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Abstract: Since the introduction of Akaike’s information criteria (AIC) in
1973, numerous information criteria have been developed and widely used in
model selection. Many papers concerning the justification of various model
selection criteria followed, particularly with respect to model selection error
rates (the probability of selecting a wrong model). A model selection criterion is
called consistent if the model selection error rate decreases to zero as the sample
size increases to infinity. Otherwise, it is inconsistent. In this paper, we explore
sufficient consistency conditions for information criteria in the nonparametric
(logspline) and parametric model comparison setting, and discuss finite sample
model selection error rates.
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1. Introduction

In past decades, there have been numerous papers addressing the consistency of
model selection criteria in various settings; see [15, 16, 26, 27] and [33, 34] and
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the references contained therein. The classical results for finite dimensional models
show that leave-nv-out cross validation [29], BIC [39] and Bayes factors [14, 6] are
consistent, while AIC [1], Cp [24], the jackknife, the bootstrap [11], and leave-one-
out cross validation are asymptotically equivalent and inconsistent [29]. All of these
articles, except [34] (see also [25]), assume that the number of available models (or
parameters) is finite. However, in many cases, the analyst wants to include more
parameters in the model as the sample size increases, when the true model is in an
infinite parameter space. The logspline model is one of the richest nonparametric
model families in this category [37, 38] and [20]. In this article our interest is to
examine error rates of various model selection criteria for comparing nonparametric
logspline models to parametric models.

Let yi be the random variable of interest for the ith observation and ψ[k] be the
parameter in the logspline model Mk [37]. In this paper, subscript [k] will be used
as a general notation to indicate a parameter, constant or a value of model selection
criterion in model Mk. One version of the logspline model Mk refers to a model with
the probability density function, f[k](yi|ψ[k]), that approximates or estimates the
true probability density function of the response variable yi, and does not contain
covariates [37]. As an extension of this model, the doubly flexible logspline response
model, f[k](yi|ψ[k](xi; θ[k])), was introduced in [38] to approximate or estimate the
true probability density function of yi, f(yi|xi), that depends on fixed predictor
variable(s) xi. Obviously, f[k](yi|ψ[k]) is a special case of f[k](yi|ψ[k](xi; θ[k])) when
ψ[k](xi; θ[k]) = ψ[k]. In this paper, f[k](yi|ψ[k](xi; θ[k])) will be called the logspline
model and be of our interest in model selection.

The asymptotics of this family are well studied in [37, 38] and research on other
aspects are in [7, 8, 9, 10, 2, 21, 22, 23, 35], and [30]. In most of these papers, the
authors propose a data-driven technique to address problems in model selection,
and most use AIC [1] or BIC [39] as the evaluation criterion.

In this paper, we will discuss the consistency of model selection criteria based on
the relationship among three types of models. First, consider the unknown under-
lying true model, MT , which generates the data; let θ∗ and Θ∗ be the parameter
vector and parameter space in MT , respectively. Secondly, consider the candidate
models Mk, which are the models under consideration. Here we let θ[k] and Θ[k]

be the parameter vector and the parameter space of Mk, respectively. Here the
true model is the same as or nested in one of candidate models or the true model
does not have a finite parameter space, a nonparametric candidate model is often
constructed based on assumed smoothness and other properties of the true model
[37, 38]. As in many previous studies [5, 29, 30], we consider consistent model selec-
tion between two candidate models, M1 and M2. The third model we consider is
the encompassing model M ∪, whose parameter vector θ[∪] consists of all parame-
ters in candidate models [4]. Let J[∪] be the dimension of θ[∪]. Note that J[∪] ≥ J[k]

for any k and any n. Denote the parameter spaces of M ∪ by Θ[∪]. The following
example is provided for better understanding of this notation.

As a nonparametric candidate model, we consider the logspline model with the
number of parameters J[k] increasing with n. Then we assume that the parameter
space of Mk expands cumulatively with the sample size n. In other words, for any
n′ > n, a candidate model Mk for the sample size n is the same as or nested in Mk

for the sample size n′. As a parametric candidate model, we consider a model that
has the same probability density function as the logspline model, but with a finite
and fixed number of parameters for any n. The class of generalized linear models
are included in this family.
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Example 1 (True, candidate, and encompassing models). Suppose that
there is a small number of observations of interest from the “true” model MT ,
yi = θ∗

0 + θ∗
1 exp(ui) + θ∗

2 sin(vi) + εi where εi is independently and identically
distributed (iid) as N(0, 1), yi is a response variable and xi = (ui, vi) is a predictor
vector of the ith observation. Assume that the variance of εi is known. Remember
that, in this paper, MT is assumed to be the same as or nested in one of candidate
models. An analyst may consider two “candidate” models:

• M1 : yi = θ0 [1] + θ1 [1]ui + θ2 [1]u
2
i + θ3 [1]u

3
i + θ4 [1](ui − 1)3+ + θ5 [1](ui −

2)3+ + θ6 [1]vi + θ7 [1]v
2
i + θ8 [1]v

3
i + θ9 [1](vi − 1.5)3+ + εi, where where (ui −

tj)+ = max(0, ui −tj) and tj ’s are knots in the spline (nonparametric bivariate
regression spline model without interaction terms, Ruppert, Wand and Carroll
2003).

• M2 : yi = θ0 [2] + θ1 [2] exp(ui) + θ2 [2] sin(vi) + εi (parametric model).

Then, the encompassing model M ∪ is the sum of M1 and M2. Because the inter-
cept term is included in both M1 and M2, J[1] = 10, J[2] = 3 and J[∪] = 12.

