a likelihood for λ based
on the prior data that can readily be combined with that based on the data (T ).
Then the results of Section 2 apply directly to yield the following estimator for the
supra-Bayesian (Agent 0):

(5.1) λ̂Supra−Bayesian =
t + β.

α. + n
,

the “.” subscript standing for summation over that subscript i = 0, 1, . . . , G.
Although Paradigm #1 and the approach taken above lead directly to an estima-

tor λ̂, they have some objectionable features discussed in Section 6. In any case, the
second paradigm enjoys appeal. Here instead of trying to “accumulate” the prior
knowledge in the various priors, a single prior is adopted to “represent” or “typify”
them. In particular, Genest and Zidek (1986) along with references therein, suggest
the use of the geometric average of the priors to do so:

πMultagent(λ) ≡ ΠG
i=1π

ωi(λ|αi, βi),

∝
(

1
λ

)∑G

i=1
ωiαi

exp

(
−

∑G
i=1 ωiβi

λ

)
, λ > 0

where the weights {ωi}, ωi ≥ 0,
∑

ωi = 1, reflect the importance to be attached to
each agent. Thus a conjugate prior is obtained. In the simplest case ωi ≡ G−1 and
then

πMultagent(λ) ∝
(

1
λ

)ᾱ

exp
(

− β̄

λ

)
, λ > 0,

where ᾱ ≡ G−1α. and β̄ ≡ G−1β..
Note that generally the weighted geometric average of the prior densities does

not integrate to 1. However that is a non-issue. Afterall, both the utility function
and likelihood functions are only defined up to a positive multiplicative scaling
factor. Moreover, the prior gives the same Bayes rule no matter how it is scaled. In
fact, in this case Section 2 again leads directly to a predictor

Ŝ ≡ λ̂Multiagent =
t + β̄

ᾱ + n
.

Paradigm #2 also has shortcomings in some situations and these are discussed in
Section 6. In fact, neither #1 nor #2 will be suitable in situations where the groups
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of agents are required to act in their individual selfinterest and yet choose a compro-
mise that recognizes their individual positions. Paradigm #3 is most appropriate
in that case.

The linearity in t of (2.10) suggests restricting the search for a compromise to
the class of linear estimators Ŝ ≡ λ̂ = c1t + c2, t > 0. Each agent’s expected
gain in utility for members of that class appears in (2.9). Selecting a compromise
entails finding a solution concept on which the choice could be made. We adopt the
one advocated in Weerahandi and Zidek (1983) that is based on maximizing the
celebrated Nash-Kalai product of their utilities, that is their geometric average:

UMultiagent(λ̂) ≡ ΠG
i=1U

ωi(λ̂, θi)

∝ 1
(c1 + 1)n+1

ΠG
i=1

(
c2(c1 + 1)(αi − 1) + nc1(c2 + βi)

(c2 + βi)αi

)ωi

where again the {ωi}, ωi > 0,
∑G

i=1 ωi = 1, represent the weights to be attached to
each agent when seeking the compromise.

In general, the compromise predictor cannot be found in an explicit form even
in the simplest case where ωi ≡ G−1. Instead numerical methods would need to be
used in specific cases. Moreover, as the results of Section 4 show, the Nash-Kalai
solution may not be optimum in the class that includes randomized rules, even in
the case G = 2 unless the conditions for consensus in that section are met. The
results of Haines (2003) may be of value here.

6. Discussion

Observe that the logarithm of the conjugate utility (2.8) is

(6.1) −
[
+

λ̂

λ
− log

[
λ̂

λ

]
− 1

]
.

Multiplying the result by −1 to convert it from a log utility to a loss function leads,
curiously, to the entropy loss with the roles of λ and λ̂ interchanged.

Generally parameters for sampling distributions are abstract quantities without
physical meaning. That makes appealing the development of utility functions for
estimating them from consideration of a dual prediction problem. The value of that
approach is further enhanced by knowledge that usually prediction is the inferential
goal even when cast in terms of parameter estimation. In fact, Geisser (1993) asserts
that predictive inference is the primary purpose of statistical endeavor.

Surprisingly the duality between prediction and estimation within the decision
theoretical framework has not received much attention perhaps because as Geisser
argues, emphasis in statistics moved away from its original purpose of prediction to
characterizing the “true state of nature”. The results in Section 2 provide a curious
example where a utility function for estimation actually corresponds to two very
different prediction problems, only one of which seems like a realistic possibility.

