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Local polynomial regression and variable

selection

Hugh Miller1 and Peter Hall1

The University of Melbourne

Abstract: We propose a method for incorporating variable selection into lo-
cal polynomial regression. This can improve the accuracy of the regression
by extending the bandwidth in directions corresponding to those variables
judged to be unimportant. It also increases our understanding of the dataset
by highlighting areas where these variables are redundant. The approach has
the potential to effect complete variable removal as well as perform partial
removal when a variable redundancy applies only to particular regions of the
data. We define a nonparametric oracle property and show that this is more
than satisfied by our approach under asymptotic analysis. The usefulness of the
method is demonstrated through simulated and real data numerical examples.

1. Introduction

The classical regression problem is concerned with predicting a noisy continuous re-
sponse using a d-dimensional predictor vector with support on some d-dimensional
subspace. This functional relationship is often taken to be smooth, and methods
for estimating it range from parametric models, which specify the form of the rela-
tionship between predictors and response, through to nonparametric models, which
have fewer prior assumptions about the shape of the fit. An important consider-
ation for fitting such a regression model is whether all d predictors are in fact
necessary. If a particular predictor has no relationship to the response, the model
can be made both simpler and more accurate by removing it. In recent years there
has been strong interest in techniques that automatically generate such “sparse”
models. Most attention has been given to parametric forms, and in particular the
linear model, where the response is assumed to vary linearly with the predictors.
There has also been some investigation into variable selection for nonlinear models,
notably through the use of smoothing splines and local regression.

One common feature of the existing sparse methods is that the variable selection
is “global” in nature, attempting to universally include or exclude a predictor. Such
an approach does not naturally reconcile well with some nonparametric techniques,
such as local polynomial regression, which focus on a “local” subset of the data to
estimate the response. In this local context it would be more helpful to understand
local variable influence, since predictors that are irrelevant in some regions may
in fact be important elsewhere in the subspace. Just as in the global setting, such
information would allow us to improve the accuracy and parsimony of a model, but
at a local level.
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However, this approach to variable selection can be problematic. Most notably,
variable significance affects the definition of “local”. To illustrate concretely, sup-
pose that two data points were close in every dimension except one. In typical local
regression these points would not be considered close, and so the response at one
point would not impact the other. If, however, we establish that the one predictor
they differ by is not influential over a range that includes both these points, then
they should actually be treated as neighbouring, and be treated as such in the
model. Any methodology seeking to incorporate local variable influence needs to
accommodate such potential situations.

Understanding local variable significance can also give additional insight into a
dataset. If a variable is not important in certain regions of the support, knowledge of
this allows us to discount it in certain circumstances, simplifying our understanding
of the problem. For example, if none of the variables are relevant in a region, we
may treat the response as locally constant and so know that we can ignore predictor
effects when an observation lies in this region.

A final consideration is theoretical performance. In particular we shall present
an approach that is “oracle”; that is, its performance is comparable to that of a
particularly well-informed statistician, who has been provided in advance with the
correct variables. It is interesting to note that variable interactions often cause
sparse parametric approaches to fail to be oracle, but in the local nonparametric
setting this is not an issue, because such interactions vanish as the neighbourhood
of consideration shrinks.

In this paper we propose a flexible and adaptive approach to local variable se-
lection using local polynomial regression. The key technique is careful adjustment
of the local regression bandwidths to allow for variable redundancy. The method
has been named LABAVS, standing for “locally adaptive bandwidth and variable
selection”. Section 2 will introduce the LABAVS algorithm, including a motivating
example and possible variations. Section 3 deals with theoretical properties and in
particular presents a result showing that the performance of LABAVS is better than
oracle when the dimension remains fixed. Section 4 presents numerical results for
both real and simulated data, showing that the algorithm can improve prediction
accuracy and is also a useful tool in arriving at an intuitive understanding of the
data. Proofs are available in a longer version of this paper [13].

LABAVS is perhaps best viewed as an improvement to local polynomial regres-
sion, and will retain some of the advantages and disadvantages associated with
this approach. In particular, it still suffers the “curse of dimensionality,” in that it
struggles to detect local patterns when the dimension of genuine variables increases
beyond a few. It is not the first attempt at incorporating variable selection into
local polynomial regression; the papers by Lafferty and Wasserman [7] and Bertin
and Lecué [1] also do this. We compare our approach to these in some detail in Sec-
tion 2.6. LABAVS can also be compared to other nonparametric techniques in use
for low to moderate dimensions. These include generalised additive models, MARS
and tree based methods (see [6]).

The earliest work on local polynomial regression dates back to that of Nadaraya
[14] and Watson [21]. General references on the subject include [19, 16] and [9].
An adaptive approach to bandwidth selection may be found in [4], although this is
not in the context of variable selection. Tibshirani [17] studies the LASSO, one of
the most popular sparse solutions for the linear model; more recent related work
on the linear model includes that of Candes and Tao [3] and Bickel et al. [2]. Zou
[24] created the adaptive version of the LASSO and proved oracle performance for
it. Lin and Zhang [8] and Yuan and Lin [22] have investigated sparse solutions to
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smoothing spline models. The work of Tropp [18], Zhao and Yu [23], Meinshausen et
al. [12], Meinshausen and Yu [11], and Wasserman and Roeder [20] is also relevant
here.