A brief review of the logspline model is given in Section 2. In Section 3 we
consider the case when a nonparametric model (J[1] → ∞) and a parametric model
(J[2] < ∞) are compared. In contrast, selection between parametric models (J[k] <
∞ for k=1,2) is most frequently studied in other model selection literature ([14, 29],
etc.). Also, we give the needed definitions and the sufficient conditions for particular
classes of model selection procedures to be consistent. As applications of results in
Section 3, the consistency of AIC, BIC, RIC [12], HQ [17] and leave-one-out [29]
are examined in Section 3. When n is finite, the error rates of model selectors are
often used to evaluate the performance of model selectors. However, in Section 4,
we show that they are not sufficient by themselves because they depend on the
relationship between the true model and the candidate models.

2. Log spline models

Consider a random response variable yi with the unknown true probability density
function f(yi|xi), with fixed predictor(s) xi. Assume that f(yi|xi) is continuous and
positive for any real numbers xi and yi. A logspline model, Mk, that approximates
f(yi|xi) is defined [38] by

(1) f[k](yi|ψ[k](xi; θ[k])) = exp

(p[k]∑
i=1

ψi [k](xi; θ[k])Bi [k](yi) − c[k](ψ[k](xi; θ[k]))

)
,

where

ψi [k](xi; θ[k]) =
qi [k]∑
j=1

θij [k]Aij [k](xi),

c[k](ψ[k](xi; θ[k])) = log

{∫
exp

(p[k]∑
i=1

ψi [k](xi; θ[k])Bi [k](yi)

)
dy

}
,

and Aij [k](xi) and Bi [k](yi) are spline basis functions. The total number of para-
meters for estimation is J[k] =

∑p[k]
i=1 qi [k]. From now on, let c[k](θ[k]) = c[k](ψ[k](xi;

θ[k])) for notational simplicity. [38] gives the various regularity conditions for this
model and [37, 38] studies the asymptotic properties of logspline models. The basis,
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Aij [k](xi), in the logspline model can be a multivariate spline basis. The following
example shows that the normal bivariate (cubic) regression spline model [28] is a
special case of a logspline model. This implies that the normal multiple regression
can be also expressed with the probability density function of the logspline model.

Example 2 (Normal bivariate regression splines). Consider two predictors,
ui and vi, and suppose the relationship between xi = (ui, vi) and yi is explored
with a normal bivariate regression spline (Mk) without interaction terms,

yi = α0 [k] + α1 [k]ui + α2 [k]u
2
i + α3 [k]u

3
i +

q1[k]−4∑
j=1

αj+3 [k](ui − tj)3+

+β1 [k]vi + β2 [k]v
2
i + β3 [k]v

3
i +

q2[k]−3∑
j=1

βj+3 [k](vi − tj)3+ + εi [k],

where (ui −tj)+ = max(0, ui −tj), tj ’s are knots in the spline and εi [k]
iid∼ N(0, σ2

[k]).
Here, the number of knots may or may not increase with the sample size n.

Let

A[k](xi) = (1, ui, u
2
i , u

3
i , (ui − t1)3+, . . . , (ui − tq1[k]−4)3+,

vi, v
2
i , v3

i , (vi − t1)3+, . . . , (vi − tq2[k]−3)3+),

θ[k] = (α0 [k]
T , . . . , αq1[k]−1 [k]

T , β1 [k]
T , . . . , βq2[k] [k]

T , σ2
[k])

T ,

q[k] = q1[k] + q2[k].

Also, let Aj[k](xi) and θj[k] be the j-th element of A[k](xi) and θ[k]. The proba-
bility density function of the regression spline model is

f[k](yi|ψ[k](xi; θ[k])) =
1√

2πσ2
[k]

exp
[

−
{yi −

∑q[k]
j=1 θj [k]Aj [k](xi)}2

2σ2
[k]

]

= exp

[ q[k]∑
j=1

θj [k]Aj [k](xi)
σ2

[k]

yi − y2
i

2σ2
[k]

−
{
∑q[k]

j=1 θj [k]Aj [k](xi)}2

2σ2
[k]

+ log
(

1√
2πσ2

[k]

)]
,

which has the form of the logspline model (1) with

ψ1 [k](xi; θ[k]) =
q[k]∑
j=1

θj [k]Aj [k](xi)
σ2

[k]

, B1 [k](yi) = yi,

ψ2 [k](xi; θ[k]) = − 1
2σ2

[k]

, B2 [k](yi) = y2
i ,

and

c[k](θ[k]) =

{∑q[k]
j=1 θj [k]Aj [k](xi)

}2

2σ2
[k]

− log

⎛
⎝ 1√

2πσ2
[k]

⎞
⎠ .

This model has J[k] = q[k] + 1 parameters. In a similar way, it can be easily shown
that the normal multivariate spline model (with or without interaction terms) be-
longs to the logspline model.
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3. Consistent model selection

In this section, we will define a general form of information criteria, IC[k], and find
the conditions when IC[k] is consistent.

Define the model selection criteria IC[k] for model Mk with the sample size of
n as

(2) IC[k] = sup
θ[k]∈Θ[k]

	[k](θ[k]) − a(n) J[k],

where Θ[k] is the parameter space of model Mk, 	[k](θ[k]) is the log-likelihood, a(n)
is a positive non-decreasing function of n and J[k] is the number of parameters in
model Mk. In our paper, we assume J[k] = o(n0.5−δ) for some δ ∈ (0, 0.5) for the
convergence of the MLE [38]. As examples of (2), there are:

• AIC[k] = sup
θ[k]∈Θ[k]

	[k](θ[k]) − J[k], which has a(n) = 1 [1].

• BIC[k] = sup
θ[k]∈Θ[k]

	[k](θ[k]) − log(n)
2 J[k], which has a(n) = log(n)

2 [39].

