
IMS Collections
Nonparametrics and Robustness in Modern Statistical Inference and Time Series
Analysis: A Festschrift in honor of Professor Jana Jurečková
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Nonparametric estimation of residual

quantiles in a conditional Koziol–Green

model with dependent censoring

Noël Veraverbeke

Hasselt University

Abstract: This paper discusses nonparametric estimation of quantiles of the
residual lifetime distribution. The underlying model is a generalized Koziol–
Green model for censored data, which accomodates both dependent censoring
and covariate information.

1. Introduction

Consider a fixed design regression model where for each design point (covariate)
x ∈ [0, 1] there is a nonnegative response variable Yx, called lifetime or failure time.
As in the case in many clinical or industrial trials, Yx is subject to random right
censoring by a nonnegative censoring variable Cx. The observed random variables
at the design point x are

Zx = min(Yx, Cx) and δx = I(Yx ≤ Cx).

Let us denote by Fx, Gx and Hx the distribution functions of Yx, Cx and Zx

respectively. The main goal is to estimate the distribution function Fx(t) = P (Yx ≤
t) (and functionals of it) from independent data (Z1, δ1), . . . , (Zn, δn) at fixed design
points 0 ≤ x1 ≤ . . . ≤ xn ≤ 1. Here Zi = min(Yi, Ci) and δi = I(Yi ≤ Ci). Note
that at the design points xi we write Yi, Ci, Zi, δi instead of Yxi

, Cxi
, Zxi

, δxi
.

The classical assumption of independence between Yx and Cx leads to the well
known product-limit estimator of Beran [1]), which is the extension of the estimator
of Kaplan and Meier [10] to the covariate case. However the assumption of indepen-
dence between lifetime and censoring time is not always satisfied in practice and we
should rather work with a more general assumption about the association between
Yx and Cx.

As in Zheng and Klein [18], Rivest and Wells [15] and Braekers and Veraverbeke
[16] we will work with an Archimedean copula model for Yx and Cx. See Nelsen
[12] for information on copulas. It means that, for each x ∈ [0, 1] we assume

P (Yx > t1, Cx > t2) = ϕ−1
x (ϕx(F̄x(t1)) + ϕx(Ḡx(t2)))(1.1)

for all t1, t2, where ϕx is a known generator function depending on x in a general
way, and F̄x = 1−Fx, Ḡx = 1−Gx. We recall that for each x, ϕx : [0, 1] → [0,+∞]
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is a continuous, convex, strictly decreasing function with ϕx(1) = 0.
In the random right censorship model there is an extensive literature on an im-
portant submodel initiated by Koziol and Green [11]. It is a submodel obtained by
imposing an extra assumption on the distribution functions Fx and Gx. In this way
it is a type of informative censoring. In the case of independence between Yx and
Cx, the Koziol–Green assumption is

Ḡx(t) = (F̄x(t))
βx(1.2)

for all t ≥ 0, where βx > 0 is some constant depending in a general way on x.
This extra assumption leads to an estimator for the survival function that is more
efficient than the Kaplan-Meier estimator. See Cheng and Lin [4] in the case without
covariates and Veraverbeke and Cadarso Suarez [17] in the regression case.
In order to generalize (1.2) to the dependent censoring case, we recall that for
continuous Fx, (1.2) is equivalent to

Zx and δx are independent.(1.3)

Translating property (1.3) into the model (1.1) gives that it is equivalent to the
assumption

ϕx(Ḡx(t)) = βxϕx(F̄x(t))(1.4)

for all t ≥ 0 and for some βx > 0.

Let us consider condition (1.4) for some examples of Archimedean copula mod-
els. For the independence case (ϕx(t) = − log t), (1.4) coincides with (1.2). For
the Gumbel copula (ϕx(t) = (− log t)α, α ≥ 1), condition (1.4) becomes Ḡx(t) =

(F̄x(t))
β1/α
x . For the Clayton copula (ϕx(t) = t−α − 1, α > 0), (1.4) becomes

Ḡx(t) = (1 + βx(Fx(t)
−α − 1))−1/α. This becomes (1.2) as α → 0.

