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Functional Limit Laws of Strassen and
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Abstract: This paper is concerned with the study of functional limit theo-
rems constructed from multiple generations of a supercritical branching pro-
cess. The results we present include infinite dimensional functional laws of
Strassen and Chung-Wichura type in the space (C0[0, 1])∞.
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1. Introduction and Main Results

In the recent paper [11] we studied functional laws of large numbers and central
limit theorems for multiple generations of Galton-Watson branching processes. Our
interest in multiple generations of such processes, especially in the super-critical
case, was motivated by their use to model the exponential growth phase in Poly-
merase Chain Reaction (PCR) experiments, and the need to detect the random
endpoint of this growth phase. The general idea is that if one has knowledge of the
limiting quantities for multiple generations, then prediction of this endpoint should
become more accurate. Additional information and some relevant references on the
use of branching processes in connection with PCR experiments can be found in
[11] and [12].

Here we turn to more theoretical issues and seek analogues of the functional law
of the iterated logarithm due to Strassen in [15], and the so-called other LIL due
to Chung appearing in [3]. The functional version of Chung’s result first appeared
in the important paper [16], and subsequently in other settings such as [4], [9],
and [10]. Hence now such results are known as Chung-Wichura laws of the iterated
logarithm. Since branching processes are special triangular arrays, our analogues
of these results involve only a single logarithm, and therefore are more properly
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termed functional laws of the logarithm. We adopt this terminology throughout
the paper.

In order to describe our results in detail, we begin with a brief description of the
branching process. Let {ξn,j , j ≥ 1, n ≥ 1} denote a double array of non-negative
integer valued i.i.d. random variables defined on the probability space (Ω, F , P ),
and having probability distribution {pj : j ≥ 0}, i.e. P (ξ1,1 = k) = pk. Then
{Zn : n ≥ 0} denotes the Galton-Watson process initiated by a single ancestor
Z0 ≡ 1. It is iteratively defined on (Ω, F , P ) for n ≥ 1 by

Zn =
Zn−1∑
j=1

ξn,j .

Let m = E(Z1). It is well known that if m > 1 (i.e. the process is supercritical), then
Zn → ∞ with positive probability and that the probability that the process becomes
extinct, namely q, is less than one. The complement of the set ∪ ∞

n=1{Zn = 0} is
the so called survival set, and is denoted by S. If m > 1, then P (S) = 1 − q and
Zn → ∞ a.s. on S. Also, q = 0 if and only if p0 = 0. We assume throughout the
paper that 1 < m < ∞.

Our goal is to obtain functional limit theorems for supercritical branching pro-
cesses based on r(n)-generations, where 1 ≤ r(n) ≤ n. In particular, the integer
sequence {r(n)} may approach infinity as n goes to infinity. More precisely, let
σ2 = Var(Z1) < ∞ denote the offspring variance, on the set {Zn−1 > 0} define
Xn,Zn−1(0) = 0, and for 0 < t ≤ 1 set

Xn,Zn−1(t) =
1

σ
√

Zn−1

{�tZn−1�∑
j=1

(ξn,j − m) + cn,Zn−1(t)

}
,(1.1)

where cn,Zn−1(t) = (tZn−1 − �tZn−1	))(ξn,�tZn−1�+1 − m). On {Zn−1 = 0} we define
Xn,Zn−1(t) = 0 for 0 ≤ t ≤ 1. Then define

Xn,r(n)(t) ≡ (Xn,Zn−1(t), Xn−1,Zn−2(t), . . . , Xn−r(n)+1,Zn−r(n)
(t), 0, 0, . . .).(1.2)

In (1.2) Xn−k,Zn−k−1(·) denotes an element of the space of continuous functions
on [0,1] that vanish at zero, which we denote by C0[0, 1], and the zeros in the
previous vector are understood to be the zero function on [0, 1]. Hence Xn,r(n)(·) is
an element of the infinite product space (C0[0, 1])∞. Assuming C0[0, 1] has the sup-
norm topology, we give (C0[0, 1])∞ the product topology, which has metric given
by

d∞(x,y) =
∑
k≥1

1
2k

‖xk − yk ‖
1 + ‖xk − yk ‖ ,(1.3)

where ‖ · ‖ is the sup-norm on C0[0, 1].
We now describe our results concerning the laws of the logarithm. If (M, d) is a

metric space, x ∈ M , and A ⊆ M , then we define the distance from x to A by

d(x, A) = inf
a∈A

d(x, a).

If {xn} is a sequence in M we define the cluster set C({xn}) to be the set of all
limit points of {xn}.
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If AC0[0, 1] denotes the absolutely continuous functions f on [0, 1] such that
f(0) = 0, then the limit set K∞ in (C0[0, 1])∞ for the processes {Xn,r(n)} properly
normalized is

K∞ =

{
(f1, f2, . . .) ∈ (C0[0, 1])∞ : fk ∈ AC0[0, 1], k ≥ 1,

∑
k≥1

∫ 1

0

(f ′
k(s))2ds ≤ 1

}
,

and the analogue of Strassen’s law for these processes is the following theorem. Here
and throughout the remainder of the paper we let Lt = max{1, loge t} for t ≥ 0.

Theorem 1.1. Assume E(Z2
1 (L(Z1))r) < ∞ for some r > 4, that 1 ≤ r(n) ≤ n,

and we also have limn→∞ r(n) = ∞. Then

P

(
lim

n→∞
d∞

(
Xn,r(n)

(2Ln)
1
2
, K∞

)
= 0

)
= 1.(1.4)

In addition, if S denotes the survival set of the process and clustering is determined
with respect to the product topology, then we have

P

(
C

({
Xn,r(n)

(2Ln)
1
2

})
= K∞ |S

)
= 1.(1.5)

Remark 1.1. Looking at the first coordinate of Xn,r(n) and setting t = 1 implies a
result of Heyde under weaker conditions than is available in [7]. Of course, a similar
result holds for any finite collection of coordinates, and one also has functional
results for any finite set of coodinates.

Remark 1.2. The fact that r > 4 in Theorem 1.1, and also in Theorem 1.2 be-
low, results from the use of standard estimates for the Prokhorov distance in the
classical invariance theorem. That these estimates are essentially best possible can
be seen from [2] and also [14]. Thus an attempt at reducing r > 4 to , say r > 1,
would seem to require a substantially different approach than what we use here.
In particular, in the setting of functional limit theorems of high dimension, the
difficulties imposed when working with partial sums from successive generations
of a branching process make many typical LIL arguments along subsequences un-
available. Finally, perhaps it is worth mentioning that using the methods of this
paper one can prove analogues of Theorems 1.1 and 1.2 for triangular arrays of
independent random variables under a variety of conditions. For example, such re-
sults hold as long as the row lengths have length n8+δ, the random variables ar
e identically distributed with three moments, and the rows are independent, but
there are other conditions that suffice as well. The additional assumption that the
rows of the triangular array have some form of independence is necessary to show
that (1.5) and (1.14) hold. What is surprising is that in the supercritical branching
process model no additional assumptions need be made, and although the rows are
not independent, there is enough asymptotic independence when combined with the
conditional Borel-Cantelli lemma to allow a proof. The log harmonic moments of
Lemma 2.4, which are also consequences of the branching process model, allow the
use of minimal moment assumptions. That the Prokhorov distance could be useful
in proving functional laws of the logarithm was observed earlier in Theorem 4.3
of [8].