• RIC[k] = sup
θ[k]∈Θ[k]

	[k](θ[k]) − log(J[∪]) J[k], which has a(n) = log(J[∪]) [12].

• HQ[k] = sup
θ[k]∈Θ[k]

	[k](θ[k]) − log(log(n)) J[k], which has a(n) = log(log(n)) [17].

The supremum of the likelihood, supθ[k]∈Θ[k]
	[k](θ[k]), is a measure of how well

model Mk fits the data and a(n) J[k] is a penalty for overfitting the model. A
model that explains the data well and is parsimonious should have a high IC[k]

value. In the comparison of two models M1 and M2, we choose M2 over M1 if
IC[2] > IC[1].

In evaluating the performance of the model selection criteria in terms of the
model selection error rate, two approaches are frequently used: (1) consistency of
the model selection criteria assuming a sufficiently large sample size, which we will
focus on in this section, and (2) estimation of the model selection error rate using
Monte Carlo simulations for small samples, which will be discussed in Section 4.

In this section, we set M1 to be a nonparametric model and M2 to be a paramet-
ric model without loss of generality. Also, we assume that the regularity condition
(the σ-quasiuniform condition on the knot sequence, Stone [38]) is satisfied so that
nonparametric candidate models converge to the true model. A model selection
criteria is consistent if

P [Choose the better model] → 1, as n → ∞.

Equivalently, if the error rate of the model selector goes to zero, then it is called
a consistent model selection criterion. The following two points highlight issues of
model selection.

• Case (i) when the true model MT is not nested in the parametric model M2:
For example, when the true regression model has an exponential curve, a cu-
bic regression spline (M1) and a cubic regression (M2) can be considered
as candidate models. Even with large n, M2 cannot explain the data prop-
erly, but M1 can approximate the true model with large n (M1 → MT ).
Therefore, M1 is the better model in this case.

• Case (ii) when the true model MT is nested in the parametric model M2:
For example, when the true regression model has an exponential curve, a cubic
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regression spline (M1) and a regression with an exponential curve (M2) can
be considered as candidate models. Because M1 → MT , both models will be
the same as the true model with large n. Because J[1] > J[2], M2 is a better
model because of parsimony.

In general, M1 can be a multivariate spline model and M2 can be a multiple
regression model. The discussions in this paper are applicable for comparisons of
multivariate splines and multiple regressions. Aside from Case (i) and (ii), it is
difficult to discuss consistency because it is not clear which candidate model is
better than the other. Similar arguments have appeared in many other papers
to prove consistency when the number of parameters is finite [5, 29, 30, 32] and
references contained therein). The consistency conditions for these two cases are
given in the following theorem.

Theorem 1. Let y1, . . . , yn be iid random variables from the logspline family (1).
Also let J[1] and J[2] be the number of parameters to be estimated in a nonparametric
logspline model M1 and a parametric model M2. A model selection criterion, IC[k],
is consistent if

J[1] = o(n0.5−δ) for some δ ∈ (0, 0.5),
a(n)J[1]

n
→ 0 and a(n) → ∞,

as n → ∞.

Proof. The proof is summarized as follows (Appendix A presents a detailed proof).
First of all, J[1] = o(n0.5−δ) for some δ ∈ (0, 0.5) is needed for the MLE convergence
in M1 [37, 38]. In Case (i), a model selection criterion chooses the better model
M1 consistently if

a(n)J[1]

n
→ 0.

In Case (ii), consistency requires a(n) → ∞.

In addition to the nonparametric and parametric model comparisons there are
two other possible cases of model comparisons-‘parametric vs parametric’ and ‘non-
parametric vs nonparametric’ model comparisons. Remarks 1 – 3 discuss these
comparisons as well as applications of Theorem 1.

Remark 1 (Parametric vs. parametric models). Consider a situation when
both candidate models have a finite number of parameters for any sample size
(i.e. comparison between linear and quadratic regression models or comparison
between a regression model with two predictors, x1 and x2, and a model with
three predictors, x1, x2 and x3). By setting J[k] < ∞ for k = 1, 2, the consistency
conditions in Theorem 1 may degenerate to

(3)
a(n)
n

→ 0 and a(n) → ∞,

which are given in many other papers concerning parametric model comparisons
(for example; [5, 29, 31]). For this case, BIC and HQ are consistent, but AIC and
RIC are not.

Remark 2 (Nonparametric vs. parametric models). Suppose that one can-
didate is a nonparametric model and the other is parametric. Then, Theorem 1
shows that BIC, RIC and HQ can be consistent depending on J[1], whereas AIC
is inconsistent.
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Remark 3 (Nonparametric vs. nonparametric models). Suppose that the
candidates are two nonparametric models. A typical example is the knot selection
problem ([18, 13] and discussions therein), in this setting there are two nonpara-
metric models with different knots. Where asymptotic model selection error rates
are concerned, it becomes a relatively simple and less interesting problem. If the
true model has an infinite dimension in terms of the bases, and the number of
knots increases properly (satisfying the σ-quasiuniform condition on the knot se-
quence, [38]), both of the nonparametric candidate models will converge to the true
model. Then, any model selection criterion is consistent because any chosen can-
didate model is asymptotically equivalent to the true model. If the true model is
of infinite dimension and the number of knots is fixed, none of candidate models
is correct. Then, any model selection criterion has a model selection error rate of
100%. Therefore, the model selection error rate is not a very interesting in the knot
selection setting. Typically, knot selection is used to gain a better prediction error.
There has been much research that favors AIC-type criteria (AIC and criteria that
are asymptotically equivalent to AIC) in terms of the prediction error [40]. Hence,
we recommend AIC-type model selection criteria for knot selection problems. Also,
see [38] for detailed discussions on the convergence rates of the logspline models.