In this paper we focus on nonparametric estimation of the median (or any other
quantile) of the conditional residual lifetime in the above model. The conditional
residual lifetime distribution is defined as Fx(y | t) = P (Yx − t ≤ y | Yx > t), i. e.
the distribution of the residual lifetime, conditional on survival upon a given time t
and at a given value of the covariate x. For any distribution function F , we denote
by TF the right endpoint of the support of F . Then, for 0 < y < TFx

, we have that

Fx(y | t) = Fx(t+ y)− Fx(t)

1− Fx(t)
.

We define, for 0 < p < 1, the p-th quantile of Fx(y | t):

Qx(t) = F−1
x (p | t) = inf{y | Fx(y | t) ≥ p}

= −t+ F−1
x (p+ (1− p)Fx(t))

(1.5)

where for any 0 < q < 1 we write F−1
x (q) = inf{y | Fx(y) ≥ q} for the q-th quantile

of Fx.
The paper is organized as follows. In Section 2 we discuss estimation of Fx and
F−1
x . We deal with residual quantiles in Sections 3 and 4. Some concluding remarks

are in Section 5.
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2. Estimation of the conditional distribution function and quantile
function

Estimation of Qx(t) on the basis of observations (Zi, δi), i = 1, . . . , n, will be done
by replacing Fx and F−1

x in (1.5) by corresponding empirical versions Fxh and F−1
xh

where Fxh is the estimator studied in Braekers and Veraverbeke [2] and Gaddah
and Braekers [8]. The derivation of this estimator goes as follows. From (1.1) we
have that ϕx(H̄x(t)) = ϕx(F̄x(t)) + ϕx(Ḡx(t)). Combining this with assumption
(1.4) gives ϕx(H̄x(t)) = (1 + βx)ϕx(Ḡx(t)), or with γx = 1

1+βx
= P (δx = 1):

F̄x(t) = ϕ−1
x (γx(ϕx(H̄x(t))).(2.1)

In order to estimate F̄x(t) at some fixed x ∈]0, 1[, we will use the idea that obser-
vations (Zi, δi) with xi close to x give the largest contribution to the estimator.
Therefore we will smooth in the neighborhood of x by using Gasser-Müller type
weights defined by

wni(x;hn) =
1

cn(x;hn)

xi∫
xi−1

1

hn
K

(
x− z

hn

)
dz (i = 1, . . . , n)

where cn(x;hn) =
∫ xn

0
1
hn

K
(

x−z
hn

)
dz, x0 = 0, K is a known probability density

function and h = {hn} is a positive bandwidth sequence, tending to 0 as n → ∞.
The estimator Fxh(t) of Fx(t) is now obtained by replacing γx and Hx(t) in (2.1)
by the following empirical versions

γxh =
n∑

i=1

wni(x;hn)δi

Hxh(t) =
n∑

i=1

wni(x;hn)I(Zi ≤ t).

Hence the estimator is given by

F̄xh(t) = ϕ−1
x (γxhϕx(H̄xh(t))).(2.2)

To formulate some results on this estimator we need to introduce some further
notations and some regularity conditions.

First some notations: for the design points x1, . . . , xn we write Δn = min1≤i≤n(xi−
xi−1) and Δ̄n = max1≤i≤n(xi − xi−1) and for the kernel K we write ‖K‖22 =∫∞
−∞ K2(u) du, μK

1 =
∫∞
−∞ u K(u) du, μK

2 =
∫∞
−∞ u2K(u) du.

On the design and on the kernel, we will assume the following regularity condi-
tions:

(C1) xn → 1, Δ̄n = O(n−1), Δ̄n −Δn = o(n−1)

(C2) K is a probability density function with finite support [−M,M ] for some
M > 0, μK

1 = 0, and K is Lipschitz of order 1.

The results also require typical smoothness conditions on the elements of the model.
For a fixed 0 < T < TFx

,

(C3) Ḟx(t) =
∂
∂xFx(t), F̈x(t) =

∂2

∂x2Fx(t) exist and are continuous in (x, t) ∈ [0, 1]×
[0, T ]

(C4) β̇x = ∂
∂xβx, β̈x = ∂2

∂x2 βx exist and are continuous in x ∈ [0, 1].
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The generator ϕx of the Archimedean copula has to satisfy

(C5) ϕ′
x(v) = ∂

∂vϕx(v), ϕ′′
x(v) = ∂2

∂v2ϕx(v) are Lipschitz continuous in the x-

direction, ϕ′′′
x (v) = ∂3

∂v3ϕx(v) ≤ 0 exists and is continuous in (x, v) ∈ [0, 1]×]0, 1].