We next introduce the maximal processes used in connection to our Chung-
Wichura law of the logarithm. To describe these results we need further notation.
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Let M denote the non-decreasing functions on [0,1] into [0, ∞] such that f(0) = 0,
and f is right continuous on (0,1). If {hn} ⊆ M, we say {hn} converges to h ∈ M
if limn hn(t) = h(t) for all t ∈ [0, 1] where h(·) is continuous into [0, ∞]. The limit
set in Wichura’s LIL is

K1 =
{

h ∈ M :
∫ 1

0

h−2(s)ds ≤ 1
}

.(1.6)

Furthermore, it is easy to see from classical arguments, see [6], that the convergence
in M mentioned above can be metrized through the use of the Lévy metric on
the non-decreasing functions h∗ on (−∞, ∞) which are right continuous on (0,1),
h∗(0) = 0, h∗(1) ≤ 1, h∗(t) = h∗(1) for t ≥ 1, and such that h∗(t) = h∗(0) for t < 0.
That is, if λ(s) = s/(1 + s) for 0 ≤ s ≤ ∞, with λ(∞) = 1, then the metric ρ on
M, which is of interest, is given by

ρ(h, g) = dL(h∗, g∗),(1.7)

where

h∗(s) = λ(h(s)), 0 ≤ s ≤ 1,(1.8)

and dL is Lévy’s metric. Of course, for given h ∈ M the function h∗ used in
(1.7) is assumed to be such that h∗(s) = 0 for s < 0, h∗(s) = h∗(1) for s > 1,
and given by (1.8) on [0,1]. (M, ρ) is also separable since the subprobabilities on
[0,1] are separable in Lévy’s metric. We also define the maximal process related to
Xn,Zn−1(·) by

Mn,Zn−1(t) = sup
0≤s≤t

|Xn,Zn−1(s)|, 0 ≤ t ≤ 1.(1.9)

We are, of course, interested in the infinite dimensional version of the maximal
processes. To this end, we define the vector maximal process Mn,r(n) analogous to
(1.9) as follows:

Mn,r(n)(t) = (Mn,Zn−1(t), Mn−1,Zn−2(t), . . . , Mn−rn+1,Zn−r(n)(t), 0, 0, . . .).(1.10)

The infinite dimensional Chung-Wichura limit set is as follows:

K ∞ =

{
(h1, h2, . . . , ) ∈ M ∞ :

∞∑
k=1

∫ 1

0

h−2
k (s)ds ≤ 1

}
,(1.11)

where M ∞ is the infinite cartesian product of M. The topology on M ∞ is the
product topology which is complete and separable in the topology given by the
metric

ρ∞(f ,g) =
∑
k≥1

1
2k

ρ(fk, gk)
1 + ρ(fk, gk)

,(1.12)

where f = (f1, f2, . . .),g = (g1, g2, . . .) and ρ is the metric given in (1.7).
Our next result presents the functional form of the Chung-Wichura law for the

vectors Mn,r(n). In all that follows in connection with the Chung-Wichura results,
we’ll always assume c2 = π2

8 . This constant results from the small ball probability
estimates for Brownian motion, and enters into our considerations through the
application of Lemma 2.6 in Lemmas 3.5 and 3.6 below.
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Theorem 1.2. Assume E(Z2
1 (L(Z1))r) < ∞ for some r > 4, that 1 ≤ r(n) ≤ n,

and we also have limn→∞ r(n) = ∞. Let S denote the survival set of the process.
Then,

P

(
lim

n→∞
ρ∞

(√
Ln

c2
Mn,r(n), K ∞

)
= 0|S

)
= 1.(1.13)

Furthermore, when clustering is determined with respect to the ρ∞-topology, then

P

(
C

({√
Ln

c2
Mn,r(n)

})
= K ∞ |S

)
= 1.(1.14)

The proofs of these theorems follow similar lines, but the precise details differ
considerably. However, since Strassen’s result is typically better understood, we will
only provide a proof of Theorem 1.2. The interested reader can see a complete proof
of Theorem 1.1 in the preprint [12] , as well as other details.

2. Some Lemmas and Remarks

Let Fn denote the σ−field generated by the sequence {Z0, Z1, . . . , Zn}. Let Wn =
Zn

mn . Then it is known that {(Wn, Fn) : n ≥ 0} is a non-negative martingale se-
quence, and an important classical result due to Kesten and Stigum is that it
converges to a non-degenerate limit W if and only if E(Z1 log Z1) < ∞, see, for
example, [1], Theorem 1, page 24. Furthermore, as can be seen from [1], Corollary 4,
page 36, almost surely on the survival set S we have 0 < W < ∞. Here we assume
E(Z2

1 (L(Z1))r < ∞ for r > 4, so the Kesten-Stigum result applies. It is useful to
us as it implies the following fact which for convenience of the reader we state as
a lemma. Its proof is immediate since the Kesten-Stigum result implies Zn/Zn−1

converges almost surely to m on S.

Lemma 2.1. Let E(Z1L(Z1)) < ∞, m = E(Z1) > 1, and define

S0 =
{

ω : lim
n→∞

Zn(ω)
Zn−1(ω)

= m

}
.(2.1)

Then P (SΔS0) = 0, P (S0) = 1 − q, and S0 ∩ S′ = ∅ and on S0 the following hold:
for every 1 < β < m, and all ω ∈ S0, there is a n0(ω) such that for all n ≥ n0(ω)+1

Zn(ω) > βZn−1(ω) > Zn−1(ω)(2.2)

and

Zn(ω) ≥ max{Z0(ω), . . . , Zn−1(ω)}.(2.3)

Thus (2.2) and (2.3) imply that for all ω ∈ S0 and n ≥ n0(ω),

Zn(ω) ≥ βn−n0Zn0(ω),(2.4)

where n0 = n0(ω).

The next lemma is Theorem 3 of [1], p.41, if pk �= 1 for some k ≥ 2, but in those
cases it is trivial. Hence its proof is omitted.
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Lemma 2.2. Let {Zn : n ≥ 0} be a supercritical Galton-Watson process with
Z0 = 1. Then there exists a constant γ ∈ (0, 1) such that

lim
n→∞

P (Zn = k)/γn = νk,(2.5)

where 0 ≤ νk < ∞ for all k ≥ 1.

In order to prove Theorem 1.2 we use probability estimates involving partial sum
processes built from suitable truncations of the random variables used to define the
various coordinates of Xn,r(n)(t) in (1.2) and Mn,r(n)(t) in (1.10). The next lemma
is useful in our calculations involving these partial sum processes several times. In
particular, when combined with the log harmonic moments of Lemma 2.4 below we
are able to use conditional Borel-Cantelli arguments along with the error estimates
we obtain when these probabilities are replaced by their analogues for Brownian
motion. A critical tool to study these probabilities is the estimate of the Prokhorov
distance between partial sum processes and Brownian motion obtained in Corol-
lary 2 of [5]. To determine the relevant estimates for the required Brownian motion
probabilities we then use some results on small deviations obtained in [4]. For the
ease of the reader, the relevant results from [5] and [4] are stated in Lemmas 2.5
and 2.6 below. Finally, perhaps it is also worthwhile to mention that we need to
iterate the previous combination of estimates a finite number of times. This makes
the argument notationally more difficult, but otherwise follows from conditioning
and properties of the branching process.

Lemma 2.3. Suppose φ(t) = t2(Lt)r where r > 0, t ≥ 0, and as before Lt =
max{1, loge t}. If E(φ(Z1)) < ∞, m = E(Z1), and L(ξ) = L(Z1), where ξ is
independent of Zn−1, then there exists a finite positive constant c(ξ, r), depending
only on r > 0 and the law L(ξ) = L(Z1), such that

Zn−1P (|ξ − m| ≥ Z
1/2
n−1|Zn−1)I(Zn−1 > 0) ≤ c(r, ξ)/(LZn−1)r,(2.6)

and

Zn−1E(|η/Z
1/2
n−1|3|Zn−1)I(Zn−1 > 0) ≤ c(r, ξ)/(LZn−1)r,(2.7)

where

η = (ξ − m)I(|ξ − m| ≤ Z
1/2
n−1) − μn,Zn−1 ,(2.8)

and

μn,Zn−1 = E((ξ − m)I(|ξ − m| ≤ Z
1/2
n−1)|Zn−1).(2.9)

Proof. Since the terms to be dominated in (2.6) and (2.7) are all zero when Zn−1 =
0, and Lt ≥ 1 for all t ≥ 0, the result holds in this situation. Hence it suffices to
prove the result when we assume Zn−1 > 0.