The LABAVS algorithm also bears some similarity to the approach adopted by
Hall et al. [5]. There the aim was to estimate the conditional density of a response
using the predictors. Cross-validation was employed and the bandwidths in irrele-
vant dimensions diverged, thereby greatly downweighting those components. In the
present paper the focus is more explicitly on variable selection, as well as attempting
to capture local variable dependencies.

Further problems worthy of investigation include the use of local variable se-
lection as a secondary step, following global selection; developing ways of dealing
with heteroscedastic variability; and exploring the case where design points are
deterministic.

2. Model and methodology

2.1. Model and definitions

Suppose that we have a continuous response Yi and a d-dimensional random pre-
dictor vector Xi = (X(1)

i , . . . , X
(d)
i ) which has support on some subspace C ⊂ Rd.

Further, assume that the observation pairs (Yi, Xi) are independent and identically
distributed for i = 1, . . . , n, and that Xi has density function f . The response is
related to the predictors through a function g,

(2.1) Yi = g(Xi) + εi,

with the error εi having zero mean and fixed variance. Smoothness conditions for
f and g will be discussed in the theory section.

Local polynomial regression makes use of a kernel and bandwidth to assign
increased weight to neighbouring observations compared to those further away,
which will often have zero weight. We take K(u) =

∏
1≤j≤d K∗(u(j)) to be the

d-dimensional rectangular kernel formed from a one dimensional kernel K∗ such as
the tricubic kernel,

K∗(u(j)) = (35/32)(1 − x2)3I(|x| < 1).

Assume K∗ is symmetric with support on [−1, 1]. For a d × d bandwidth matrix H
the kernel with bandwidth H, denoted KH , is

(2.2) KH(u) =
1

|H|1/2
K(H−1/2u).

We assume that the bandwidth matrices are diagonal, H = diag(h2
1, . . . , h

2
d), with

each hj > 0, and write H(x) when H varies as a function of x. Asymmetric band-
widths can be defined as having both a lower and an upper (diagonal) bandwidth
matrix, HL and HU respectively, for a given estimation point x, rather than a
single bandwidth H for all x. The kernel weight of an observation Xi at estimation
point x with asymmetrical bandwidth matrices HL(x) and HU (x), is

KHU (x),HL(x)(Xi − x) =
∏

j : X
(j)
i

<x(j)

1
hL

j (x)
K∗

(
X

(j)
i − x(j)

hL
j (x)

)
(2.3)

×
∏

j : X
(j)
i

≥x(j)

1
hU
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K∗

(
X

(j)
i − x(j)

hU
j (x)

)
.
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This amounts to having (possibly) different window sizes above and below x in each
direction. Although such unbalanced bandwidths would often lead to undesirable
bias properties in local regression, here they will be used principally to extend
bandwidths in dimensions considered redundant, so this issue is not a concern.

We also allow the possibility of infinite bandwidths hj = ∞. In calculating the
kernel in (2.2) when hj is infinite, proceed as if the jth dimension did not exist
(or equivalently, as if the jth factor in a rectangular kernel product is always equal
to 1). If all bandwidths are infinite, consider the kernel weight to be 1 everywhere.
Although the kernel and bandwidth conditions above have been defined fairly nar-
rowly to promote simplicity in exposition, many of these assumptions are easily
generalised.

Local polynomial regression estimates of the response at point x, ĝ(x), are found
by fitting a polynomial q to the observed data, using the kernel and bandwidth
to weight observations. This is usually done by minimising the weighted sum of
squares,

(2.4)
n∑

i=1

{Yi − q(Xi − x)}2KH(Xi − x).

Once the minimisation has been performed, q(0) becomes the point estimate for
g(x). The polynomial is of some fixed degree p, with larger values of p generally
decreasing bias at the cost of increased variance. Of particular interest in the the-
oretical section will be the local linear fit, which minimises

(2.5)
n∑

i=1

⎡⎢⎣
⎧⎨⎩Yi − γ0 −

d∑
j=1

(X(j)
i − x(j))γj

⎫⎬⎭
2

KH(Xi − x)

⎤⎥⎦ ,

over γ0 and γ = (γ1, . . . , γd).

2.2. The LABAVS algorithm

Below is the LABAVS algorithm that will perform local variable selection and
vary the bandwidths accordingly. The choice of H in the first step can be local
or global and should be selected as for a traditional polynomial regression, using
cross-validation, a plug-in estimator or some other standard technique. Methods
for assessing variable significance in Step 2, and the degree of shrinkage needed in
Step 4, are discussed below.

LABAVS algorithm

1. Find a starting d × d bandwidth H = diag(h2, . . . , h2).
2. For each point x of a representative grid in the data support, perform local

variable selection to determine disjoint index sets Â+(x), Â −(x), with Â+(x)∪
Â−(x) = {1, . . . , d}, for variables that are considered relevant and redundant
respectively.

3. For any given x, derive new local bandwidth matrices HL(x) and HU (x) by
extending the bandwidth in each dimension indexed in Â −(x). The resulting
space given nonzero weight by the kernel KHL(x),HU (x)(u − x) is the rectan-
gle of maximal area with all grid points x0 inside the rectangle satisfying
Â+(x0) ⊂ Â+(x). Here Â+(x) is calculated explicitly as in Step 2, or taken
as the set corresponding the closest grid point to x.
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4. Shrink the bandwidth slightly for those variables in Â+(x) according to the
amount that bandwidths have increased in the other variables. See Section 2.4
for details.