This paper assumes the agents share their data. However, sharing may not be
feasible in some situation so that Agent i has only Ti, the sufficient statistic from
ni observations on which to base an estimator of λ. Some of our results extend
to this case in a straightforward manner. However, generally it proves much more
challenging, corresponding to the case where not only the β’s but also the α’s vary
in the prior distributions of the agents in (2.1). Here little analytic progress can be
made.
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In Section 5 three paradigms were invoked to find a predictor, #1 and #2 lead-
ing to an explicit result, while #3 leads to a criterion function that would need to
be maximized numerically. Which of these is most appropriate will depend largely
on the context. The first, #1, requires a supra-Bayesian (Agent 0) to supervise
the other agents. The gain in utility function is Agent 0’s. Even if having such an
agent is feasible the derivation of Agent 0’s predictor in Section 5 is too simplis-
tic, supposing as it does the independence of the agents’ prior data. In fact, their
prior opinions will be shaped to a considerable extent by common knowledge. In
the extreme case βi ≡ β and αi ≡ α when the agents have identical prior informa-
tion. In general the supra-Bayesian would need to construct a likelihood function
that reflects the correlation among these parameters. The result will be far less
accumulated information than that reflected in the very optimistic (5.1). In other
words, implementation of Paradigm #1 will require some sophisticated modeling
by the supra-Bayesian. That agent’s predictor will be much harder to find than our
analysis suggests.

If the agents’ opinions can be combined say by the organization they serve and
a supra-Bayesian approach is not feasible, then Paradigm #2 obtains. The result
is formally similar to that obtained above for #1. However, instead of trying to
accumulate prior information as #1 does, it merely tries to deal with the competing
posteriors by finding one that represents them. This shows that the two approaches
differ in a very fundamental respect.

The last paradigm (#3) is the one to be used by autonomous agents required
to find a compromise predictor. This one leads to difficult computational issues.
Indeed, it is difficult to determine in general when grounds for consensus exist
(that is when randomized predictors are unnecessary.) However, Section 5 does
provide an explicit criterion for finding an optimum Nash-Kalai estimator.

Another solution criterion, a variation of a supra-Bayesian approach is also fea-
sible. Suppose one Bayesian, i, is to be selected at random from among the G
agents with probability ρi. The value of a predictor or estimator (λ̂) will then be
assessed using that agent’s expected gain in utility function. However, the predictor
must be selected in advance, without knowing which agent will be selected. Then
to maximize the expected gain, the predictor should be chosen to maximize

USupra ≡
G∑

i=1

ρiU(λ̂, θi)

∝ 1
(c1 + 1)n+1

G∑
i=1

ρi

(
c2(c1 + 1)(αi − 1) + nc1(c2 + βi)

(c2 + βi)αi

)
.

This and other solution criteria remain to be explored in future work.

Appendix A: Appendix

Proof of Lemma 2.1. First note that conditionally on λ,

(A.1)

E [u(c1T + c2, λ, θ) | λ]

=
e

λ

∫ ∞

0

(c1t + c2) e−(c1t + c2)/λ tn−1

λnΓ(n)
e−t/λdt

=
e(1−(c2/λ))

λ(c1 + 1)n+1
{c1nλ + c2(c1 + 1)}.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
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From (A.1) one obtains

U(c1T + c2, θ) = E u(c1T + c2, λ, θ)

=
e

(c1 + 1)n+1

βα−1

Γ(α − 1)

{
c1n

Γ(α − 1)
(c2 + β)α−1

+ c2(c1 + 1)
Γ(α)

(c2 + β)α

}
,

from which the result follows immediately.

Proof of Theorem 2.1. By (2.1) and the fact that for given λ > 0, T has density

tn−1e−t/λ

λnΓ(n)
I(t > 0),

the joint density of T and λ is given by

tn−1e−t/λ

λnΓ(n)
βα−1e−β/λ

λαΓ(α − 1)
I(t > 0, λ > 0).

From (2.2) it then follows that the posterior density of λ is, for t > 0, given by

π(λ | t) =
(t + β)α+n−1

Γ(α + n − 1)λα+n
e−(t+β)/λI(λ > 0).

For an estimator λ̂ = λ̂(T ), the expected posterior utility becomes

(A.2)

U(λ̂, θ | t) = E
{

u(λ̂, λ, θ) | t
}

= E
{

λ̂

λ
exp

{
1 − λ̂

λ

}
| t

}

= e λ̂
(t + β)α+n−1

Γ(α + n − 1)
Γ(α + n)

(t + β + λ̂)α+n
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

The Bayes estimator λ̂B maximizes U(λ̂, θ | t) and it is easily seen that this maxi-
mum is attained for the λ̂ satisfying dU(λ̂, θ | t)/dλ̂ = 0 where

d

dλ̂
log U(λ̂, θ | t) =

1

λ̂
− (α + n)

t + β + λ̂
=

t + β + λ̂ − λ̂(α + n)

λ̂(t + β + λ̂)

= (α + n − 1)
(t + β)/(α + n − 1) − λ̂

λ̂(t + β + λ̂)
.