To simplify notation, let ρ = ξ − m. Then, since φ(t) is increasing for t ≥ 0, we
have by the conditional Markov inequality that

Zn−1P (|ρ| ≥ Z
1/2
n−1|Zn−1)I(Zn−1 > 0) ≤ Zn−1

E(φ(|ρ|)I(|ρ| ≥ Z
1/2
n−1)|Zn−1)

φ(Z1/2
n−1)

,

and hence

Zn−1P (|ρ| ≥ Z
1/2
n−1|Zn−1)I(Zn−1 > 0) ≤ E(φ(|ρ|))/(LZ

1/2
n−1)

r

≤ 2rE(φ(|ρ|))/(LZn−1)r,
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where in the last inequality we have used that (Lt1/2)r ≥ (Lt)r/2r for t ≥ 0 and
r > 0. Thus (2.6) holds with c(r, ξ) ≥ 2rE(φ(|ξ − m|)).

To verify (2.7) observe that

Zn−1E(|η/Z
1/2
n−1|3|Zn−1)I(Zn−1 > 0) ≤ Z

−1/2
n−1 {a1,n + a2,n},

where
a1,n = E(|ρI(|ρ| ≤ Z

1/2
n−1) − μn,Zn−1 |2|ρ|I(|ρ| ≤ Z

1/2
n−1)|Zn−1),

and
a2,n = E(|ρI(|ρ| ≤ Z

1/2
n−1) − μn,Zn−1 |2|μn,Zn−1 | |Zn−1).

Recalling μn,Zn−1 is σ(Zn−1) measurable, we have

a1,n ≤ 2E(|ξ − m|3I(|ξ − m| ≤ Z
1/2
n−1)|Zn−1) + 2μ2

n,Zn−1
E(|ξ − m|),

and we also easily see that

a2,n ≤ |μn,Zn−1 |E((ξ − m)2).

Thus

Zn−1E(|η/Z
1/2
n−1|3|Zn−1)I(Zn−1 > 0) ≤ Z

−1/2
n−1 {a3,n + a4,n + a5,n},

where a3,n = 2E(|ξ − m|3I(|ξ − m| ≤ Z
1/2
n−1)|Zn−1), a4,n = 2μ2

n,Zn−1
E(|ξ − m|), and

a5,n = E((ξ − m)2)|μn,Zn−1 |. Since |μn,Zn−1 | ≤ E(|ξ − m|), we see that

Z
−1/2
n−1 {a2,n + a4,n + a5,n} ≤ c(r, ξ)/(LZn−1)r,

where c(r, ξ) is a finite positve constant depending only on r > 0 and L(ξ).
Hence (2.7) will hold, and the lemma will be proved, if we show

Z
−1/2
n−1 a3,n = 2Z

−1/2
n−1 E(|ξ − m|3I(|ξ − m| ≤ Z

1/2
n−1)|Zn−1) ≤ c(r, ξ)/(LZn−1)r,

where again c(r, ξ) is a finite positve constant depending only on r > 0 and L(ξ).
To verify this last inequality take c0 = c0(r) such that c0 ≥ ee and if t ≥ c0, then
loge t − 2r loge(loge t) > (loge t)/2.

If c0 > Zn−1, then

Z
−1/2
n−1 a3,n ≤ 2c0E(|ξ − m|2)/Z1/2

n−1,

and again (2.7) will hold for a sufficiently large constant c(r, ξ). Hence it remains
to consider the case where c0 ≤ Zn−1. Thus we observe that

Z
−1/2
n−1 a3,n ≤ 2(A1,n + A2,n),

where

A1,n = E

(
|ξ − m|2|ξ − m|Z−1/2

n−1 I

(
0 < |ξ − m| ≤

Z
1/2
n−1

(LZn−1)r

)∣∣Zn−1

)

≤ E(|ξ − m|2)
(LZn−1)r

,
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and

A2,n = E

(
|ξ − m|2|ξ − m|Z−1/2

n−1 I

(
Z

1/2
n−1

(LZn−1)r
≤ |ξ − m| ≤ Z

1/2
n−1

)∣∣Zn−1

)

≤ E(φ(|ξ − m|))

{L(
Z

1/2
n−1

(LZn−1)r )}r

.

Since c0 ≤ Zn−1, our choice of c0 now allows us to complete the proof.

Our next lemma provides harmonic moments for L(Zn). Its proof can be seen in
[11] or [12].

Lemma 2.4. Let r > 1, and assume {Zn : n ≥ 0} is a Galton-Watson branching
process with 1 < m = E(Z1) < ∞. Then

lim sup
n→∞

nrE((LZn)−rI(Zn > 0))/(loge n)r < ∞.(2.10)

A statement of Corollary 2 in [5] sufficient for this paper is the following lemma.
In particular, we state and use Einmahl’s result for real valued random variables,
whereas Corollary 2 holds for finite dimensional random vectors.

Lemma 2.5. Let η1, . . . , ηn be independent real valued random variables with zero
means and E(η2

j ) = σ2
j , 1 ≤ j ≤ n, where

∑n
j=1 σ2

j = 1. Let Sn(0) = 0,

Sn(t) =
k∑

j=1

ηj , t =
k∑

j=1

σ2
j = 1, 1 ≤ k ≤ n,

and define Sn(t) otherwise on [0, 1] via piecewise linear and continuous interpola-
tion. If W denotes Wiener measure on C0[0, 1] and 2 < s < 5, then the Prokhorov
distance between W and L(Sn(·)), when we use the sup-norm distance on C0[0, 1],
satisfies

ρ(L(Sn(·)), W ) ≤ cE

[
n∑

j=1

E(|ηj |s)
] 1

s+1

,(2.11)

where cE = cE(s) depends only on s.

The small deviation probabilities for Brownian motion we use are our next
lemma. It combines Propositions 2.2 and 2.4 from [4], with Proposition 2.2 slightly
modified, although its proof remains the same.

Lemma 2.6. Let {B(t); 0 ≤ t ≤ 1} be a sample continuous Brownian motion, and
M(t) = sup0≤s≤t |B(s)|, 0 ≤ t ≤ 1. Fix sequences {ti}r

i=0, {ai}r
i=1, and {bi}r

i=1,
where 0 = t0 < t1 < · · · < tr ≤ 1, ai < bi for 1 ≤ 1 ≤ r, and b1 ≤ b2 ≤ · · · ≤ br.
Then

lim sup
ε→0+

ε2 log P (aiε ≤ M(ti) ≤ biε, 1 ≤ i ≤ r) ≤ − π2

8

r∑
i=1

(ti − ti−1)/b2
i .(2.12)

In addition, if we assume a1 < b1 ≤ a2 < b2 ≤ · · · ≤ ar < br, then

lim sup
ε→0+

ε2 log P (aiε ≤ M(ti) ≤ biε, 1 ≤ i ≤ r) ≥ − π2

8

r∑
i=1

(ti − ti−1)/b2
i .(2.13)
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3. Proof of the The Chung-Wichura Functional Law

First we observe that the infinite product space (M ∞, ρ∞) is a compact metric
space. This follows since the metric ρ∞ gives the product topology on M ∞, and
by the definition (1.7) the space (M, ρ) itself is a compact metric space, i.e. (M, ρ)
is homeomorphic to the space of sub-probabilities on [0, 1] under the Lévy metric,
which is a compact metric space. In order to prove Theorem 1.2 our first step is to
show the limit set K ∞ is a compact subset of (M ∞, ρ∞).