5. Compute the local polynomial estimator at x, excluding variables in Â −(x)
and using adjusted asymmetrical bandwidths HL(x) and HU (x). The expres-
sion to be minimised is

n∑
i=1

{Yi − q(Xi − x)}2
KHL(x),HU (x)(Xi − x),

where the minimisation runs over all polynomials q of appropriate degree.
The value of q(0) in the minimisation is the final local linear estimator.

We refer to a rectangle in Step 3 of the algorithm since we are using a product
kernel bandwidth, which has nonzero support on a rectangle. The key feature of the
algorithm is that variable selection directly affects the bandwidth, increasing it in
the direction of variables that have no influence on the point estimator. If a variable
has no influence anywhere, it has the potential to be completely removed from the
local regression, reducing the dimension of the problem. For variables that have no
influence in certain areas, the algorithm achieves a partial dimension reduction. The
increased bandwidths reduce the variance of the estimate and Step 4 swaps some
of this reduction for a decrease in the bias to further improve the overall estimator.

As a concrete example of the approach, define the following one-dimensional
“Huberised” linear function:

(2.6) g(x) = x2I(0 < x ≤ 0.4) + (0.8x − 0.16)I(x > 0.4),

and let g(X) = g{([X(1)]2+ + [X(2)]2+)1/2} for 2-dimensional random variable X =
(X(1), X(2)). Assume that X is uniformly distributed on the space [−2, 2] × [−2, 2].
Notice that when X(1), X(2) < 0 the response variable Y in (2.1) is independent
of X(1) and X(2); when X(1) < 0 and X(2) > 0 the response depends on X(2)

only; when X(1) > 0 and X(2) < 0 the response depends on X(1) only; when
X(1), X(2) > 0 the response depends on both X(1) and X(2). Thus in each of
these quadrants a different subset of the predictors is significant. A local approach
to variable significance can capture these different dependencies, while a global
variable redundancy test would not eliminate any variables.

Now consider how the algorithm applies to this example, starting with a uniform
initial bandwidth of h = 0.5 in both dimensions. Assuming that variable significance
is determined perfectly on a dense grid, Figure 1 illustrates the adjusted bandwidths
for each of the quadrants. The dots are four sample estimation points, the surround-
ing unit squares indicate the initial bandwidths and the dashed lines indicate how
the bandwidths are modified. In the bottom left quadrant both variables are consid-
ered redundant, and so the bandwidth expands to cover the entire quadrant. This
is optimal behaviour, since the true function is constant over this region, implying
that the best estimator will be produced by including the whole area. In the bottom
right quadrant the first dimension is significant while the second is not. Thus the
bandwidth for the second dimension is “stretched”, while the first is shrunken some-
what. Again, this is desirable for improving the estimator. The stretching in the
second dimension improves the estimator by reducing the variance as more points
are considered. Then the shrunken first dimension swaps some of this reduction in
variance for decreased bias. Finally, in the top right quadrant, there is no change
in the bandwidth since both variables are considered to be significant.
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Fig 1. Bandwidth adjustments under ideal circumstances in illustrative example.

2.3. Variable selection step

Below are three possible ways to effect variable selection at x0 in Step 2 of the
algorithm, presented in the context of local linear regression. They all make use
of a tuning parameter λ which controls how aggressive the model is in declaring
variables as irrelevant. Cross validation can be used to select an appropriate level
for λ. So that the tuning parameters are comparable at different points in the data
domain, it is useful to consider a local standardisation of the data at x0. Define
X̄x0 = (X̄(1)

x0 , . . . , X̄
(d)
x0 ) and Ȳx0 by

X̄(j)
x0

=
∑n

i=1 X
(j)
i KH(Xi − x0)∑n

i=1 KH(Xi − x0)
, Ȳx0 =

∑n
i=1 YiKH(Xi − x0)∑n
i=1 KH(Xi − x0)

,

and define X̃i = (X̃(1)
i , . . . , X̃

(d)
i ) and Ỹi by

X̃
(j)
i =

(X(j)
i − X̄

(j)
x0 ) {KH(Xi − x0)}1/2{∑n

i=1

(
X

(j)
i − X̄

(j)
x0

)2
KH(Xi − x0)

}1/2
,(2.7)

Ỹi = (Yi − Ȳx0) {KH(Xi − x0)}1/2.

Notice that X̃ and Ỹ incorporate the weight KH(Xi − x0) into the expression.

1. Hard thresholding: Choose parameters to minimise the weighted least
squares expression,

(2.8)
n∑

i=1

⎧⎨⎩Ỹi − β0 −
d∑

j=1

X̃
(j)
i βj

⎫⎬⎭
2

,

and classify as redundant those variables for which |β̂j | < λ. This can be
extended to higher degree polynomials, although performance tends to be
more unstable.
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2. Backwards stepwise approach: For each individual j, calculate the per-
centage increase in the sum of squares if the jth variable is excluded from the
local fit. Explicitly, if q̂ is the optimal local fit using all variables and q̂j is the
fit using all except the jth, we classify the jth variable as redundant if

(2.9)

∑n
i=1

{
Yi − q̂j(X̂i)

}2
KH(X̂i) −

∑n
i=1

{
Yi − q̂(X̂i)

}2
KH(X̂i)∑n

i=1

{
Yi − q̂(X̂i)

}2
KH(X̂i)

< λ,

where X̂i = Xi − x0. This approach is so named as it is analogous to the first
step of a backwards stepwise procedure.