When the sample size n is infinite, both candidates are equivalent to the true
model. Also, it is not practically meaningful to select the better model based on
parsimony, because both candidates have infinite numbers of parameters with a
large n. Therefore, nonparametric models are better compared based on the con-
vergence rates of nonparametric models as n → ∞. See [38] for detailed discussions
on the convergence rates of the logspline models.

It is known that AIC, Cp, jackknife, bootstrap [11] and leave-one-out cross vali-
dation are asymptotically equivalent and inconsistent when only parametric models
(J[k] < ∞) are considered as candidates [29]. As another applications of Theorem 1,
Corollary 1 shows the inconsistency of the leave-one-out cross validation (CV (1))
for nonparametric vs. parametric model comparisons. CV (1) is defined as

Γ̂CV (1)
[k] =

1
n

n∑
i=1

[
yi − Xi [k]θ̂

(i)
[k]

]2
,

where θ̂
(i)
[k] is the MLE of θ[k] without the ith observation. The following Corollary

can be established and is proved in Appendix B.

Corollary 1. In the comparison of a regression spline model (M1) and a paramet-
ric regression model (M2), the leave-one-out cross validation CV (1) is inconsistent.

4. Finite Sample model selection error rates

The purpose of this section is to explore error rates of model selection criteria IC[k]’s
when the sample size is finite. Using simulation studies, we demonstrate that there
is no clear-cut preferred model selection criterion with respect to model selection
error rates.

4.1. A simulation study with two candidate models

Consider two candidate models:
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1. M1 (the cubic regression spline with two equally-spaced knots)
2. M2 (the quadratic regression model).

Model M1 is a flexible nonparametric model that, with large n, can approximate
any true regression model. Also, note that M2 is nested in M1. Define 	[1] and 	[2]
as the maximum log-likelihoods for M1 and M2, and J[1] and J[2] as the numbers
of parameters in these models. For the simulation studies in Table 1, data sets are
generated 10,000 times from each true model with the sample sizes n = 50 and 100.

Stone [38] shows that the global optimal convergence rate is achieved by setting
the number of parameters equal to

J[k] ∼ n
p[k]

p[k]+q[k]+2p[k]q[k] ,

where an ∼ bn means that an/bn is bounded away from 0 and infinity. Here, p[k]

and q[k] are the number of spline bases, Bi [k](yi) and Aij [k](xi), as defined in (1).
Typically, p[k] and q[k] are the assumed smoothness, which is how many times
the function f[k](·) is differentiable with yi and xi, respectively. When the normal
distribution is assumed, p[k] = ∞ because f[k](·) is infinitely differentiable with yi.
Therefore,

J[k] ∼ n
q[k]

1+2q[k] .

In this example, suppose that we use q[k] = 2 for M1. Then, a reasonable rule is to
take the number of knots equal to the closest integer less than n1/5. Here, J[k] = 2
for both n = 50 and 100. Even though there may be a better way of selecting
the number of knots, we chose a slowly increasing function of n for J[k] in this
simulation study to make the interpretation of simulation study results easier.

The first true model is

MT1 : yi = 1 + sin(xi) + 3 cos(xi) + 4 log(xi) + εi,

where εi
iid∼ N(0, 0.152). Because MT1 is not nested in M2, this can be an example

of Case (i). The predictor vector x = (x1, . . . , xn)T is constructed with n equally
spaced real numbers within a given range. For example, when xi ∈ [1, 3], x =
(1, 1 + 1/(n − 1), . . . , 3)T . This true model has an infinite dimensional parameter
space in terms of regression spline bases. Because M1 is a nonparametric model,
of which the number of parameters increases with n, M1 can fit the data with a
large n as good as the true model MT1 does. But M2 cannot. Even with a finite
n, M1 can fit a complicated trend in MT1 better than M2 can. Therefore, M1 is
considered as the better model in this case.

Because
	[1] − a(n)J[1] < 	[2] − a(n)J[2] ⇔ 	[1] − 	[2] < 3a(n),

the model selection error rate is

(4) P (	[1] − 	[2] < 3a(n)).

Here, the magnitude of a(n)’s at each fixed n determines the error rates of IC[k]’s.
For example, for n = 50 or 100, we have

aAIC(n) < aHQ(n) < aRIC(n) < aBIC(n),
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Fig 1. The true mean function yi = 1 + sin(xi) + 3cos(xi) + 4log(xi) (dark-colored line) and the
closest quadratic function (light-colored line) when (a) xi ∈ [1, 3] and (b) xi ∈ [3, 5].

where

aAIC(n) = 1,

aHQ(n) =
3
2

log(log(n)),

aRIC(n) = log(J[∪]) = log(J[1]),

aBIC(n) = log(n)/2.

Then, the error rate also increases in the order of AIC, HQ, RIC and BIC.
Different error rates of IC[k]’s are caused by a choice of a(n) or rejection regions of
the test.

Figure 1 shows the mean function of MT1 and the closest quadratic function
that minimizes

(5)
∫

|(1 + sin(xi) + 3cos(xi) + 4log(xi)) − (β0 + β1xi + β2x
2
i )| dxi.

The true mean function is closer to the quadratic function when xi ∈ [3, 5] (Fig-
ure 1-(b)) than when xi ∈ [1, 3] (Figure 1-(a)). Therefore, in simulation studies,
model selection criteria are expected to have a higher model selection error rate
when data are simulated with xi ∈ [3, 5] than with xi ∈ [1, 3], selecting quadratic
model M2 more often.