Lemma 3.1. K ∞ is a compact subset of the space (M ∞, ρ∞).

Proof. Since (M ∞, ρ∞) is compact, it suffices to show K ∞ is a closed subset of
(M ∞, ρ∞). Hence let {fn} be a sequence in K ∞, and f ∈ M ∞ such that fn =
(fn,1, fn,2, . . .) and f = (f1, f2, . . .). Then, since ρ∞ gives the product topology on
M ∞, we have limn→∞ ρ∞(fn, f) =0 iff limn→∞ ρ(fn,j , fj) = 0 for every j ≥ 1.
Furthermore, (1.6-7) and the classical facts regarding convergence in Levy’s metric,
see [6], pages 32-37, imply that limn→∞ ρ(fn,j , fj) = 0 iff limn→∞ fn,j(t) = fj(t)
for all t ∈ [0, 1] which are continuity points of the limit function fj . Hence it is
immediate that limn→∞ ρ∞(fn, f) = 0 implies for all j ≥ 1 we have

lim
n→∞

fn,j(t) = fj(t),

except possibly for countably many t ∈ [0, 1].
Hence let {fn} be sequence in K ∞ with limn→∞ ρ∞(fn, f) = 0. Then for every

integer N ≥ 1 the above implies we have that

N∑
j=1

∫ 1

0

f −2
j (s)ds =

N∑
j=1

∫ 1

0

lim
n→∞

f −2
n,j (s)ds ≤ lim inf

n→∞

N∑
j=1

∫ 1

0

f −2
n,j (s)ds ≤ 1,

where the first inequality above is Fatou’s lemma and the second because fn ∈ K ∞.
Since N is arbitrary, this implies f ∈ K ∞, so we have K ∞ is closed. Thus the lemma
is proven.

Now we introduce some further notation, which will yield a useful open neigh-
borhood base for the topological space (M, ρ).

Definition. If f ∈ M, then we set t∗
f = sup{t : 0 ≤ t ≤ 1, f(t) < ∞} and note

that t∗
f = 1 by default if f(1) < ∞. If

0 = t0 < t1 < t2 < · · · < tr < t∗
f ≤ tr+1 < · · · < tr+s ≤ 1

is an arbitrary partition of the interval [0, 1], we often will abbreviate the partition
by P without explicitly displaying the points of the partition, or the number of
points in the partition, which is also arbitrary. If f ∈ M, α, β > 0, and P is the
partition

0 = t0 < t1 < t2 < · · · < tr < t∗
f ≤ tr+1 < · · · < tr+s ≤ 1

we define the neighborhood

N(f, t1, . . . , tr+s, α, β) = N (1)(f, t1, . . . , tr, α) ∩ N (2)(f, tr+1, . . . , tr+s, β),(3.1)

where

N (1)(f, t1, . . . , tr, α) = {g ∈ M : f(tj) − α < g(tj) < f(tj) + α, j = 1, . . . , r}
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and
N (2)(f, tr+1, . . . , tr+s, β) = {g ∈ M : g(tr+k) > β, k = 1, . . . , s}.

When the partition P and α, β are understood we will sometimes simply write
N(f), N(f, P ), or N(f, P , α, β). If the partition P contains only points from [0, t∗

f ),
then we will use N(f, P , α) to denote

{g ∈ M : f(tj) − α < g(tj) < f(tj) + α, j = 1, . . . , r}.

Finally, if tf = 1, f(1) < ∞, and t = 1 is a continuity point of f, then we will allow
t = 1 in partitions of the form N(f, P , α).

Our next lemma justifies the neighborhood terminology we use for the sets N(f).
Since (M, ρ) is homeomorphic to the space of sub-probabilities on [0, 1] metrized
by Lévy’s metric, and convergence in Lévy’s metric is equivalent to pointwise con-
vergence at all points where the limit function is continuous, the same holds for ρ
convergence on M by definition of ρ in (1.7). Hence the following lemma is hardly
surprising, and the interested reader can find a proof in the preprint [12].

Lemma 3.2. The collection of sets N(f, P , α, β), as P varies over all possible par-
titions of continuity points of f in [0, 1] and we also allow α, β > 0 to be arbitrary,
forms an open neighborhood base at the point f ∈ M. That is, given

N(f, t1, . . . , tr+s, α, β) = N (1)(f, t1, . . . , tr, α) ∩ N (2)(f, tr+1, . . . , tr+s, β),

there is an ε > 0 and open neighborhood

H(f) = {g ∈ M : ρ(f, g) < ε}
such that H(f) ⊆ N(f, t1, t2, . . . , tr+s, α, β), and for each such H(f) there is an
α, β > 0 and a partition P such that N(f, P , α, β) ⊆ H(f). Moreover, if f(1) < ∞,
then the sets N(f, P , α), as P varies over all finite partitions of continuity points
of f and α > 0 is arbitrary, form an open neighborhood base at f .

Remark 3.1. Once we prove the above set inclusions, the fact that the sets N(f)
are actually open follows immediately since the inequalities that define N(f) as per
(3.1) are strict inequalities.

Another elementary lemma involving the spaces (M, ρ) and (M ∞, ρ∞) is as
follows.

Lemma 3.3. Let f ∈ M and for n ≥ 1, M > 0, and 0 ≤ t ≤ 1, define

hn(t) =
n + 1

n
f(t) and f (M)(t) = f(t) ∧ M.

Then
ρ(hn, f) ≤ 1/n and ρ(f (M), f) ≤ 1/(M + 1).

Moreover, if f ∈ K, then∫ 1

0

h−2
n (s)ds = (n/(n + 1))2

∫ 1

0

f −2(s)ds < 1.

Furthermore, if f = (f1, f2, . . .) ∈ K ∞, hn = n+1
n f , f (M) = (f (M)

1 , f
(M)
2 , . . .), then

ρ∞(hn, f) ≤ 1/n and ρ∞(f (M), f) ≤ 1/(M + 1),

and ∞∑
j=1

∫ 1

0

h−2
n (s)ds ≤

(
n

n + 1

)2

< 1.
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Proof. First observe that

ρ(hn, f) = dL(h∗
n, f ∗) ≤ ‖h∗

n − f ∗ ‖,

where the equality is by definition of the ρ-metric, and the inequality follows since
the sup-norm dominates the Lévy metric. However, h∗

n(t)−f ∗(t) = 0 if t ≥ t∗
f or t =

0, and for 0 < t < t∗
f

h∗
n(t) − f ∗(t) ≤ f(t)/n

(1 + f(t))2
≤ 1/n.

Thus ‖h∗
n − f ∗ ‖ ≤ 1/n, which implies ρ(hn, f) ≤ 1/n as indicated. Similarly, f ∗(t) −

(f (M))∗(t) = 0 if 0 ≤ f(t) ≤ M and for M < f(t)

f ∗(t) − (f (M))∗(t) =
f(t)

1 + f(t)
− M

1 + M
≤ 1 − M

1 + M
=

1
1 + M

.

Thus ρ(f (M), f) ≤ 1/(M + 1) as indicated. The remainder of the proof is now
immediate.

To prove Theorem 1.2 we next prove a lemma which allows us to transfer es-
timates on Xn,Zn−1 being close to B in law, to estimates on Mn,Zn−1 being close
to

MB(t) = sup
0≤s≤t

|B(s)|, 0 ≤ t ≤ 1(3.2)

in law.

