
IMS Collections
Nonparametrics and Robustness in Modern Statistical Inference and Time Series
Analysis: A Festschrift in honor of Professor Jana Jurečková
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On a paradoxical property of the

Kolmogorov–Smirnov two-sample test
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Abstract: The two-sample Kolmogorov–Smirnov test can lose power as the
size of one sample grows while the size of the other sample remains constant. In
this case, a paradoxical situation takes place: the use of additional observations
weakens the ability of the test to reject the null hypothesis when it is false.

1. Biasedness of the Kolmogorov goodness-of-fit test

We start with partially known results on biasedness of the Kolmogorov goodness-
of-fit test (see [1]).

Let us recall some definitions. Suppose that X1, . . . , Xn are independent and
identically distributed (i.i.d.) random variables (observations) with (unknown) dis-
tribution function (d.f.) F . Based on the observations, one needs to test the hy-
pothesis

H0 : F = F0,

where F0 is a fixed d.f.

Definition 1.1. For a specific alternative hypothesis, a test is said to be unbiased
if the probability of rejecting the null hypothesis
(a) is greater than or equal to the significance level when the alternative is true,
and
(b) is less than or equal to the significance level when the null hypothesis is true
(i. e. the test is of the α level).
A test is said to be biased for an alternative hypothesis, if (a) is not true while (b)
remains true (i. e. for this alternative test remains to be of level α).

Below we will consider a test with the following properties:

1. For a distance d in the space of d.f.’s we reject the null hypothesis H0 if

d(Gn, F0) > δα,

where Gn is a sample d.f. of X1, . . . , Xn and δα satisfies the inequality

(1.1) IP{d(Gn, F0) > δα} ≤ α.
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2. The test is distribution free, i. e., the probability

IPF {d(Gn, F ) > δα}

does not depend on the continuous d.f. F .

We call such tests distance-based.
Denote by B(F, δ) an closed ball of radius δ > 0 centered at F in the metric

space of all d.f.’s with the distance d.
Let F0 be a continuous d.f. and let δα be defined to satisfy (1.1).

Theorem 1.1. Suppose that for some α > 0 there exists a continuous d.f. Fa such
that

(1.2) B(Fa, δα) ⊂ B(F0, δα),

and

(1.3) IPFa
{Gn ∈ B(F0, δα) \B(Fa, δα)} > 0.

Then the distance-based test is biased for the alternative Fa.

Proof. Let X1, . . . , Xn be a sample from Fa and Gn be the corresponding sample
d.f. Then

IPFa
{Gn ∈ B(Fa, δα)} ≥ 1− α.

In view of (1.2) and (1.3) we have

IPFa
{Gn ∈ B(F0, δα)} > 1− α,

that is

IPFa
{d(Gn, F0) > δα} < α.

Note that Theorem 1.1 is not a consequence of the result [2], because the al-
ternative distribution in [2] is an n-dimensional distribution, and therefore, the
observations X1, . . . , Xn are not i.i.d. random variables.

Consider now the Kolmogorov goodness-of-fit test. Clearly, it is a distance-based
test for the uniform distance

(1.4) d(F,G) = sup
x

|F (x)−G(x)|.

Let us show that there are F0 and Fa such that (1.2) holds. Without loss of gener-
ality we may choose

F0(x) =

⎧⎪⎨
⎪⎩
0, x < 0,

x, 0 ≤ x < 1,

1, x ≥ 1.

For a fixed n, we define δα so that (1.1) is true.
The ball B(F0, δα) with δα = 0.2 is shown in Figure 1. Its center – the function

F0 – is shown in black, while the lower and upper “boundaries” of the ball are
shown in gray.
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Fig 1. The ball B(F0, δα).
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Fig 2. The ball B(Fa, δα).

Consider now the following d.f.:

Fa(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, x < δα/2,

2x− δα, δα/2 ≤ x < δα,

x, δα ≤ x < 1− δα,

2x− (1− δα), 1− δα ≤ x < 1− δα/2,

1, x ≥ 1− δα/2.

Comparing Figures 1 and 2, we see that B(Fa, δα) ⊂ B(F0, δα), and therefore
Kolmogorov test is biased for alternative Fa.

2. Biasedness of the Kolmogorov–Smirnov two-sample test for
substantially different sizes of the samples and the paradox

Let us turn to two-sample problem. Suppose that we have two samples X1, . . . , Xm

and Y1, . . . , Yn, where all observations are independent. We also suppose that all
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Xi’s have the same d.f. F and all Yj ’s – the same d.f. G. We suppose that both F
and G are continuous functions. The null hypothesis is now H0 : F = G. It is clear
that, without loss of generality, we may assume

(2.5) G(x) =

⎧⎪⎨
⎪⎩
0, x < 0,

x, 0 ≤ x < 1,

1, x ≥ 1.