Table 1 reports the rates of choosing each candidate model. For example, AIC
chooses the spline model M1 with probability 0.684 when 100 observations are
simulated from MT1 with xi ∈ [3, 5]. Because M1 is considered as the better
model, 0.684 is one minus the model error rate or a successful model selection
rate. As expected, the overall performance of the model selection criteria in Table
1 is better when the data are simulated from MT1 with xi ∈ [1, 3] than with
xi ∈ [3, 5]. Also, the model selection error rates also increase in the order of AIC,
HQ, RIC and BIC. Note that AIC is the best model selection criterion because
a small aAIC(n) makes AIC choose a larger model M1 with higher probability.
As the sample size increases, the error rates of all model selection criteria are
reduced.
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Table 1

The rate of choosing either quadratic regression (Quad) or regression spline (Spline) model. The
number of observations simulated from the true model is n, and a(n) are the respective penalty

terms. ASE is the average squared error defined at (6)

True Model: Spline = M†
T 1

Selector xi ∈ [1,3] xi ∈ [3,5]

n a(n) Spline� Quad� ASE Spline Quad ASE
AIC 50 1.00 0.999 0.001 0.003 0.489 0.511 0.003
BIC 50 1.96 0.976 0.024 0.003 0.137 0.863 0.003
HQ 50 1.36 0.997 0.003 0.003 0.317 0.683 0.003
RIC 50 1.79 0.986 0.014 0.003 0.175 0.825 0.003

AIC 100 1.00 1.000 0.000 0.001 0.684 0.316 0.002
BIC 100 2.30 1.000 0.000 0.001 0.192 0.808 0.002
HQ 100 1.53 1.000 0.000 0.001 0.453 0.547 0.002
RIC 100 1.79 1.000 0.000 0.001 0.349 0.651 0.002

True Model: Quad = M‡
T 2

Selector xi ∈ [3,5]

n a(n) Spline Quad ASE
AIC 50 1.00 0.148 0.852 0.082
BIC 50 1.96 0.015 0.985 0.064
HQ 50 1.36 0.063 0.937 0.071
RIC 50 1.79 0.022 0.978 0.065

AIC 100 0.129 0.871 0.040
BIC 100 2.30 0.004 0.996 0.031
HQ 100 1.53 0.034 0.966 0.034
RIC 100 1.79 0.017 0.983 0.032

† MT1 : yi = 1 + sin(xi) + 3 cos(xi) + 4 log(xi) + εi, where εi
iid∼ N(0, 0.152).

‡ MT2 : yi = 1 + xi + x2
i + εi, where εi

iid∼ N(0, 1).
� Probability of selecting the spline model M1 : yi =

∑3

j=0
βj [1]x

j
i +β4 [1](xi − t1)3+ +β5 [1](xi −

t2)3+ + εi [∪], where t1 and t2 are equally spaced knots within the range of xi.
� Probability of selecting the quadratic model M2 : yi = β0 [2] + β1 [2]xi + β2 [2]x

2
i + εi [2].

Now consider the quadratic model MT2: yi = 1+xi+x2
i +εi, where εi

iid∼ N(0, 1),
as the true model that will be used in generating data. In this case, M2 is the better
model because of parsimony. Because MT2 is nested in M2, this can be an exam-
ple of Case (ii). Similar patterns are observed as in the previous simulations with
MT1, except that the order of the IC[k]’s is reversed for error rates (in the second
last column of Table 1). Error rates (ASE) increase in the order of BIC, RIC, HQ
and AIC when n = 50 or 100. Note that BIC is the best model selection criterion
because a large aBIC(n) makes BIC choose a smaller model M2 with a higher
probability.

The simulation results can be summarized as follows. When two candidate mod-
els M1 and M2 are considered, the magnitudes of a(n)’s determine which model
selection criterion performs best in terms of model selection error rates. When the
true model is not nested in M2, the IC[k] with the smallest a(n) is the best for any
true model and any sample size. When the true model is nested in M2, the IC[k]

with the largest a(n) is the best for any true model and any sample size. If more
than two candidates are compared and the true model is neither the smallest or the
largest model, the closeness (5) between the true and candidate models becomes
another important factor in determining the order of the model selection criterion
in terms of error rates.
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4.2. A simulation study with three candidate models

In many papers (for example; [29, 30]), simulation studies consider more than two
candidate models. As an example of this subsection, consider simulated data from
MT1 and three competing candidate models-M1, M2 and M3. Candidate models
M1 and M2 are the same as defined in the previous simulation studies and M3 is
the candidate model with exactly the same parametrization as the true model MT1:
yi = β0 +β1sin(xi)+β2cos(xi)+β3 log(xi)+εi. This will be called the exact model,
distinguishing from the true model with known parameter values. Obviously, M3

is the best candidate model in this case. Candidates M1, M2 and M3, have 6, 3
and 4 parameters in their mean functions, respectively. Simulation studies for the
sample size 50 and 100 are conducted with these models and results are given in
Table 2.

As discussed previously, the true mean function is close to the quadratic function
when xi ∈ [3, 5] (Figure1-(b)). This makes the competition between the quadratic
model M2 and the exact model M3 tense when xi ∈ [3, 5]. Although the spline
model M1 can also generate a mean function as M2 does, M1 has a higher number
of parameters, which is penalized by a(n) in IC[k]. In this case, the IC[k] with a
small a(n) may perform better because a small a(n) makes IC[k] choose M3 with a
large number of parameters instead of M2. In Table 2, AIC has the lowest model
selection error rate 0.426(=0.147+0.279) and 0.261(=0.146+0.115), or equivalently

Table 2

The rate of choosing either the quadratic regression (Quad), exact (Exact) or regression spline
(Spline) model: True model is yi = 1 + sin(xi) + 3 cos(xi) + 4 log(xi) + εi where

εi
iid∼ N(0, 0.152). The number of observations simulated from the true model is n, and a(n) are

the respective penalty terms. ASE is the average squared error defined at (6)