Lemma 3.4. Let Λ : C[0, 1] → C[0, 1] be defined by

(Λf)(t) = sup
0≤s≤t

|f(s)|, 0 ≤ t ≤ 1,

and for any Borel probability measure μ on C[0, 1] define μΛ(A) = μ(Λ−1(A)) for
Borel sets A. If ρ(μ, ν) is the Prokhorov metric for probability measures on C[0, 1]
when we use the sup-norm distance on C[0, 1], then

ρ(μΛ, νΛ) ≤ ρ(μ, ν).(3.3)

Proof. Take δ > ρ(μ, ν) and A an arbitrary Borel subset of C[0, 1]. Then we have

μΛ(A) = μ(Λ−1(A)) ≤ ν((Λ−1(A))δ) + δ ≤ ν(Λ−1(Aδ)) + δ = νΛ(Aδ) + δ.(3.4)

In the above, the second inequality follows from the fact that Λ is a Lip-1 map with
Lipshitz constant one, and hence (Λ−1(A))δ ⊆ Λ−1(Aδ) for every A and δ > 0.
That is, if f ∈ (Λ−1(A))δ, then there exists g ∈ Λ−1(A) with ‖f − g‖∞ < δ. Hence
Λ(g) ∈ A and since ‖Λ(f) − Λ(g)‖∞ ≤ ‖f − g‖ ∞, this implies Λ(f) ∈ Aδ and hence
f ∈ Λ−1(Aδ). The proof that ‖Λ(f) − Λ(g)‖∞ ≤ ‖f − g‖ ∞ follows easily from the
triangle inequality. Finally (3.4) for arbitrary A and δ > ρ(μ, ν) implies the lemma.

Now that the various topological considerations have been established, we finish
the proof of Theorem 1.2 with two additional lemmas. The first establishes (1.13),
showing that almost surely on the survival set S we have convergence to K ∞. The
second will verify (1.14), proving the cluster set fills K ∞ almost surely on S.
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Lemma 3.5. Let S denote the survival set of the process and set c2 = π2/8. Then,
under the conditions of Theorem 1.2 we have

P
({

lim
n→∞

ρ∞((Ln/c2)1/2Mn,r(n), K ∞) = 0
}

∩ S
)

= P (S).(3.5)

Proof. To simplify notation we let ηn(t) = (Ln/c2)1/2Mn,Zn−1(t) for n ≥ 1 and
0 ≤ t ≤ 1. We also define for 0 ≤ t ≤ 1, n ≥ 1, l ≥ 1 the vector valued processes

η̂n,l(t) = (Ln/c2)1/2(Mn,Zn−1(t), . . . , Mn−l+1,Zn−l
(t)),

and

ηn,r(n)(t) = (Ln/c2)1/2(Mn,Zn−1(t), . . . , Mn−r(n)+1,Zn−r(n)
(t), 0, 0, . . .).

Since (M ∞, ρ∞) is a compact metric space, it is separable. Hence K ∞ closed
implies that (3.5) will follow if we show for every f /∈ K ∞ there exists an open set
V containing f such that V ∩ K ∞ = φ and V satisfies P ({ηn,r(n) ∈ V i.o.} ∩ S) = 0.

Letting S0 be defined as in (2.1), we have P (S�S0) = 0, and hence it suffices to
show

P ({ηn,r(n) ∈ V i.o.} ∩ S0) = 0.(3.6)

for each f /∈ K ∞ and suitable open set V disjoint from K ∞ containing f .
If f = (f1, f2. . . . ) /∈ K ∞, then

∑
j≥1

∫ 1

0
f −2

j (s)ds > 1. Hence there exists an
integer l ≥ 1 and δ > 0 such that

l∑
j=1

∫ 1

0

f −2
j (s)ds > 1 + δ.

Furthermore, since the f ′
js are nondecreasing on [0, 1], there exist finite partitions

Pj of [0, t∗
fj

) consisting of continuity points of fj and α > 0 such that

l∑
j=1

∑
tk ∈Pj

(fj(tk) + 4α)−2(tk − tk−1) > 1 + δ.(3.7)

Here the reader should note that we need not take any points in the partition Pj

which are in [tf ∗
j
, 1] since

∫ 1

tf ∗
j

f −2
j (s)ds = 0. In particular, if tf ∗

j
= 0 we will not

form a partition, but rather define Vj = M, to be used as indicated below. That is,
if V =

∏∞
j=1 Vj , where Vj = N(fj , Pj , α), or Vj = M should tf ∗

j
= 0, for 1 ≤ j ≤ l,

and Vj = M for j ≥ l + 1, then for g = (g1, g2, . . .) ∈ V we have

∑
j≥1

∫ 1

0

g−2
j (s)ds ≥

l∑
j=1

∑
tk ∈Pj

(fj(tk) + α)−2(tk − tk−1) > 1 + δ.(3.8)

Of course, if tf ∗
j

= 0 for some j, 1 ≤ j ≤ l, then those terms do not need to
appear in (3.8), but to simplify the notation we write the proof as if all tf ∗

j
> 0 for

j = 1, . . . , l.
In particular, we now have f ∈ V and V ∩ K ∞ = φ. Furthermore, since Vj = M

for all j ≥ l + 1 and eventually r(n) > l, we have

{ηn,r(n) ∈ V } =

{
η̂n,l ∈

l−1∏
j=0

Vj+1

}
=

l−1⋂
j=0

{ηn−j,Zn−j−1 ∈ Vj+1}.



Functional LILs for multiple generations of BP 143

Hence (3.6) will follow if we show

P

({
η̂n,l ∈

l−1∏
j=0

Vj+1 i.o.

}
∩ S0

)
= 0.(3.9)

Letting F0 = {φ, Ω} and Fn = σ(Z1, . . . , Zn) for n ≥ 1, we define

Gn,k = Fnl+k, k = 0, 1, 2, . . . , l − 1, n ≥ 0,

and

En =
l−1⋂
j=0

An,j,α,(3.10)

where
An,j,α = {ηn−j,Zn−j−1 ∈ Vj+1 = N(fj+1, Pj+1, α)}

for j = 0, 1, 2, . . . , l − 1. Strictly speaking these sets also involve δ through (3.7),
but we supress that as our choice of α implies (3.7).

Then Enl+k is Gn,k measurable and (3.9) holds by the conditional Borel-Cantelli
lemma if we show that ∑

n≥1

P (Enl+k | Gn−1,k) < ∞(3.11)

a.s. on S0 for each k = 0, 1, . . . l − 1. That is, since {En i.o.} ∩ S0 is the event in
(3.9) and

{En i.o} ∩ S0 ⊆ ∪l−1
k=0{Enl+k i.o. in n} ∩ S0,(3.12)

the conditional Borel-Cantelli lemma and (3.11) implies

P ({Enl+k i.o. in n} ∩ S0) = 0.(3.13)

Hence, (3.11) holding a.s. on S0 for k = 0, 1, 2, . . . l−1 and (3.12) and (3.13) combine
to prove (3.6). We will prove (3.11) for k = 0 and observe that the other cases are
exactly the same. Furthermore, to simplify our notation we will let Hn = Gn,0 = Fnl

for n = 0, 1, . . .. Hence, we must show that a.s. on S0∑
n≥1

P (Enl| Hn−1) < ∞.