3. Local lasso: Minimise the expression

(2.10)
n∑

i=1

⎧⎨⎩Ỹi − γ0 −
d∑

j=1

X̃
(j)
i γj

⎫⎬⎭
2

+ λ
d∑

j=1

|γj |.

Those variables for which γj is set to zero in this minimisation are then
classified as redundant. While the normal lasso can have consistency problems
[24], this local version does not since variables are asymptotically independent
as h → 0. The approach also scales naturally to higher order polynomials,
provided all polynomial terms are locally standardised; a variable is considered
redundant if all terms that include it have corresponding parameters set to
zero by the lasso.

We have found that the first and second of the above approaches have produced
the most compelling numerical results. The numerical work in Section 4 uses the
first approach for linear polynomials, while the theoretical work in Section 3 estab-
lishes uniform consistency for both of the first two methods, guaranteeing oracle
performance.

2.4. Variable shrinkage step

The variable shrinkage step depends on whether the initial bandwidth, and thus
the shrunken bandwidth h′, is chosen locally or globally. Define

(2.11) V [x, H] =
∑

{KH(Xi − x)}2

{
∑

KH(Xi − x)}2 ,

where the bandwidth term in the function V is allowed to be asymmetrical, in which
case we write the left hand side as V [x, {HL(x), HU (x)}]. Thus H has been replaced
by the asymmetrical bandwidth {HL(x), HU (x)}, with HL and HU denoting the
lower and upper bandwidths respectively. Then in the local case, letting d′(x) denote
the cardinality of Â(x), define

(2.12) M(x) = V [x, {HL(x), HU (x)}]/V [x, H].

The expression is asymptotically proportional to {h′(x)}−d′(x) and estimates the de-
gree of variance stabilisation resulting from the bandwidth adjustment. Using this,
the correct amount of bandwidth needed in step 4 is h′(x) = h{M(x)d′(x)/d}1/4.
Since both sides of this expression depend on h′(x), shrinkage can be approximated
in the following way. Let

M ∗(x) = V [x, {H̃L(x), H̃L(x)}]/V [x, H],
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where H̃L(x) and H̃U (x) are the bandwidth matrices immediately after step 3.
Then the shrunken bandwidths are h′(x) = h{M ∗(x)d′(x)/d}1/(d′(x)+4).

In the global bandwidth case, we define

(2.13) M [(HL(X), HU (X)), H] =
E
(
V [X, (HL(X), HU (X))]

)
E{V [X, H]} .

This expression measures the average variance stabilisation across the domain. In
this case, the shrinkage factor should satisfy

(2.14) h′ = h
(
M [(HL(X), HU (X)), H]E{d′(X)}/d

)1/4
.

The theoretical properties in Section 3 deal with the global bandwidth scenario. The
treatment for the local case is similar, except that care must be taken in regions of
the domain where the function g behaves in a way that is exactly estimable by a
local polynomial and thus has potentially no bias.

2.5. Further remarks

1. The choice of distance between grid points in Step 2 is somewhat arbitrary,
but should be taken as less than h so that all data points are considered
in calculations. In the asymptotic theory we let this length decrease faster
than the rate of the bandwidth, and in numerical experimentation the choice
impacts only slightly on the results.

2. Step 5 of the algorithm forces the estimate at point x to exclude variables
indexed in Â −(x). An alternative is to still use all variables in the final fit.
This may be advantageous in situations with significant noise, where variable
admission and omission is more likely to have errors. Despite including these
extra variables, the adjusted bandwidths still ensure that estimation accuracy
is increased.

3. Finding the maximal rectangle for each representative point, as suggested in
step 3 of the algorithm, can be a fairly intensive computational task. In our
numerical work we simplified this by expanding the rectangle equally until the
boundary met a “bad” grid point (i.e. a point x′ such that Â+(x′) � Â+(x)).
The corresponding direction was then held constant while the others contin-
ued to increase uniformly. We continued until each dimension stopped expand-
ing or grew to be infinite. This approach does not invalidate the asymptotic
results in Section 3, but there may be some deterioration in numerical per-
formance associated with this simplification.

4. If a variable is redundant everywhere, results in Section 3 demonstrate that
the algorithm is consistent; the probability that the variable is classified as
redundant everywhere tends to 1 as n grows. However, the exact probability
is not easy to calculate and for fixed n we may want greater control over
the ability to exclude a variable completely. In such circumstances a global
variable selection approach may be appropriate.

5. As noted at the start of Section 2.2, the initial bandwidth in Step 1 does
not necessarily have to be fixed over the domain. For instance, a nearest
neighbour bandwidth, where h at x is roughly proportional to f(x)−1, could
be used. Employing this approach offers many practical advantages and the
theoretical basis is similar to that for the constant bandwidth. The numerical
work makes use of nearest neighbour bandwidths throughout. In addition, we
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could use an initial bandwidth that was allowed to vary for each variable,
H = diag(h2

1, . . . , h
2
p). So long as, asymptotically, each hj was equal to Cjh

for some controlling bandwidth h and constant Cj , the theory would hold,
although details are not pursued here.

2.6. Comparison to other local variable selection approaches

As mentioned in the introduction, two recent papers take a similar approach to
this problem. Firstly Lafferty and Wasserman [7] introduce the rodeo procedure.
This attempts to assign adaptive bandwidths based on the derivative with respect
to the bandwidth for each dimension, ∂ĝ(x)/∂hj . This has the attractive feature of
bypassing the actual local shape and instead focussing on whether an estimate is
improved by shrinking the bandwidths. It is also a greedy approach, starting with
large bandwidths in each direction and shrinking only those that cause a change
in the estimator at a point. The second paper is by Bertin and Lecué [1], who
implement a two step procedure to reduce the dimensionality of a local estimate.
The first step fits a local linear estimate with an L1 or lasso type penalty, which
identifies the relevant variables. This is followed by a second local linear fit using
this reduced dimensionality. The lasso penalty they use is precisely the same as the
third approach suggested in Section 2.3.

We comment on the similarities and differences of these two approaches com-
pared to the current presentation, which are summarised in Table 1. Firstly the
theoretical framework of the two other papers focus exclusively on the performance
at a single point (although global oracle behaviour may be provable), while the
LABAVS approach ensures uniformly oracle performance on the whole domain.
The framework for the other two also assumes that variables are either active on
the whole domain or redundant everywhere, while we have already discussed the
usefulness of an approach that can adapt to variables that are redundant on various
parts of the data. We believe this is particularly important, since local tests of vari-
able significance will give the same results everywhere. Related to this, our method
does not require an assumption of nonzero gradients (whether with respect to the
bandwidth or variables) to obtain adequate theoretical performance, in contrast to
the other methods. On the other hand, it is quite challenging to ensure uniform per-
formance while allowing d to be increasing, so our presentation assumes d is fixed;
the others do not. It is also worth noting that the greedy approach of Lafferty and
Wasserman potentially gives it an advantage in higher dimensional situations.

While all approaches work in a similar framework, the above discussion demon-
strates that there are significant differences. Our methodology may be viewed as
a generalisation of the work of Bertin and Lecué, save for imposing fixed dimen-
sionality. It can also be viewed as a competitor to the rodeo, and some numerical
examples comparing the two are provided.

Table 1

Summary of locally adaptive bandwidth approaches

LABAVS Rodeo [1]
Oracle performance on entire domain ✔ ✘ ✘
Allows for locally redundant variables ✔ ✘ ✘
Relevant variables allowed to have zero gradient ✔ ✘ ✘
Theory allows dimension d to increase with n ✘ ✔ ✔
Greedy algorithm applicable for higher dimensions ✘ ✔ ✘
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With regards to computation time, for estimation at a single point, the rodeo is
substantially faster, since calculating variable significance on a large grid of points
is not required. If however we need to make predictions at a reasonable number of
points, then Labavs is likely to be more efficient, since the grid calculations need
only be done once, while the rodeo requires a new set of bandwidth calculations for
each point.

3. Theoretical properties

As mentioned in the introduction, a useful means of establishing the power of a
model that includes variable selection is to compare it with an oracle model, where
the redundant variables are removed before the modelling is undertaken. In the
linear (and the parametric) context, we interpret the oracle property as satisfying
two conditions as n → ∞:

1. the probability that the correct variables are selected converges to 1, and
2. the nonzero parameters are estimated at the same asymptotic rate as they

would be if the correct variables were known in advance.

We wish to extend this notion of an oracle property to the nonparametric setting,
where some predictors may be redundant. Here there are no parameters to estimate,
so attention should instead be given to the error associated with estimating g. Below
we define weak and strong forms of these oracle properties:

Definition 1. The weak oracle property in nonparametric regression is:

1. the probability that the correct variables are selected converges to 1, and
2. at each point x the error of the estimator ĝ(x) decreases at the same asymp-

totic rate as it would if the correct variables were known in advance.

Definition 2. The strong oracle property in nonparametric regression is:

1. the probability that the correct variables are selected converges to 1, and
2. at each point x the error of the estimator ĝ(x) has the same first-order asymp-

totic properties as it would if the correct variables were known in advance.

Observe that the weak oracle property achieves the correct rate of estimation
while the strong version achieves both the correct rate and the same asymptotic
distribution. The first definition is most analogous to its parametric counterpart,
while the second is more ambitious in scope.

Here we establish the strong version of the nonparametric oracle property for
the LABAVS algorithm, with technical details found in the Appendix [13]. We
shall restrict attention to the case of fixed dimension. The case of increasing di-
mension can be treated similarly, provided dimension does not diverge too rapidly.
Our treatment focuses on local linear polynomials, partly for convenience but also
recognising that the linear factors dominate higher order terms in the asymptotic
local fit. Thus our initial fit is found by minimising the expression (2.5). We impose
further conditions on the kernel K:

(3.1)
∫

K(z) dz = 1,
∫

z(j)K(z) dz = 0 for each j,
∫

z(j)z(k)K(z) dz = 0 when
j �= k and

∫
(z(j))2K(z) dz = μ2(K) > 0, with μ2(K) independent of j.

The useful quantity R(K), depending on the choice of kernel, is defined as

R(K) =
∫

K(z)2 dz =
{∫

K∗(z(j))2 dz(j)

}d

,
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where K∗ is the univariate kernel introduced on page 218. Let an � bn denote the
property that an = O(bn) and bn = O(an). We also require the following conditions
(3.2), needed to ensure uniform consistency of our estimators.