Below we will use asymptotic representations for the estimator Fxh and the corre-
sponding quantile estimator F−1

xh . The representation for Fxh in Lemma 1 is taken
from Theorem 2 in Braekers and Veraverbeke [3]. The representation for F−1

xh (pn)
in Lemma 2 is formulated for random pn, tending to a fixed p as n → ∞ at a certain
rate. The proof of Lemma 2 is not given since it parallels that of a similar result in
Gijbels and Veraverbeke ([9], Theorem 2.1).

Lemma 1. Assume (C1) – (C5) in [0, T ] with T < TFx
, hn → 0, logn

nhn
→ 0,

nh5
n

logn = O(1). Then, for t < TFx
,

Fxh(t) = Fx(t) +
n∑

i=1

wni(x;hn)gx(Zi, δi, t) + rn(x, t)

where

gx(Zi, δi, t) =
−ϕx(H̄x(t))

ϕ′
x(F̄x(t))

{I(δi = 1)− δx}

+ γx
ϕ′
x(H̄x(t))

ϕ′
x(F̄x(t))

{I(Zi ≤ t)−Hx(t)}

and, as n → ∞,

sup
0≤t≤T

|rn(x, t)| = O((nhn)
−1 log n) a.s.

Lemma 2. Assume (C1) – (C5) in [0, T ] with T < TFx
, hn → 0, logn

nhn
= o(1),

nh5
n

logn = O(1). Assume that F−1
x (p) < T and that fx(F

−1
x (p)) > 0, where fx = F ′

x.

If {pn} is a sequence of random variables (0 < pn < 1) with pn−p = OP ((nhn)
−1/2),

then as n → ∞,

F−1
xh (pn) = F−1

x (p) +
1

fx(F
−1
x (p))

(pn − Fxh(F
−1
x (p))) + oP ((nhn)

−1/2).

3. Estimation of quantiles of the conditional residual lifetime

From (1.5) it follows that the obvious estimator for Qx(t) is given by

Qxh(t) = −t+ F−1
xh (p+ (1− p)Fxh(t))(3.1)

where Fxh is the estimator in (2.2).
Denote qx = p+ (1− p)Fx(t) and qxh = p+ (1− p)Fxh(t).
We have the following asymptotic normality result.
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Theorem 1. Assume (C1) – (C5) in [0, T ] with T <TFx
. Assume that F−1

x (qx)<T
and that fx(F

−1
x (qx)) > 0.

(a) If nh5
n → 0 and (logn)2/(nhn) → 0:

(nhn)
1/2(Qxh(t)−Qx(t)) → N(0;σ2

x(t))

(b) If hn = Cn−1/5 for some C > 0:

(nhn)
1/2(Qxh(t)−Qx(t)) → N(βx(t);σ

2
x(t)).

Here

σ2
x(t) =

‖K‖22
f2
x(F

−1
x (qx))

{
1− γx
γx

[
(1− p)

ϕx(H̄x(t))

ϕ′
x(F̄x(t))

− ϕx(H̄x(F
−1
x (qx))

ϕ′
x(F̄x(F

−1
x (qx))

]2

+ γ2
x

[
(1− p)2

ϕ
′2
x (H̄x(t))

ϕ′2
x (F̄x(t))

Hx(t)(1−Hx(t))

+
ϕ

′2
x (H̄x(F

−1
x (qx))

ϕ′2
x (F̄x(F

−1
x (qx))

Hx(F
−1
x (qx))(1−Hx(F

−1
x (qx)))

−2(1− p)
ϕ′
x(H̄x(t))

ϕ′
x(F̄x(t))

ϕ′
x(H̄x(F

−1
x (qx))

ϕ′
x(F̄x(F

−1
x (qx))

Hx(t)(1−Hx(F
−1
x (qx))

]}

βx(t) = (1− p)bx(t) + bx(F
−1
x (qx))

with

bx(t) =
1

2
C5/2μK

2

{−ϕx(H̄x(t))

ϕ′
x(F̄x(t))

γ̈x +
γxϕ

′
x(H̄x(t))

ϕ′
x(F̄x(t))

Ḧx(t)

}
.(3.2)

Proof. Using Lemma 2 first and then Lemma 1, we have that

Qxh(t)−Qx(t) =
1

fx(F
−1
xh

(qx))
(qxh − Fxh(F

−1
x (qx))) + oP ((nhn)

−1/2)

= 1
fx(F

−1
x (qx))

[qxh − qx − (Fxh(F
−1
x (qx))− Fx(F

−1
x (qx)))] + oP ((nhn)

−1/2)

= 1
fx(F

−1
x (qx))

n∑
i=1

wni(x;hn)[(1− p)gx(Zi, δi, t)− gx(Zi, δi, F
−1
x (qx))]

+oP ((nhn)
−1/2).

From this asymptotic representation it is now standard to derive the asymptotic
normality results. It also uses the expressions for covariance and bias functions as
in Gaddah and Braekers [8].

Note. In the case of independent censoring we have that ϕx(t) = − log t and the
expression for the asymptotic variance simplifies to

‖K‖2
2

f2
x(F

−1
x (qx))

{
1−γx

γx
(1− p)2 ln2(1− p)F̄ 2

x (t)

+ γ2
x(1− p)2F̄

2− 1
γx

x (t)
[
Hx(F

−1
x (qx))

(1−p)1/γx
−Hx(t)

]}
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If there are no covariates this leads to a (corrected) formula in Csörgő [6]. And
if there is no censoring (γx = 1), we also recognize the formula of Csörgő and
Csörgő [?]:

p(1− p)F̄ (t)

f2(p+ (1− p)F̄ (t))
.

4. Estimation of quantiles of the duration of old age

In many situations it is necessary to replace the t in Qx(t) by some estimator t̂. The
variable t is then considered as an unknown parameter, usually the starting point
of “old age”. For example, t could be defined through the proportion of retired
people in the population under study, that is t = F−1

x (p0) for some known p0. The
unknown t could then be estimated by t̂ = F−1

xh (p0).
Let t̂ be some general estimator for t and consider the estimator (3.1) with t replaced
by t̂:

Qxh(t̂) = −t̂+ F−1
xh (p+ (1− p)Fxh(t̂)).

The next theorem gives an asymptotic representation for Qxh(t̂)−Qx(t). It requires
a stronger form of condition (C3):

(C3’) Ḟx(t), F̈x(t), F”x(t) =
∂2

∂t2Fx(t), Ḟ
′
x(t) =

∂2

∂x∂tFx(t) exist and are continuous
in (x, t) ∈ [0, 1]× [0, T ].

Theorem 2. Assume (C1) (C2) (C3’) (C4) (C5) in [0, T ] with T < TFx
, F−1

x (qx) < T ,

fx(F
−1
x (qx)) > 0. Assume hn → 0, (log n)2/(nhn) → 0,

nh5
n

logn = O(1).

Also assume that t̂− t = OP ((nhn)
−1/2). Then, as n → ∞,

Qxh(t̂)−Qx(t) = (−1 + (1− p) fx(t)

fx(F
−1
x (qx))

)(t̂− t)

+ 1
fx(F

−1
x (qx))

n∑
i=1

wni(x;hn){(1− p)gx(Zi, δi, t)− gx(Zi, δi, F
−1
x (qx))}

+oP ((nhn)
−1/2).

Proof. Denote q̂xh = p+ (1− p)Fxh(t̂). Then q̂xh − qx = (1− p)(Fxh(t̂)− Fx(t)]
and Qxh(t̂)−Qx(t) = −(t̂− t) + (F−1

xh (q̂xh)− F−1
x (qx)).

Now write

Fxh(t̂)− Fxh(t) = {[Fxh(t̂)− Fxh(t)]− [Fx(t̂)− Fx(t)]}
+{Fxh(t)− Fx(t)}+ {Fx(t̂)− Fx(t)}.(4.1)

To the first term on the right hand side we can apply a modulus of continuity result
analogous to the one in Veraverbeke [16]. The proof in the present situation goes
along the same lines and therefore it is not given here. It requires condition (C3’).
To the second term in the right hand side of (4.1) we apply our Lemma 1 and to
the third term we apply a first order Taylor expansion. This gives that

q̂xh − qx = (1− p){fx(t)(t̂− t) +

n∑
i=1

wni(x;hn)gx(Zi, δi, t)}+ oP ((nhn)
−1/2).

This, together with Lemma 2, leads to the asymptotic representation for Qxh(t̂)−
Qx(t).
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Example. If t = F−1
x (p0) and t̂ = F−1

xh (p0) for some known p0, we can apply
Lemma 2 to t̂− t and from Theorem 2 we obtain that

Qxh(t̂)−Qx(t) =

n∑
i=1

wni(x;hn)

{
gx(Zi, δi, F

−1
x (p0))

fx(F
−1
x (p0))

− gx(Zi, δi, F
−1
x (qx))

fx(F
−1
x (qx))

}

+ oP ((nhn)
−1/2).

Bias and variance of the main term can be calculated and we obtain by standard
arguments the following result.

Corollary. Let t = F−1
x (p0), t̂ = F−1

xh (p0), q = p + (1 − p)p0. Assume (C1) (C2)
(C3’) (C4) (C5) in [0, T ] with T < TFx

, hn → 0, F−1
x (q) < T , fx(F

−1
x (q)) > 0,

fx(F
−1
x (p0)) > 0.

(a) If nh5
n → 0 and (logn)2/(nhn) → 0:

(nhn)
1/2(Qxh(t̂)−Qx(t))

d→ N(0; σ̃2
x(t))

(b) If hn = Cn−1/5 for some C > 0:

(nhn)
1/2(Qxh(t̂)−Qx(t))

d→ N(β̃x(t); σ̃
2
x(t))

Here

σ̃2
x(t) = ‖K‖22

{
1−γx

γ2
x

[
(1−p) ln(1−p0)

fx(F
−1
x (p0))

− 1−p)(1−p0) ln((1−p)(1−p0))

fx(F
−1
x (q))

]2

+γ2
x(1− p0)

2− 1
γx

[
Hx(F

−1
x (p0))

f2
x(F

−1
x (p0))

+
(1−p)

2− 1
γx Hx(F

−1
x (q))

f2
x(F

−1
x (q))

− 2(1−p)Hx(F
−1
x (p0))

fx(F
−1
x (p0))fx(F

−1
x (q))

]}

β̃x(t) =
bx(F

−1
x (p0))

fx(F
−1
x (p0))

− bx(F
−1
x (q))

fx(F
−1
x (q))

, with bx(t) as in (3.2).

5. Some concluding remarks

We developed asymptotic theory for nonparametric estimation of residual quantiles
of the lifetime distribution in the Koziol–Green model of right random censorship.
The possible dependence between responses and censoring times is modeled by a
copula. There are several remarks in order before this can be applied to real data
examples.

(1) The model assumes that the Archimedean copula is known and also that the
generator depends on the covariate. We remark that, due to the censoring,
it is not possible to estimate the generator ϕx using only the data (Zi, δi),
i = 1, . . . , n. As can be seen in Braekers and Veraverbeke [2], [3] and Gaddah
and Braekers [8], a good suggestion is to choose a reasonable ϕx by looking
at the graph of a dependence measure for Yx and Cx. One could for example
take Kendall’s tau (τ(x)), which is related to the generator via the simple
formula τ(x) = 1 + 4

∫
(ϕx(t)/ϕ

′
x(t)) dt.
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(2) The expressions for asymptotic bias and variance are explicit but require
a lot of further estimation of unknown quantities. In order to avoid this,
we suggest the following bootstrap procedure. For i = 1, . . . , n obtain Z∗

i

from Hxig(t) and independently, δ∗i from a Bernoulli distribution with pa-
rameter γxig, where Hxig(t) and γxig are defined as in Section 2, but with a
bandwidth g = {gn} that is typically asymptotically larger than h = {hn},
i. e. gn/hn → ∞ as n → ∞. Next calculate γ∗

xhg =
∑n

i=1 wni(x;hn)δ
∗
i and

H∗
xhg(t) =

∑n
i=1 wni(x;hn)I(Z

∗
i ≤ t) and use F

∗
xhg(t) = ϕ−1

x (γ∗
xhgϕx(H

∗
xhg(t))

as a bootstrap version of F xh(t).

(3) Also the choice of the bandwidth is an important practical issue. For this, we
propose to use the above bootstrap scheme and to minimize asymptotic mean
squared error expression over a large number of bootstrap samples.

(4) Alternative approaches to the copula model could be explored. For example
one could assume conditional independence of Y and C, given that the (ran-
dom) covariate X equals x. Residual quantiles could be defined and studied
starting from Neocleous and Portnoy [13] and El Ghouch and Van Keilegom
[5]. These authors developed non- and semiparametric estimators based on
the nonparametric censored regression quantiles of Portnoy [14].
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