To this end, notice that by Lemma 2.1 on S0 we eventually have Zn > βn for
some 1 < β < m. Then, since Z(n−1)l is Hn−1 measurable, for sufficiently large n
on the set S0 we have that

P (Enl| Hn−1) = P (∩l−1
j=0Anl,j,α| Hn−1)I(Z(n−1)l > β(n−1)l)(3.14)

= P (∩l−1
j=0Anl,j,α ∩ {Z(n−1)l > β(n−1)l})| Hn−1).(3.15)

Thus, for all n sufficiently large, on S0 we have

P (Enl| Hn−1) = θn,1 + θn,2,(3.16)
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where

θn,1 = E[I(∩l−1
j=1Anl,j,α ∩ {Z(n−1)l > β(n−1)l}) · Tn,l,α,1| Hn−1],

θn,2 = E[I(∩l−1
j=1Anl,j,α ∩ {Z(n−1)l > β(n−1)l}) · Tn,l,α,2| Hn−1],

Tn,l,α,1 = E(I(Anl,0,α ∩ Bn,α)| Fnl−1),

Tn,l,α,2 = E(I(Anl,0,α ∩ B′
n,α)| Fnl−1),

and

Bn,α =
{

cE

[
c(r, ξ)

(Znl−1)r

]1/4

< γ0, Znl−1 > r0(f1, . . . fl; α) ≥ 3
}

.(3.17)

In the definition of Bn,α we take γ0 > 0, cE is the constant from Einmahl’s re-
sult presented in Lemma 2.5 with s = 3, c(r, ξ) is given as in Lemma 2.3, and
r0(f1, . . . fl+1; α) is such that Zk > r0(f1, . . . fl+1; α) implies σ

σk
N(fj , Pj , 2α) ⊆

N(fj , Pj ,
5
2α) for j = 1, 2, . . . l, where σ2

k = H(Zk) and H(Zk) is defined via the
truncated variance

H(a) = Var((ξ − m)I(|ξ − m| ≤ a)).

Recalling B′
n,α denotes the complement of Bn,α, we thus have

θn,2 ≤ P (B′
n,α| Hn−1)

and hence ∑
n≥1

E(θn,2) ≤
∑
n≥1

P (B′
n,α) < ∞

since Lemma 2.2 implies
∑∞

n=1 P (Zn ≤ J) < ∞ for all J < ∞. Thus we have that∑
n≥1 θn,2 converges with probability 1.
We now deal with θn,1. To this end, define the truncated version of the Xn,Zn−1

process as follows. If Zn−1 = 0 then set Tn(t) = 0 for all t ∈ [0, 1], and if Zn−1 > 0,
define for t = k

Zn−1
and 1 ≤ k ≤ Zn−1,

Tn(t) = (σ2Zn−1)−1/2
k∑

j=1

((ξn,j − m)I(|ξn,j − m| ≤
√

Zn−1) − μn,Zn−1),(3.18)

where the function is linearly interpolated for other values of t with Tn(0) = 0 and

μn,Zn−1 = E((ξ − m)I(|(ξ − m)| ≤ Z
1
2
n−1|Zn−1)).

Recalling V1 = N(f1, P1, α) and the map Λ from Lemma 3.4, we have

P (Anl,0,α ∩ Bn,α| Fnl−1) = P ({ηnl,Znl−1 ∈ V1} ∩ Bn,α| Fnl−1) ≤ In + IIn,

where

In = P ({(L(nl)/c2)1/2Λ(Tnl) ∈ N(f1, P1, 2α)} ∩ Bn,α| Fnl−1),(3.19)

and

IIn = P ({ ‖ηnl,Znl−1 − (L(nl)/c2)1/2Λ(Tnl)‖ > α/2} ∩ Bn,α| Fnl−1).(3.20)
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Thus, for n sufficiently large

θn,1 ≤ E(I(∩l−1
j=1Anl,j,α ∩ {Z(n−1)l > β(n−1)l}) · (In + IIn)| Hn−1})(3.21)

≤ E(I(∩l−1
j=1Anl,j,α ∩ {Z(n−1)l > β(n−1)l}) · In| Hn−1} + Γn,

where Γn = E(I({Z(n−1)l > β(n−1)l})IIn| Hn−1).
We first deal with the second term Γn. First we observe that

I({Z(n−1)l > β(n−1)l})IIn ≤ αn + βn,

where αn denotes

P

((
L(nl)

c2

) 1
2

sup
1≤k≤Znl−1

∣∣∣∣∣
k∑

j=1

(ξn,j − m)I(|ξn,j − m| > Z
1
2
nl−1)

∣∣∣∣∣ > 0| Fnl−1

)
,

and βn equals

P

({(
L(nl)

c2

) 1
2

Znl−1|μn,Znl−1 |/Z
1
2
nl−1 > α/2

}
∩Bn,α∩ {Z(n−1)l > β(n−1)l} | Fnl−1

)
.

Applying Lemma 2.3 we thus have

αn ≤ Znl−1P (|ξ − m| ≥ Z
1
2
nl−1|Znl−1)I(Znl−1 > 0)(3.22)

≤ c(r, ξ)(LZnl−1)−rI(Znl−1 > 0).(3.23)

Thus by the harmonic moment result in Lemma 2.4, we have a.s. on Ω that∑
n≥1 E(αn| Hn−1) < ∞.
We now turn to an estimate of βn. When Znl−1 > 0, and since E(ξ − m) = 0,

we see with μn,Znl−1 defined as in (2.9) that

Znl−1|μn,Znl−1 |
Z

1
2
nl−1

= Z
1
2
nl−1

∫ Z
1
2

nl−1

−Z
1
2

nl−1

t dF(ξ−m)(t)

≤

∫ ∞
Z

1
2

nl−1

t2(Lt)rdF|ξ−m|(t)

(LZnl−1)r
≤ c

(LZnl−1)r

for some finite constant c since E(ξ2(Lξ)r) < ∞. Hence βn is bounded above by

P

({(
L(nl)

c2

) 1
2 c

(LZnl−1)r
> α/2

}
∩ {Znl−1 ≥ 3} ∩ {Z(n−1)l > β(n−1)l} | Fnl−1

)
,

which implies

βn ≤ P ({3 ≤ Znl−1 ≤ exp{u(L(nl))
1
2r }} ∩ {Z(n−1)l > β(n−1)l} | Fnl−1),

where u is a finite positive constant depending only on α, c, r, c2. Letting

Hn = {3 ≤ Znl−1 ≤ exp{u(L(nl))
1
2r }

and Bk = {Z(n−1)l = k} for k = 0, 1, 2, . . . , then since these sets are Fnl−1 measur-
able we have

βn ≤ I(Hn)I({Z(n−1)l > β(n−1)l}).
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Using the Markov property we have

E(βn| Hn−1) ≤ E(I(Hn)|Z(n−1)l)I({Z(n−1)l > β(n−1)l}).

Now
E(I(Hn)|Z(n−1)l)I({Z(n−1)l > β(n−1)l})

=
∑
k≥0

∫
Bk

I(Hn)dP

P (Bk)
I(Bk)I({Z(n−1)l > β(n−1)l})

=
∑

k≥[β(n−1)l]+1

I(Bk)
P ({Z(n−1)l = k} ∩ Hn)

P (Bk)

=
∑

k≥[β(n−1)l]+1

I(Bk)P (Hn|Z(n−1)l = k),

and hence we have

E(βn| Hn−1) ≤
∑

k≥[β(n−1)l]+1

P

(
3 <

k∑
j=1

Zl−1,j < exp{u(L(nl))
1
2r }

)
,

where L(Zl−1,j) = L(Zl−1) are independent for j ≥ 1. Hence

E(βn| Hn−1) ≤
∑

k≥[β(n−1)l]+1

P

(
exp

{
−

k∑
j=1

Zl−1,j

}
≥ exp{− exp{u(L(nl))

1
2r }}

)
,

and Markov’s inequality therefore implies

E(βn| Hn−1) ≤
∑

k≥[β(n−1)l]+1

exp{exp{u(L(nl))
1
2r }}(E(exp{−Zl−1}))k)

=
∑

k≥[β(n−1)l]+1

exp{exp{u(L(nl))
1
2r }}γk

= exp{exp{u(L(nl))
1
2r }} γ[β(n−1)l]+1

1 − γ
,

where γ = E(exp{ −Zl−1}) < 1 since p0 < 1. Since r > 4 we have 1/2r < 1, and
thus for large n we have

exp{exp{u(L(nl))
1
2r } } γ[β(n−1)l]+1

1 − γ
≤ γ

1
2 β(n−1)l

.