(3.2)

1. For some η > 0, the dilation of a given compact set C by balls
of radius η is contained in the set {x : f(x) > 0}. Further, f
and its first order partial derivatives are bounded and uniformly
continuous on C.

2. The kernel function K is bounded with compact support and sat-
isfies |p(u)K(u) − p(v)K(v)| ≤ C1‖u − v‖ for some C1 > 0 and
all points u, v in C. Here p(u) denotes a single polynomial term
of the form

∏
(u(j))aj with the nonnegative integers aj satisfying∑

aj ≤ 4. The bound C1 should hold for all such choices of p.
3. The function g has bounded and uniformly continuous partial

derivatives up to and including order p, with p ≥ 2. If (Dkg)(x)
denotes the partial derivative

∂|k|g(x)
∂(x(1))k1 · · · ∂(x(d))kd

,

with |k| =
∑

kj , then we assume that these derivatives exist in
the η-dilation of C, when |k| = 2, and satisfy, for some constant C2

and all u and v in the dilation,

|h(u) − h(v)| ≤ C2‖u − v‖.

4. E(|Y |c) < ∞ for some c > 2.
5. The conditional density fX|Y (x|y) of X, conditional on Y , exists

and is bounded.
6.

For some 0 < δ < 1,
n1−2/σhd

log n{log n(log log n)1+δ }2/σ
→ ∞.

7. The Hessian of g, Hg, is nonzero on a set of nonzero measure in C.

The conditions in (3.2), except perhaps the first, are fairly natural and not overly
constrictive. For example, the sixth will occur naturally for any reasonable choice of
h, while the second follows easily if K has a bounded derivative. The last condition
is purely for convenience in the asymptotics; if Hg were zero almost everywhere
then g would be linear and there would be no bias in the estimate, improving ac-
curacy. The first condition addresses the issue of density approaching zero; in these
areas the uniform convergence results will not apply, so we restrict attention to
compact subset C, chosen so that the density did not fall below a specified mini-
mum. Performance inside this region would then conform to the optimal accuracies
presented, while estimation outside this region would be poorer. This distinction
is unavoidable, since estimation in the tails is usually problematic and it would be
unusual to guarantee uniformly good performance there.

Step 1 of the LABAVS Algorithm allows the initial bandwidth to be chosen
globally or locally. Here we shall focus on the global case, where an initial bandwidth
H = diag(h2, . . . , h2) is used. Further, we assume that this H is chosen to minimise
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the mean integrated squared error (MISE):

E

[∫
{ĝ(x) − g(x)}2f(x) dx

]
,

where the outer expectation runs over the estimator ĝ. It is possible to show under
our assumptions that

(3.3) h =
[

dσ2R(K)AC
nμ2(K)2AHg

]1/(d+4)

,

where AC and AHg are constants, defined in the Appendix, depending only on C
and the function g respectively. Notice in particular that h � n−1/(d+4). Details are
given in Lemma A.1 in the Appendix [13].

A key result in establishing good performance, in Theorem 3.1 below, is uniform
consistency of the local polynomial parameter estimates. It is a simplified version
of a result of Masry [10], and no proof is included.

Theorem 3.1. Suppose the conditions in (3.2) hold and we use parameter estimates
from a degree p polynomial regression to estimate the partial derivatives of g. Then
for each k with 0 ≤ |k| ≤ p we have

sup
x∈C

|(D̂kg)(x) − (Dkg)(x)| = O

[(
log n

nhd+2|k|

)1/2
]

+ O(hp− |k|+1) almost surely.

Since the partial derivative estimate at x is proportional to the corresponding
local polynomial coefficient, Theorem 1 ensures that the local polynomial coeffi-
cients are consistently estimated uniformly for suitable h. The scaling applied in
(2.7) does not impact on this, as the proof of Theorem 3.2 demonstrates.

Let C − denote the points x ∈ C satisfying ∂g(x)/∂x(j) = 0 and ∂2g(x)/∂x(j)2 �= 0.
That is, C − denotes the points where the true set of relevant variables changes. No-
tice that in the illustrative example in Section 2.2 we had C − = {x | x(1) = 0,
x(2) = 0}. The smoothness assumed of g implies that C − has Lebesgue measure 0.
Let δ > 0 and let Oδ be the smallest open set in C − such that

(3.4) inf
x∈ C \ Oδ, j∈A+(x)

|∂g(x)/∂x(j)| = δ.

Intuitively this means that on the set C \ Oδ the relevant variables have the absolute
value of their corresponding parameters |∂g(x)/∂x(j)| bounded below by δ > 0,
while irrelevant variables have ∂g(x)/∂x(j) = 0. Thus we have a “gap” between
the true and irrelevant variables in this region that we may exploit. The volume of
Oδ may be made arbitrarily small by choosing δ small. Call the set Â+(x) in the
algorithm correct if the variables in it are the same as the set of variables j with
∂g(x)/∂x(j) �= 0. Denote the latter correct set by A+(x).

Theorem 3.2. Suppose δ is given, h is chosen to minimise squared error as
in (3.3), Â+(x) is formed using the first approach in Section 2.3, and λ has a
growth rate between arbitrary constant multiples of h2(n log n)1/2 and hn1/2. If f
has bounded and uniformly continuous derivatives of degree 2, then for each x the
probability that Â+(x) is correct on C \ Oδ tends to 1 as n → ∞. Furthermore, vari-
ables that are genuinely redundant everywhere will be correctly classified as such
with probability tending to 1.
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The property (3.4) ensures that the coefficients in the local linear fit are consis-
tently estimated with error of order O{h(log n)1/2}. The adjustment in (2.7) means
that the actual coefficients estimated are of order hn1/2 times this, so the range
of λ given is correct for separating true and redundant variables. The definition
of Oδ ensures that the classification is correct on C \ Oδ, while variables that are
redundant everywhere will be recognised as such.

The next result ensures consistency for the second approach in Section 2.3. We
make one further assumption, concerning the error εi. Observe that this holds triv-
ially if εi is bounded. Assume that:

(3.5) there exists C3 such that E(|εi|α) ≤ Cα
3 for α = 1, 2, 3, 4, . . ..

Theorem 3.3. Suppose δ is given, h is chosen to minimise squared error as in
(3.3), and Â+(x) is formed using the second approach in Section 2.3. Provided that
λ = o(h2) and h4 log n = o(λ), the probability that Â+(x) is correct on C \ Oδ tends
to 1 as n → ∞. Furthermore, variables that are genuinely redundant everywhere
will be correctly classified as such with probability tending to 1.

The previous two results ensure that we have consistent variable selection for the
first two approaches in Section 2.3. Finally we can state and prove the strong oracle
property for C \ Oδ. Although the result does not cover the whole space C, recall
that we may make the area Oδ arbitrarily small by decreasing δ. Furthermore, the
proof implies that if we restricted attention to removing only those variables that
are redundant everywhere, we would actually have the oracle property on the whole
of C; however we sacrifice this performance on Oδ to improve the fit elsewhere by
adjusting for locally redundant variables. In the following theorem the matrix Ḧ is
the diagonal bandwidth matrix with bandwidth ∞ for globally redundant variables
and ḧ for the other variables, where

ḧ = h
(
M(Ḧ, H)d̈/d

)1/4

.

Here d̈ denotes the number of variables that are not globally redundant.

Theorem 3.4. The estimates produced by the algorithm, where variable selection
is performed using the first or second approach in Section 2.3, satisfy the strong
definition of the nonparametric oracle property on C. Further, when there are locally
redundant variables, the expected squared error of the point estimate is decreased
relative to oracle performance by a factor of M [(HL(X), HU (X)), Ḧ ] < 1. That is,

E{g̈(x) − g(x)}2] = M [(HL(X), HU (X)), Ḧ]E{ĝ(x) − g(x)}2]

where g̈ denotes the estimator arising from the LABAVS algorithm and ĝ is the
oracle estimator.

In closing we should mention that, in a range of statistical problems, there is gen-
erally a trade-off between oracle performance, or even simply statistical efficiency,
and robustness. In particular, methodologies that enjoy optimal or near optimal
properties in relatively narrowly defined settings tend not to quite as effective as
certain other, non-optimal approaches in terms of their robustness against heavy-
tailed noise, or heteroscedasticity, or related departures from conventional models.
There is no reason to believe that the same tendency would not be observable in
the context of variable selection methods that have oracle properties.
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4. Numerical properties

The examples presented in this section compare the performance of two versions
of the LABAVS algorithm with ordinary least squares, a traditional local linear
fit, generalised additive models, tree-based gradient boosting and MARS. Table 2
describes the approaches used. The implementations of the latter four methods
were from the R packages locfit, gam, gbm and polspline respectively. Tuning pa-
rameters such as bandwidths for local methods, λ in LABAVS, number of trees
in boosting, and MARS model complexity, were chosen to give best performance
for each method. The LABAVS models used the first variable selection approach
of Section 2.3. All the local methods used nearest neighbour bandwidths, with the
initial bandwidth chosen each time so as to minimise cross-validated squared error.
The OLS linear model was included as a standard benchmark, but obviously will
fail to adequately detect nonlinear features of a dataset.

Example 1. The example introduced in Section 2.2 was simulated with n = 500.
The error for Yi was normal with standard deviation 0.3. We first compare LABAVS
to the rodeo and the methodology of Bertin and Lecué (2008) at the four represen-
tative points in Figure 1. Table 3 shows the mean squared error of the prediction
compared to the true value over 100 simulations. In all cases parameters were cho-
sen to minimise this average error. At all points the LABAVS approach performed
strongest. The method of Bertin and Lecué [1] performed poorly in situations where
at least one variable is redundant; this is to be expected, since it excludes the vari-
able completely and so will incorporate regions where it is actually important,
causing significant bias. The rodeo also did not perform as well; we found it tended
to overestimate the optimal bandwidths in redundant directions.

We then compared LABAVS with the other model approaches which are designed
to make multiple predictions, rather than a specific point. For each simulation all
the models were fitted and the average squared error was estimated using a separate
test set of 500 observations. The simulation was run 100 times and the average error
and its associated standard deviation for each model are recorded in Table 4.

Inspection of the results shows that the LABAVS models performed best, able
to allow for the different dependencies on the variables. In particular the algorithm
improved on the performance of the local linear model on which it is based. The
local linear regression, the boosted model and MARS also performed reasonably,
while the GAM struggled with the nonadditive nature of the problem, and a strict
linear model is clearly unsuitable here.