Selector xi ∈ [1,3]

n a(n) Spline� Quad� Exact† ASE
AIC 50 1.00 0.172 0.000 0.828 0.002
BIC 50 1.96 0.031 0.001 0.969 0.002
HQ 50 1.36 0.091 0.000 0.909 0.002
RIC 50 1.79 0.041 0.000 0.959 0.002

AIC 100 1.00 0.147 0.000 0.854 0.001
BIC 100 2.30 0.012 0.000 0.988 0.001
HQ 100 1.53 0.053 0.000 0.947 0.001
RIC 100 1.79 0.033 0.000 0.967 0.001

Selector xi ∈ [3,5]

n a(n) Spline Quad Exact ASE
AIC 50 1.00 0.147 0.279 0.574 0.002
BIC 50 1.96 0.023 0.531 0.446 0.002
HQ 50 1.36 0.071 0.387 0.542 0.002
RIC 50 1.79 0.032 0.496 0.471 0.002

AIC 100 1.00 0.146 0.115 0.739 0.001
BIC 100 2.30 0.011 0.350 0.640 0.001
HQ 100 1.53 0.050 0.207 0.740 0.001
RIC 100 1.79 0.028 0.256 0.716 0.001
� Probability of selecting the spline model M1: yi =

∑3

j=0
βj [1]x

j
i + β4 [1](xi − t1)3+ + β5 [1](xi −

t2)3+ + εi [∪], where t1 and t2 are equally spaced knots within the range of xi.
� Probability of selecting the quadratic model M2: yi = β0 [2] + β1 [2]xi + β2 [2]x

2
i + εi [2].

† Probability of selecting the exact model M3: yi = βM3
0 + βM3

1 sin(xi) + βM3
2 cos(xi) +

βM3
3 log(xi) + εM3

i .
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the highest successful model selection rate 0.574 and 0.739 for n = 50 and 100.
When xi ∈ [1, 3], the true mean function is relatively far from the quadratic function
(Figure1-(a)). Therefore, the IC[k] can determine easily that M3 is better than M2.
Table 2 shows that all model selection criteria choose M2 with probability zero or
very close to zero probability. Because the spline model M1 is more flexible and can
fit the data better than M2, the competition between M1 and M3 is a little more
tense than between M2 and M3. Therefore, IC[k] with higher a(n) should perform
better penalizing a high number of parameters in M1. Because of the highest a(n)
value, Table 2 shows that BIC has the lowest model selection error rates 0.031
and 0.012 (or the highest successful model selection rates 0.969 and 0.988) with
n = 50 and 100. This simulation study shows that the closeness of the true model
and candidates is an important factor that controls the model selection error rates.
By controlling the closeness of MT1 and M2, we may also generate examples that
has HQ or RIC as the best model selection criterion for small samples.

The previous examples demonstrated that, even though the error rate has been
used as an important part of evaluation of the model selection criterion in many
papers [5, 19, 29, 30, 41], it is not sufficient by itself to show which model selection
criterion is better than others. Therefore, it is necessary for researchers to choose ex-
amples very carefully and state the limit of the simulation study for model selection
error rates.

In addition to model selection error rates, the average squared error (ASE) is
calculated in Table 1 and 2 for each model selection criterion. When a model is
chosen using a selection criterion δ, let

(6) ASEδ = n−1
n∑

i=1

{μ∗(xi) − μδ(xi, θ̂δ)}2,

where μ∗(·) is the mean function of the true regression model and μδ(·) is the mean
function of a regression model that is chosen by criterion δ (i.e. AIC, BIC, etc).
Yang (2005) notes that ASE corresponds to the risk, R(δ) = n−1

∑n
i=1{μ(xi) −

μδ(xi, θ̂δ)}2, and shows that AIC makes the minimax risk converge to zero with
large n and BIC makes the minimax risk converge to a nonzero constant. This
means that, even though μBIC(·) converges to μ∗(·) because of the consistency of
the model selector and point estimator, this convergence is not fast enough to make
limn→∞ ASEBIC →0. Even though ASEBIC was usually larger than ASEAIC in
our simulation studies, ASEBIC was very small with large n because BIC selects
the exact or the better model in almost 100% of the cases, and point estimates of
this model converge reasonably fast (Op(

√
J/n), Theorem 1 in [38]).

5. Discussion

Many new model selection criteria have been developed in past decades, compared
with other criteria based on model selection error rates. While many other papers
are interested in comparing parametric models, this paper discusses error rates when
nonparametric and parametric models are compared. First, consistency conditions
of model selection criteria are provided for nonparametric and parametric model
comparisons with a large n. When the number of parameters in the nonparametric
model is forced to be finite, these conditions may reduce to the conventional consis-
tency conditions, which shows the smooth connection between our and conventional
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results. Second, with a small n, error rates are compared using simulation studies.
Model selection error rates have been used as one of most important measures in
comparing model selection criteria. It is shown that the error rate may not pro-
vide strong evidence of the best model selection criterion by itself, because it varies
depending on the candidate models and true model.

There have been many studies on the probability of selecting the correct model
and the prediction error, particularly, comparing AIC-type and BIC-type model
selection criteria [29, 30, 31, 14]. Originally, AIC was derived to minimize the
Kullback-Leibler distance between the true model and the estimated candidate
model [1] and BIC was derived as an approximation of the posterior model prob-
ability [39]. Therefore, we can easily expect that AIC will perform better than
BIC in terms of prediction and BIC will perform better than AIC in terms of
model selection error rates. Many results match with this expectation [3, 40], and
[14]. Therefore, if someone is interested in finding the correct parameter space of
the true model, the probability of selecting the correct model should be used in
evaluating the performance of a model selection criterion. Then, BIC-type criteria
will be preferred because it consistent. However, if good prediction is the goal, the
prediction error should be used in evaluating the performance of a model selection
criterion. In terms of prediction error, AIC is known as a favorable model selection
criterion.
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Appendix A: Proof of Theorem 1

The following arguments are based on the assumption that MLE converges (J[1] =
o(n0.5−δ) for some δ ∈ (0, 0.5), [37, 38]).