Thus for such n we have

E(βn| Hn−1) ≤ γ
1
2 β(n−1)l

,

and hence
∑

n≥1 E(βn| Hn−1) < ∞ almost surely, which implies

∑
n≥1

Γn =
∑
n≥1

E(αn + βn| Hn−1)

converges with probability one on Ω.
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We now turn to estimating In. To simplify writing, let

Gn = ∩l−1
j=1Anl,j,α ∩ {Z(n−1)l > β(n−1)l}.(3.24)

Hence on S0 with Znl−1 ≥ r0(f1 · · · fl; α), we have σ
σnl

N(f1, P1, 2α) ⊂ N(f1, P1,
5
2α). Therefore, recalling In from (3.19) and that Bn,α is Fnl−1 measurable, we
have

In ≤ P

({
Λ

(
σ

σnl
Tnl

)
∈ (c2/L(nl))1/2N

(
f1, P1,

5
2
α

)}
∩ Bn,α| Fnl−1

)
(3.25)

≤ P

(
MB ∈

[
(c2/L(nl))1/2N

(
f1, P1,

5
2
α

)]2ρn
)

+ 2ρnI(Bn,α),(3.26)

where the last inequality follows from Lemma 3.4, MB is as defined in (3.2), and
ρn denotes the Prokhorov distance ρ(L( σ

σnl
Tnl|Znl−1), L(B)). Furthermore, taking

s = 3 in Einmahl’s result appearing in Lemma 2.5, Lemma 2.3 implies we have

ρn = ρ

(
L

(
σ

σnl
Tnl|Znl−1

)
, L(B)

)
≤ cE

[
c(r, ξ)

(LZnl−1)r

]1/4

I(Znl−1 > 0)

on Bnα. Of course, L(B) is the law of the standard Brownian motion on C0[0, 1].
Now eventually on S0 we have Zn > βn for 1 < β < m and hence almost surely
on S0 eventually we have that the Prokhorov distance ρn is less than 1/n. Thus
limn→∞ ρn(L(nl))1/2 = 0 there, and almost surely on S0 we have eventually in n
that

P

(
MB ∈

[(
c2

L(nl)

)1/2

N

(
f1, P1,

5
2
α

)]2ρn
)

≤ P

(
MB ∈

(
c2

L(nl)

)1/2

N(f1, P1, 3α)
)

,

where the probability inequality follows from simple set inclusion. Hence on S0 we
have eventually in n that

θn,1 ≤ ψn,1 + ψn,2 + IIn,

where

ψn,1 = E(I(Gn)| Hn−1)P
(

MB ∈
(

c2

L(nl)

)1/2

N(f1, P1, 3α)
)

(3.27)

and
ψn,2 = cEc(r, ξ)1/4E(I(Gn ∩ Bn,α)(LZnl−1)−r/4| Hn−1).

Now, ∑
n≥1

E(ψn,2) ≤ cEc(r, ξ)1/4
∑
n≥1

E((LZnl−1)−r/4I(Znl−1>0)) < ∞

by the log harmonic moment results of Lemma 2.4 and that r > 4. Hence the series∑
n≥1 ψn,2 converges with probability one, and on S0 we have

P (Enl| Hn−1) ≤ ψn,1 + ψn,3,
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where
ψn,3 = θn,2 + ψn,2 + IIn

and θn,2 , ψn,2, and IIn are summable with probability one. Furthermore, since the
term

P (MB ∈ (c2/L(nl))1/2N(f1, P1, 3α))

in (3.27) is deterministic, we have
∑

n≥1 ψn,1 < ∞ almost surely on S0 if

∑
n≥1

E(I(Gn)| Hn−1)P (MB ∈ (c2/L(nl))1/2N(f1, P1, 3α)) < ∞

almost surely on S0. Hence we need to study this last series, and recalling that Gn

involves one less of the sets Anl,j,α, we iterate the above argument l − 1 more times,
starting at (3.14-3.16) with subsequent analogues of Bn,α, to obtain on S0 for all
sufficiently large n that

P (Enl| Hn−1)

≤ ψn,4 +
l∏

j=1

P

(
MB ∈

(
c2

L(nl)

)1/2

N(fj , Pj , 3α)
)

I(Z(n−1)l > β(n−1)l)

where
∑

n≥1 ψn,4 < ∞. Now we apply (2.12) in Lemma 2.6. Thus our choice of α
in forming the open set V as in (3.7) implies for γ > 0 and for all sufficiently large
n that

P (Enl| Hn−1) ≤ ψn,4 + exp{ − loge(nl)(1 − γ)(1 + δ)}I(Z(n−1)l > β(n−1)l).(3.28)

Now taking γ sufficiently small so that (1 − γ)(1 + δ) > 1, we have a.s. on S0 that∑
n≥1

P (Enl| Hn−1) < ∞.(3.29)

The proof of the lemma now follows as indicated from (3.12), since the other l − 1
cases are completely similar.

Hence from this last lemma we have almost surely on the survival set S that

C({(Ln/c2)1/2Mn,r(n)}) ⊆ K ∞,

when we use the product topology on (C0[0, 1])∞. Our next lemma establishes that
in this setting the cluster set C({(Ln/c2)1/2Mn,r(n)}) is actually K ∞ almost surely
on S.

Lemma 3.6. Let S denote the survival set of the process and set c2 = π2/8. Then,
under the conditions of Theorem 1.2 we have

P ({C({(Ln/c2)1/2Mn,r(n)}) = K ∞ } ∩ S) = P (S).(3.30)

Proof. Since the cluster set of a sequence of points in ((C0[0, 1])∞, ρ∞) is closed,
and the topological space ((C0[0, 1])∞, ρ∞) is separable, it is sufficient to show that
for an arbitrary point f ∈ K ∞ with

∑
j≥1

∫ 1

0
f −2

j (s) ds ≤ 1, we have a.s. on S0 that

(Ln/c2)1/2Mn,r(n) ∈ V i.o.(3.31)
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where V is an arbitrarily small open set containing f . Furthermore, if

K0 =

{
f = (f1, f2, . . .) ∈ K ∞ : fj(1) < ∞ for all j ≥ 1,

∑
j≥1

∫ 1

0

f −2
j (s)ds < 1

}
,

then by Lemma 3.3 we see K0 is dense in K ∞. Hence it suffices to show that almost
surely on S0 (3.31) holds for each f ∈ K0, when V =

∏∞
j=1 Vj is an open set

containing f of the form in Lemma 3.5. That is, since fj(1) < ∞ for all j ≥ 1 when
f = (f,f2, . . .) ∈ K0, then by Lemma 3.2 it suffices to take l an arbitrary positive
integer, partitions Pj of continuity points of fj for 1 ≤ j ≤ l, and a single α > 0
arbitrarily small with

Vj = N(fj , Pj , α), 1 ≤ j ≤ l,

and Vj ∈ M for j ≥ l + 1. Moreover, by replacing f = (f1, f2, . . .) ∈ K0 by
f̃ = (f̃1, f̃2, . . .) where

f̃j(t) = fj(t) +
εt

2j
, 0 ≤ t ≤ 1,

and ε > 0 is arbitrarily small, there is no loss in generality in assuming that each
fj is strictly increasing on [0, 1]. Thus we also assume this holds for our f ∈ K0.