To show how effectively variable selection is for LABAVS, Figure 2 graphically
represents the sets Â+ at each grid point for one of the simulations, with the darkest
representing { }, the next darkest {1}, the next darkest {2} and finally the lightest
{1, 2}. Here the variable selection has performed well; there is some encroachment

Table 2

Approaches included in computational comparisons

Name Description
LABAVS-A LABAVS with linear fit, all vars in final fit
LABAVS-B LABAVS with linear fit, relevant vars only in final fit
LOC1 Local linear regression
OLS Ordinary least squares linear regression
GBM Boosting with trees, depth equal to three
GAM Generalised additive models with splines
MARS Multivariate adaptive regression splines
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Table 3

Mean squared prediction error on sample points in Example 1

Test Point LABAVS-A LABAVS-B rodeo Bertin and
Lecué

(1, 1) 0.0022 0.0022 0.0065 0.0023
(1, −1) 0.0011 0.0013 0.0015 0.0018
(−1, 1) 0.0009 0.0011 0.0015 0.0013
(−1, −1) 0.0006 0.0007 0.0008 0.0013

Fig 2. Plot of detected variable significance across subspace in Example 1.

of irrelevant variables into the wrong quadrants but the selection pattern is broadly
correct. The encroachment is more prevalent near the boundaries since the band-
widths are slightly larger there, to cover the same number of neighbouring points.

Example 2. We next show that LABAVS can effectively remove redundant vari-
ables completely. Retain the setup of Example 1, except that we add d∗ = d − 2
variables similarly distributed (uniform on [−2, 2]), which have no influence on the
response. Also, keep the parameters relating to the LABAVS fit the same as in the
previous example, except that the cutoff for hard threshold variable selection, λ, is
permitted to vary. Table 5 shows the proportion of times from 500 simulations that
LABAVS effected complete removal of the redundant dimensions, for various λ and
d∗. Note that the cutoff level of 0.55 is that used in the previous example, and the
two genuine variables were never completely removed in any of the simulations. The
results suggest that to properly exclude redundant variables, a higher threshold is

Table 4

Mean squared error sum of test dataset in Example 1

Approach Error Std Dev
LABAVS-A 2.18 (0.71)
LABAVS-B 1.87 (0.65)
LOC1 2.31 (0.73)
OLS 42.85 (2.64)
GBM 2.47 (0.67)
GAM 5.93 (0.57)
MARS 2.35 (0.90)
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Table 5

Proportion of simulations where redundant variables completely removed by LABAVS

Number of redundant dimensions

λ 1 2 3 4
0.55 0.394 0.086 0.034 0.038
0.65 0.800 0.542 0.456 0.506
0.75 0.952 0.892 0.874 0.864
0.85 0.996 0.984 0.994 0.974
0.95 0.998 1.000 1.000 0.992

Fig 3. Plot of detected variable significance across subspace in Example 2, under various choices
for λ.

needed than would otherwise be the case. This causes the final model to be slightly
underfitted when compared to the oracle model, but this effect is not too severe;
Figure 3 shows how the variable significance plots change for a particular simulation
with different values of the cutoff. It is clear that the patterns are still broadly cor-
rect, and the results still represent a significant improvement to traditional linear
regression.

Example 3. The first real data example used is the ozone dataset from [6], p. 175.
It is the same as the air dataset in S-PLUS, up to a cube root transformation
in the response. The dataset contains meteorological measurements for New York
collected from May to September 1973. There are 111 observations in the dataset,
a fairly moderate size. Our aim here is to predict the ozone concentration using two
of the other variables, temperature and wind, scaled to unit variance when fitting
the models. The smoothed perspective plot of the data in Figure 4 shows strong
dependence on each of the two variables in some parts of the domain, but some
sections appear flat in one or both directions in other parts. For example, the area
surrounding a temperature of 70 and wind speed of 15 appears to be flat, implying
that for reasonably low winds and high temperatures the ozone concentration is
fairly stable. This suggests that LABAVS, by expanding the bandwidths here, could
be potentially useful in reducing error. We performed a similar comparative analysis
to that in Example 1, except that error rates were calculated using leave-one-out
cross validation, where an estimate for each individual observations was made after
using all other observations to build the model. The resulting mean squared errors
and corresponding standard deviations are presented in Table 6.

The results suggest that the data is best modelled using local linear methods,
and that LABAVS offers a noticeable improvement over a traditional local fit, due
to its ability to improve the estimate in the presence of redundant variables. The
perspective plot in left panel of Figure 4 suggests a highly non-additive model,
which may explain why GAM performs poorly. There is also a large amount of
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Table 6

Cross-validated mean squared error sum for the ozone dataset

Approach Error Std Dev
LABAVS-A 277 (53)
LABAVS-B 284 (55)
LOC1 290 (55)
OLS 491 (110)
GBM 403 (118)
GAM 391 (98)
MARS 457 (115)

Fig 4. Ozone dataset smoothed perspective plot and variable selection plot.

local curvature, which hinders the OLS, GBM and MARS fits. The right panel
of Figure 4 shows the variable selection results for the linear version of LABAVS
across the data support, using the same shading as in Figure 1. We see that variable
dependence is fairly complex, with all combinations of variables being significant in
different regions. In particular, notice that the procedure has labelled both variables
redundant in the region around (70, 15), confirming our initial suspicions. This
plot is also highly suggestive, revealing further interesting features. For instance,
there is also little dependence on wind when temperatures are relatively high. Such
observations are noteworthy and potentially useful.
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