This proves (2.10).

Proof of Lemma 3.1.

d

dc1
U(c1T + c2, θ)

⎧⎨
⎩

>
=
<

⎫⎬
⎭ 0 ⇐⇒ d

dc1

c1n(c2 + β) + c2(c1 + 1)(α − 1)
(c1 + 1)n+1

⎧⎨
⎩

>
=
<

⎫⎬
⎭ 0

⇐⇒ c2

⎧⎨
⎩

<
=
>

⎫⎬
⎭ β

1 − c1n

c1(α + n − 1) + α − 2
.
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Proof of Lemma 3.2.

d

dc2
U(c1T + c2, θ)

⎧⎨
⎩

>
=
<

⎫⎬
⎭ 0

d

dc2

c1n(c2 + β) + c2(c1 + 1)(α − 1)
(c2 + β)α

⎧⎨
⎩

>
=
<

⎫⎬
⎭ 0

⇐⇒ c2

⎧⎨
⎩

<
=
>

⎫⎬
⎭ β

1 − (n − 1)c1

c1(α + n − 1) + α − 1
.

Proof of Lemma 3.3. To see this result for (3.4) note that

(A.3)

d

dc
U(cT + βh1(c), θ) =

d

dc
U(cT + c2, θ))|c2=βh1(c)+

d

dc2
U(cT + c2, θ))|c2=βh1(c)

d

dc
βh1(c).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

The first term on the right hand side of (A.3) is zero by Lemma 3.1. Furthermore,

d

dc
h1(c) < 0 for 0 ≤ c ≤ 1

n
,

so it is sufficient to show that

d

dc2
U(cT + c2, θ)|c2=βh1(c)

⎧⎨
⎩

<
=
>

⎫⎬
⎭ 0 ⇐⇒ c

⎧⎨
⎩

<
=
>

⎫⎬
⎭ 1

α + n − 1
.

But by Lemma 3.2

d

dc2
U(cT + c2, θ)

⎧⎨
⎩

>
=
<

⎫⎬
⎭ 0 ⇐⇒ c2

⎧⎨
⎩

<
=
>

⎫⎬
⎭ βh2(c).

The result then follows from (3.1).
For a proof of the result when (3.5) holds, note that

(A.4)

d

dc
U(cT + βh2(c), θ) =

d

dc
U(cT + c2, θ))|c2=βh2(c)+

d

dc2
U(cT + c2, θ))|c2=βh2(c)

d

dc
βh2(c)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

with, by Lemma 3.2,
d

dc2
U(cT + c2, θ)|c2=βh2(c) = 0.

So, it is sufficient to show that

d

dc
U(cT + c2, θ))|c2=βh2(c)

⎧⎨
⎩

>
=
<

⎫⎬
⎭ 0 ⇐⇒ c

⎧⎨
⎩

<
=
>

⎫⎬
⎭ 1

α + n − 1
.
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But, by Lemma 3.1,

d

dc
U(cT + c2, θ)

⎧⎨
⎩

>
=
<

⎫⎬
⎭ 0 ⇐⇒ c2

⎧⎨
⎩

<
=
>

⎫⎬
⎭ βh1(c)

and the result then follows from (3.1).

Lemma A.1. For i = 1, 2 and x > 0,

dUi(x)
dx

∝ (α + n − 1)
1

(δi + x)α+n+1
(λ̂i − x).

Proof.

dUi(x)
dx

∝ 1
(δi + x)α+n

− (α + n)
x

(δi + x)α+n+1

= (α + n − 1)
1

(δi + x)α+n+1
(λ̂i − x).

Lemma A.2. For x > 0, x �= λ̂1,

d2U2

dU2
1

(x) =
K(x)

x−λ̂1

{
−(λ̂2 −λ̂1)(δ1+x)(δ2+x)+(α+n+1)(δ2 −δ1)(λ̂2 −x)(x−λ̂1)

}
,

where K(x) > 0 for x > 0.