In addition, we suppose that

(2.6) suppF ⊂ [0, 1] and F is absolutely continuous.

From the results of Section 1 we see that, for an arbitrary fixed n and suffi-
ciently large nm, the two-sample Kolmogorov–Smirnov test is biased (for alterna-
tive F = Fa �= G given in Section 1), because for m → ∞ we obtain in the limit
the Kolmogorov goodness-of-fit test.

In Section 3 we show that in the case where m = n the Kolmogorov–Smirnov
test is unbiased, at least for small values of α for any alternative (2.6). However,
for the same values of α and fixed n, the test will no longer be unbiased if m is
large enough. In other words, the power of the test for some alternatives will be
smaller for a large m 	 n than for m = n. This means, paradoxically, that using
the Kolmogorov–Smirnov test one cannot benefit from the additional information
contained in a much larger sample: vice versa, instead of gaining power, the test loses
it. The situation here is in some sense similar to that in statistical estimation theory
in the situation where non-convex loss functions are used (see, for example, [3]).

3. On the unbiasedness of two-sample Kolmogorov–Smirnov test for
samples of the same size

Here we will show that in the case where m = n the Kolmogorov–Smirnov test is
unbiased, at least for small values of α, for any alternative satisfying (2.6).

Theorem 3.1. For m = n there exists α ∈ (0, 1) such that the Kolmogorov–
Smirnov test is unbiased for any alternative (2.6).

Proof. Recall that the Kolmogorov-Smirnov statistic is of the form

Dn = sup
x

|Fn(x)−Gn(x)|,

where Fn and Gn are sample d.f.’s based on the samples Xj and Yj (j = 1, . . . , n),
respectively. Clearly, under the hypothesis H0 the distribution of the Kolmogorov–
Smirnov statistic is discrete and therefore for some α ∈ (0, 1) the event Dn > δα is
equivalent to the event Dn = 1. The latter event takes place if and only if
(3.7)

max(X1, . . . , Xn) < min(Y1, . . . , Yn) or max(Y1, . . . , Yn) < min(X1, . . . , Xn)

The probability of the event (3.7) equals

(3.8)

∫ 1

0

(
Fn(x)(1− x)n−1 + (1− F (x))nxn−1

)
dx.

In (3.8) we suppose that Y1 has d.f. (2.5) and X1 has d.f. F (x).
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It is easy to see that the function yn(1 − x)n−1 + (1 − y)nxn−1, for any x (0 <
x < 1) has a minimum in y (0 < y < 1) at the point y = x. Therefore, the integral
(3.8) attains its minimum in F for F (x) ≡ x. This minimum equals

∫ 1

0

zn−1(1− z)n−1 dz = n
Γ2(n)

Γ(2n)
,

what can be easily seen from combinatorial considerations, too. The integral rep-
resents the probability of rejecting the alternative, and it is minimal when F = G,
i. e., when the null hypothesis is true.

Note that in the case m = n = 2 Theorem 3.1 establishes the unbiasedness of the
Kolmogorov–Smirnov test for any alternative satisfying(2.6), because other values
of δα lead to a trivial result. We believe that in the case m = n the test is unbiased
for any α and any continuous alternative.

4. Concluding remarks

It has been shown that for the two-sample Kolmogorov–Smirnov test a paradoxical
situation takes place: one cannot use additional information contained in a very
large sample if the second sample is relatively small.

This paradoxical situation takes place not only for the Kolmogorov–Smirnov test.
A similar paradox takes place, e. g., for the Cramér–Von Mises two-sample test (see
[4], where the biasedness of the Cramér–Von Mises goodness-of-fit test is proved).
We believe that a new approach is needed for handling the case of substantially
different sample sizes.

Acknowledgement

The second named author was supported by the Grant MSM 002160839 of the
Ministry of Higher Education of Czech Republic.

References

[1] Massey, F.J., Jr (1950). A Note on the Power of a Non-Parametric Test.
Annals of Math. Statist. 21 440–443.

[2] Thompson, Roy O.R.Y (1979). Bias and Monotonicity of Goodness-of-Fit
Tests. Journal of Amer. Statist. Association 74 875–876.

[3] Klebanov, L., Rachev, S., Fabozzi, F. (2009). Robust and Non-Robust
models in Statistics, Nova, New York.

[4] Thompson, Roy O.R.Y (1966) Bias of the One-Sample Cramér-Von Mises
Test. Journal of Amer. Statist. Association 61 246-247.


	Biasedness of the Kolmogorov goodness-of-fit test
	Biasedness of the Kolmogorov–Smirnov two-sample test for substantially different sizes of the samples and the paradox
	On the unbiasedness of two-sample Kolmogorov–Smirnov test for samples of the same size
	Concluding remarks
	Acknowledgement
	References