First, suppose that true model MT is not nested in parametric model M2 as in
Case (i). As n → ∞, for any true model MT , M1 converges to MT (M1 → MT ).
Therefore, M1 is the better model in this case.

P [selecting the better model]
= P

[
IC[1] > IC[2]

]
= P

[
sup

θ[1]∈Θ[1]

	[1](θ[1]) − a(n)J[1] > sup
θ[2]∈Θ[2]

	[2](θ[2]) − a(n)J[2]

]

= P

[
sup

θ[1]∈Θ[1]

	[1](θ[1]) − sup
θ[2]∈Θ[2]

	[2](θ[2]) > a(n)(J[1] − J[2])

]

= P

⎡
⎣ sup

θ[1]∈Θ[1]

⎡
⎣ 1

n

n∑
i=1

⎧⎨
⎩

p[1]∑
j=1

ψj [1](xi; θ[1])Bj [1](yi) − c[1](θ[1])

⎫⎬
⎭
⎤
⎦

− sup
θ[2]∈Θ[2]

⎡
⎣ 1

n

n∑
i=1

⎧⎨
⎩

p[2]∑
j=1

ψj [2](xi; θ[2])Bj [2](yi) − c[2](θ[2])

⎫⎬
⎭
⎤
⎦

>
1
n

a(n)(J[1] − J[2])
]

In order to show that this probability goes to 1, we need to know the convergence
of

sup
θ[1]∈Θ[1]

⎡
⎣ 1

n

n∑
i=1

⎧⎨
⎩

p[1]∑
j=1

ψj [1](xi; θ[1])Bj [1](yi) − c[1](θ[1])

⎫⎬
⎭
⎤
⎦ for k = 1, 2.

Let θ̂[1] be the MLE of the parameter θ[1] in model M1. By the uniqueness of



Model selection error rates 181

the maximum likelihood estimate [38] we have that

sup
θ[1]∈Θ[1]

⎡
⎣ 1

n

n∑
i=1

⎧⎨
⎩

p[1]∑
j=1

(
ψj [1](xi; θ[1])Bj [1](yi) − c[1](θ[1])

)⎫⎬⎭
⎤
⎦

=

⎡
⎣ 1

n

n∑
i=1

⎧⎨
⎩

p[1]∑
j=1

(
ψj [1](xi; θ̂[1])Bj [1](yi) − c[1](θ̂[1])

)⎫⎬
⎭
⎤
⎦

→

⎡
⎣ 1

n

n∑
i=1

⎧⎨
⎩

p[1]∑
j=1

(
ψj [1](xi; θ∗

[1])Bj [1](yi) − c[1](θ∗
[1])
)⎫⎬
⎭
⎤
⎦ ,

where ψj [1](xi; θ̂[1]) → ψj [1](xi; θ∗
[1]). Then, by the weak law of large numbers,

1
n

Δ	(n)

def
= sup

θ[1]∈Θ[1]

⎧⎨
⎩ 1

n

n∑
i=1

⎡
⎣p[1]∑

j=1

ψj [1](xi; θ)Bj [1](yi) − c[1](θ[1])

⎤
⎦
⎫⎬
⎭

− sup
θ[2]∈Θ[2]

⎧⎨
⎩ 1

n

n∑
i=1

⎡
⎣p[2]∑

j=1

ψj [2](xi; θ[2])Bj [2](yi) − c[2](θ[2])

⎤
⎦
⎫⎬
⎭

→ E

⎡
⎣p[1]∑

j=1

ψj [1](x; θ∗
[1])Bj [1](y) − c[1](θ∗

[1])

⎤
⎦

−E

⎡
⎣p[2]∑

j=1

ψj [2](x; θ∗
[2])Bj [2](y) − c[2](θ∗

[2])

⎤
⎦

> 0.

Hence,

P [selecting the better model] = P

[
1
n

Δ	(n) −
a(n)(J[1] − J[2])

n
> 0
]

→ 1,

if
a(n)(J[1] − J[2])

n
→ 0 ⇔

a(n)J[1]

n
→ 0 as n → ∞.

Next, suppose that true model MT is nested in parametric model M2 as in
Case (ii). Also, remind that J[1] > J[2] for any large n. Even though M1 → MT ,
M2 is considered as the better model because of parsimony. Assume ψj [∪](xi; θ̂[∪])
converge to ψj [∪](xi; θ∗ [∪]). Because Θ[k] ⊂ Θ[∪](n) for k=1 and 2,

sup
θ[k]∈Θ[k]

⎡
⎣ n∑

i=1

⎧⎨
⎩

p[k]∑
j=1

ψj [k](xi; θ[k])Bj [k](yi) − c[k](θ[k])

⎫⎬
⎭
⎤
⎦

≤ sup
θ[∪]∈Θ[∪]

⎡
⎣ n∑

i=1

⎧⎨
⎩

p[∪](n)∑
j=1

ψj [∪](xi; θ[∪])Bj [∪](yi) − c[∪](θ[∪])

⎫⎬
⎭
⎤
⎦
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and

sup
θ[k]∈Θ[k]

⎡
⎣ n∑

i=1

⎧⎨
⎩

p[k]∑
j=1

ψj [k](xi; θ[k])Bj [k](yi) − c[k](θ[k])

⎫⎬
⎭
⎤
⎦

−

⎡
⎣ n∑

i=1

⎧⎨
⎩

p[∪](n)∑
j=1

ψj [∪](xi; θ∗ [∪])Bj [∪](yi) − c[∪](θ∗ [∪])

⎫⎬
⎭
⎤
⎦ ≥ 0.