Proof. Let g(x) = dU2(x)/dU1(x). Then

(A.5)
d2U2

dU2
1

(x) =
d

(
dU2

dU1

)
dU1

(x) =
dg(x)/dx

dU1(x)/dx

with (see Theorem 4.1)

(A.6)

dg(x)
dx

∝ d

dx

(
λ̂2 − x

λ̂1 − x

(
δ1 + x

δ2 + x

)α+n+1
)

=
(

δ1 + x

δ2 + x

)α+n 1
δ2 + x

1

x − λ̂1

(
λ̂2 − λ̂1

x − λ̂1

(δ1 + x)

+ (α + n + 1)
δ2 − δ1

δ2 + x
(x − λ̂2)

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The result then follows from (A.5) and Lemma A.1.

Let

(A.7)

A = −(α + n)2

B = (α + n − 1)(λ̂1 + λ̂2)(α + n)

C = −2λ̂1λ̂2(α + n − 1)(α + n)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
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and let H(x) = Ax2 + Bx + C. Then (see Lemma A.2) for x �= λ̂1,

(A.8)
d2U2

dU2
1

(x) =
H(x)

K(x)(x − λ̂1)
.

The needed properties of H(x) are given in the following lemmas.

Lemma A.3. For i = 1, 2, H(λ̂i) < 0.

Proof. For i = 1, 2

H(λ̂i) = Aλ̂2
i + Bλ̂i + C =

= −λ̂2
i (α + n)2 − λ̂1λ̂2(α + n − 1)(α + n) < 0.

The following lemma follows directly from the definition of H(x).

Lemma A.4. For the derivative of H(x) with respect to x we have

d

dx
H(x) |

x = λ̂2

= −(λ̂2 − λ̂1)(α + n − 1)(α + n + 2) − 2λ̂1 − 2λ̂2(α + n − 1) < 0.

The next lemma gives conditions under which Ax2 + Bx + C = 0 has two, one
or zero solutions.

Lemma A.5. Let

(A.9) s(α, n) = 8
α + n

α + n − 1
.

Then

B2 − 4AC

⎧⎨
⎩

<
=
>

⎫⎬
⎭ 0 ⇐⇒ λ̂2

λ̂1

⎧⎨
⎩

<
=
>

⎫⎬
⎭ r(α, n)

where r(α, n) is the unique root > 1 of r2 + (2 − s(α, n))r + 1 = 0.

Proof. First note that

B2 − 4AC = (α + n − 1)2(λ̂1 + λ̂2)2(α + n)2 − 8(α + n)3(α + n − 1)λ̂1λ̂2

⎧⎨
⎩

<
=
>

⎫⎬
⎭ 0 ⇐⇒ (λ̂1 + λ̂2)2

λ̂1λ̂2

⎧⎨
⎩

<
=
>

⎫⎬
⎭ s(α, n).

Further, because s(α, n) > 8, r2 + (2 − s(α, n))r + 1 = 0 has exactly two roots,
r0 < r1, say, with r0 < 1 < r1.

In the next lemma, assuming B2 − 4AC > 0, the location of the roots of Ax2 +
Bx + C = 0 is investigated.
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Lemma A.6.
B2 − 4AC > 0 =⇒ λ̂1 < x1 < x0 < x2 < λ̂2,

where x0 maximizes Ax2 +Bx+C and x1 < x2 are the roots of Ax2 +Bx+C = 0.

Proof. First note that the lemmas A.3 and A.4 imply that x2 < λ̂2. Further, B >
−2Aλ̂1 is equivalent to B2 > −2ABλ̂1. So, in order to show that x0 > λ̂1, it is
sufficient to show that 4AC > −2ABλ̂1. But

4AC > −2ABλ̂1 ⇐⇒ −2C > Bλ̂1 ⇐⇒

(n + α − 1)(n + α)(λ̂1 + λ̂2) < 4(n + α − 1)(n + α)λ̂2.

Then using the fact that (n+α) < 2(n+α) and λ̂1 + λ̂2 < 2λ̂2 shows that x0 > λ̂1.
Finally, given that x0 > λ̂1, it follows from Lemma A.3 with i = 1 that x1 > λ̂1.

From the above lemmas we get

Lemma A.7. On (λ̂1, λ̂2)

1) when
λ̂2

λ̂1

≤ r(α, n)

d2U2

dU2
1

(x) ≤ 0;

2) when
λ̂2

λ̂1

> r(α, n)

d2U2

dU2
1

(x)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

< 0 when λ̂1 < x < x1

= 0 when λ̂1 = x1

> 0 when x1 < x < x2

= 0 when x = x2

< 0 when x2 < x < λ̂2.
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