By the conditional Borel Cantelli lemma it suffices to show that∑
n≥1

P (Enl| Hn−1) = ∞(3.32)

where Enl and Hn−1 are as before in Lemma 3.5 and (3.10), except now f =
(f1, f2, . . .) ∈ K0 so we also have

∑
j≥1

∫ 1

0
f −2

j (s)ds < 1, and l and α are arbitrary
but fixed in our argument. Thus to verify (3.32), observe that for all n sufficiently
large, on S0

P (Enl| Hn−1) = E(E(I(Anl,0,α| Fnl−1)I(Gn)| Hn−1) > θn,1 − θn,2,

where
θn,1 = E(I(Gn)E(I(Anl,0,α ∩ Bn,α| Fnl−1)| Hn−1),

θn,2 ≤ P (B′
n,α| Hn−1),

and

Bn,α = {cE [c(r, ξ)(LZnl−1)−r]1/4 < γ0, Znl−1 > r0(f1, . . . , fl; α) ≥ 3},

where cE and c(r, ξ) are defined as above. Of course, here Gn is as in (3.24) with
the sets Anl,j,α defined as before following (3.10), except that now they are defined
in terms of the sets N(fj , Pj , α). Also, here we take r0(f1, . . . fl; α) such that Zk >
r0(f1, . . . fl; α) implies

σ

σk
N

(
fj , Pj ,

3
4
α

)
⊇ N

(
fj , Pj ,

α

2

)
(3.33)

for j = 1, 2, . . . , l. Now

∞∑
n=1

E(θn,2) ≤
∞∑

n=1

P (B′
n,α) < ∞,
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by applying Lemma 2.2 as in the proof of Lemma 3.5. Thus
∑

n≥1 θn,2 < ∞ a.s. on
Ω, and recalling that V1 = N(f1, P1, α), we see

P (Anl,0,α ∩ Bn,α| Fnl−1) = P ({ηnl,Znl−1 ∈ V1 ∩ Bn,α| Fnl−1) ≥ In − IIn,

where

In = P

({
(L(nl)/c2)1/2Λ(Tnl) ∈ N

(
f1, P1,

3
4
α

)}
∩ Bn,α| Fnl−1

)
,

and

IIn = P

({
‖ηnl,Znl−1 − (L(nl)/c2)1/2Λ(Tnl)‖ >

α

4

}
∩ Bn,α| Fnl−1

)
.

Hence,
θn,1 ≥ E(I(Gn)(In − IIn)| Hn−1)

≥ E(I(Gn)In| Hn−1) − E(IInI(Z(n−1)l > β(n−1)l)| Hn−1),

where as in (3.20-24), we have
∑

n≥1 E(IInI(Z(n−1)l > β(n−1)l)| Hn−1) < ∞ with
probability one.

Recalling the definition of Bn,α in this setting, we see that

Znl−1 > r0(f1, f2, . . . , fl; α)

implies
σ

σk
N

(
fj , Pj ,

3
4
α

)
⊇ N

(
fj , Pj ,

α

2

)
,

and we also have that

P

(
MB ∈

(
c2

L(nl)

)1/2

N

(
f1, P1,

α

4

))
I(Bn,α)

≤ P

({
Λ

(
σ

σnl
Tnl

)
∈

[(
c2

L(nl)

)1/2

N

(
f1, P1,

α

4

)]2ρn
}

∩ Bn,α| Fnl−1

)
+ 2ρnI(Bn,α),

where ρn denotes the Prokorov distance

ρ

(
L

(
σ

σnl
Tnl|Znl−1 > 0

)
, L(B)

)
.

Furthermore, taking s = 3 in Lemma 2.5, Lemma 2.3 implies we have on Bn,α that

ρn ≤ cE [c(r, ξ)(LZnl−1)−r]1/4 < γ0.

In addition, limn→∞ ρn(L(nl))
1
2 = 0 on S0. Hence if γ0 < α/12 the above implies

for all n sufficiently large that

P

(
MB ∈

(
c2

L(nl)

)1/2

N

(
f1, P1,

α

4

))
I(Bn,α)

≤ P

({
Λ

(
σ

σnl
Tnl

)
∈

[(
c2

L(nl)

)1/2

N

(
f1, P1,

α

4

)]2ρn
}

∩ Bn,α| Fnl−1

)
+ 2ρnI(Bn,α)
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≤ P

({
Λ

(
σ

σnl
Tnl

)
∈

(
c2

L(nl)

)1/2

N

(
f1, P1,

α

2

)}
∩ Bn,α| Fnl−1

)
+ 2ρnI(Bn,α)

≤ P

({
Λ(Tnl) ∈

(
c2

L(nl)

)1/2

N

(
f1, P1,

3
4
α

)}
∩ Bn,α| Fnl−1

)
+ 2ρnI(Bn,α),

where Lemma 3.4 is used in the first inequality and MB is as defined in (3.2).
Now

∑
n≥1 E(ρnI(Bn,α)| Hn−1) < ∞ a.s. on Ω by the harmonic moment results

of Lemma 2.4; i.e. ρn < γ0 < ∞ implies Znl−1 > 0. In addition, we also have a.s.
on Ω that

∑
n≥1 θn,2 < ∞. Thus the above shows it suffices to verify

∑
n≥1

P (Gn ∩ Bn,α| Hn−1)P
(

MB ∈ (c2/L(nl))1/2N

(
f1, P1,

α

4

))
= ∞(3.34)

a.s. on S0. Now,

P (Gn ∩ Bn,α| Hn−1) = P (Gn| Hn−1) − P (B′
n,α| Hn−1)

and since
∑

n≥1 P (B′
n,α| Hn−1) < ∞ with probability one by what we did earlier,

(3.34) will follow if we show that a.s. on S0∑
n≥1

P (Gn| Hn−1)P
(

MB ∈ (c2/L(nl))1/2N

(
f1, P1,

α

4

))
= ∞.

Iterating the previous argument l − 1 more times we see as before that since the
quantities

P

(
MB ∈ (c2/L(nl))1/2N

(
fj , Pj ,

α

4

))
are deterministic, it suffices to show that a.s. on S0

∑
n≥1

l∏
j=1

P

(
MB ∈ (c2/L(nl))1/2N

(
fj , Pj ,

α

4

))
I(Z(n−1)l > β(n−1)l) = ∞.

Since
P ({Z(n−1)l > β(n−1)l eventually} ∩ S0) = P (S0),

it is therefore sufficient to show that

∑
n≥1

l∏
j=1

P

(
MB ∈ (c2/L(nl))1/2N

(
fj , Pj ,

α

4

))
= ∞.(3.35)

Now we apply (2.13) in Lemma 2.6, which implies for γ > 0 and j = 1, . . . , l that

P

(
MB ∈ (c2/L(nl))1/2N

(
fj , Pj ,

α

4

))

≥ exp
{

−(1 + γ)L(nl)
∑

tk ∈Pj

(tk − tk−1)
/(

fj(tk) +
α

4

)2}

provided n ≥ n(γ). Since the f ′
js are increasing we have

l∑
j=1

{ ∑
tk ∈Pj

(tk − tk−1)
/(

fj(tk) +
α

4

)2}
≤

l∑
j=1

∫ 1

0

f −2
j (s) ds,
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and since ∑
j≥1

∫ 1

0

f −2
j (s) ds < 1,

there exists γ > 0 sufficiently small so that for n ≥ ñ(γ) we have

l∏
j=1

P

(
MB ∈ (c2/L(nl))1/2N

(
fj , Pj ,

α

4

))
≥ exp{−Ln}.

Hence (3.35) holds. This proves (3.32) and the lemma.
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