Let
B[∪](yi) = (B1 [∪](yi), . . . , Bp[∪](n)(yi))T ,

ψ[∪](x; θ̂[∪] − θ∗ [∪]) = (ψ1 [∪](x; θ̂[∪] − θ∗ [∪]), . . . , ψp[∪](n)(x; θ̂[∪] − θ∗ [∪]))T ,

and


c[∪](θ∗ [∪]) =
[
dc[∪](θ[∪])

dθ[∪]

]
θ[∪]=θ∗ [∪]

.

Then,

sup
θ[k]∈Θ[k]

⎡
⎣ n∑

i=1

⎧⎨
⎩

p[k]∑
j=1

ψj [k](xi; θ[k])Bj [k](yi) − c[k](θ[k])

⎫⎬
⎭
⎤
⎦

−

⎡
⎣ n∑

i=1

⎧⎨
⎩

p[∪](n)∑
j=1

ψj [∪](xi; θ∗ [∪])Bj [∪](yi) − c[∪](θ∗ [∪])

⎫⎬
⎭
⎤
⎦

≤ sup
θ[∪]∈Θ[∪]

⎡
⎣ n∑

i=1

⎧⎨
⎩

p[∪](n)∑
j=1

ψj [∪](xi; θ[∪])Bj [∪](yi) − c[∪](θ[∪])

⎫⎬
⎭
⎤
⎦

−

⎡
⎣ n∑

i=1

⎧⎨
⎩

p[∪](n)∑
j=1

ψj [∪](xi; θ∗ [∪])Bj [∪](yi) − c[∪](θ∗ [∪])

⎫⎬
⎭
⎤
⎦

=
n∑

i=1

⎡
⎣p[∪](n)∑

j=1

{
(ψj [∪](xi; θ̂[∪]) − ψj [∪](x; θ∗ [∪]))Bj [∪](yi)

}

−
{

c[∪](θ̂[∪]) − c[∪](θ∗ [∪])
}]

.

Using Lemma 14 in [37], we can show

c[∪](θ̂[∪]) − c[∪](θ∗ [∪]) = 
c[∪](θ∗ [∪])T ψ[∪](x; θ̂[∪] − θ∗ [∪]) + Op

(
J[∪](n)

n

)
.

Then
n∑

i=1

⎡
⎣p[∪](n)∑

j=1

{
(ψj [∪](xi; θ̂[∪]) − ψj [∪](x; θ∗ [∪])) Bj [∪](yi)

}

−
{

c[∪](θ̂[∪]) − c[∪](θ∗ [∪])
}]

=
n∑

i=1

[{
B[∪](yi) − 
c[∪](θ∗ [∪])

}T

ψ[∪](x; θ̂[∪] − θ∗ [∪]) + Op

(
J[∪](n)

n

)]

= Op(J[∪](n)) + Op(J[∪](n)) ([38], Lemma 13 and (21))
= Op(J[∪](n)).
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Therefore, the difference of the sup’s in the following equation is bounded by
Op(J[∪](n)).

P [selecting the better model]

= P

[
sup

θ[1]∈Θ[1]

	[1](θ[1]) − sup
θ[2]∈Θ[2]

	[2](θ[2]) − a(n)(J[1] − J[2]) < 0

]

= P

⎡
⎢⎣

sup
θ[1]∈Θ[1]

	[1](θ[1]) − sup
θ[2]∈Θ[2]

	[2](θ[2])

J[∪](n)
−

a(n)(J[1] − J[2])
J[∪](n)

< 0

⎤
⎥⎦

→ 1

if
a(n)(J[1] − J[2])

J[∪](n)
→ ∞.

Because J[1]/J[∪](n) → 1 and J[2] < ∞, this condition is equivalent to a(n) → ∞.
Therefore IC[k] is consistent if

J[1] = o(n0.5−δ) for some δ ∈ (0, 0.5),
a(n)J[1]

n
→ 0 and a(n) → ∞, as n → ∞. �

Appendix B: Proof of Corollary 1

The leave-one-out cross validation, CV (1) of model Mk, is

ΓCV (1) [k] =
1
n

n∑
i=1

{
yi − Xi [k]θ̂

(i)
[k]

}2

=
1
n

n∑
i=1

{
yi − Xi [k]θ̂[k]

1 − hii [k]

}2

where θ̂
(i)
[k] is the estimate of θ[k] without the ith observation, θ̂[k] is the estimate

of θ[k] using all observations and hi [k] is the ith diagonal element of the projection
matrix H[k] = X[k](X [k] T X[k])−1X [k] T . Suppose MT is nested in M2 as in Case
(ii). In this case, both candidate models converge to the true model as n → ∞.
Because

(
1 − hi [k]

)−2 = 1 + 2hi [k] + O
{(

hi [k]

)2},

ΓCV (1) [k] =
1
n

n∑
i=1

(
ei [k]

)2 +
1
n

n∑
i=1

(
ei [k]

)2[2hi [k] + O
{(

hi [k]

)2}]

=
1
n

n∑
i=1

(
ei [k]

)2 +
2J[k]σ

2

n
+ op

(
1
n

)
,(7)

where ei [k] = yi − Xi [k]θ̂[k], e[k] =
(
e1 [k], . . . , en [k]

)T and In is the n × n identity
matrix. The leave-one-out cross validation in (7) is asymptotically equivalent to
AIC, which has a(n) = 1. Therefore, CV (1) is inconsistent by Theorem 1. �


