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Uniform Central Limit Theorems for

pregaussian classes of functions

Dragan Radulović1 and Marten Wegkamp2,∗

Florida Atlantic University and Florida State University

Abstract: We study weak convergence of general (smoothed) empirical proc-
esses indexed by classes of functions F under minimal conditions. We present
a general result that, applied to specific situations, enables us to prove uniform
central limit theorems under P -pregaussian assumption on F only.

1. Introduction

Let X1, X2 . . . be a sequence of i.i.d. random variables with common probability
measure P on R, and let F be a class of functions. F is called a P -Donsker class if
the empirical process

Gn(f) =
1√
n

n∑
i=1

{f(Xi) − Ef(Xi)}, f ∈ F(1)

converges weakly to a tight Gaussian limit in �∞(F ), the space of all bounded
functions on F . A necessary condition is that F is P -pregaussian: there exists a
tight Gaussian process in �∞(F ) that is indexed by F , see [3, 5, 12]. Of course a P -
Donsker class is P -pregaussian, but the converse is not true. There exist Gaussian
processes that cannot be obtained as a limit of {Gn(f), f ∈ F } as pointed out
by ([4, Section 3] (see also [1, page 178 and Section 3.8], [5, Example 7.5], [7] and
[10]). The obvious mechanism behind this defficiency is the discrepancy between the
discrete measure Pn and underlying probability measure P , that is not necessarily
discrete. However, if P is a discrete measure satisfying some regularity conditions,
the Borisov-Durst result [3, page 244] states that {Gn(f), f ∈ F } converges weakly
to a tight Gaussian process for all P -pregaussian classes F . On the other hand,
[9, 10] demonstrated that the same phenomenon holds under certain regularity
conditions if P has a density p(x) for the smoothed empirical process

Ĝn(f) =
√

n

∫
R

f(x){p̂n(x) − p(x)} dx, f ∈ F

where p̂n(x) is a histogram or kernel density estimator of p(x). Although the results
presented in [9, 10] constitute the main principle, they are limited in scope. The-
orem 1 in Section 2 expands on this idea by considering the more general setting
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where

Ĝn(f) =
√

n

∫
R

f(x) d{P̂n(x) − P (x)}, f ∈ F(2)

based on some estimator P̂n of P . Our approach differs from the recent paper [6] in
that we explicitly use closeness of the estimator P̂n to P . This enables us to avoid
imposing conditions on F .

We apply Theorem 1 to Fourier and kernel type density estimators. For exam-
ple, using a Fourier series density estimator p̂n(x), Theorem 3 below establishes
weak convergence of (2) under very general conditions. There is a trade-off be-
tween the smoothness of density p(x) and the class F , see [6, Section 4]. Loosely
speaking, if p(x) is a bit more than twice differentiable and is bounded away from
zero and infinity, then the only requirement on the bounded class F is that it is
P -pregaussian, which nicely matches Borisov-Durst analog for discrete measures.
Theorem 5 generalizes the case for densities that are not necessarily bounded away
from zero.

As for kernel density estimators, [11, 13] require further conditions on F , and
[9, 10] show that {Ĝn(f), f ∈ F } converges weakly under smoothness conditions on
p(x) only. Theorem 10 in Section 4 generalizes this result for densities with possibly
unbounded support and not necessarily bounded away from zero.

The paper is organized as follows: Section 2 describes a general strategy for
establishing weak convergence of {Ĝn(f) f ∈ F } and presents a general result
in Theorem 1. Sections 2 and 3 specialize Theorem 1 to Fourier series density
estimators and kernel density estimators, respectively. Proofs of the results can be
found at the end of each section.

2. General result

Given a P -pregaussian class F of functions, we are interested in weak convergence
in �∞(F ) of the smoothed empirical process {Ĝn(f), f ∈ F } defined in (2) to a
limiting Gaussian process. For this we need that

• the (finite dimensional) vectors (Ĝn(f1), . . . , Ĝn(fk)) converge weakly to a
multivariate normal distribution for all f1, . . . , fk ∈ F , k = 1, 2, . . . and

• Ĝn(f) is stochastically equicontinuous with respect to the L2(P ) semi-metric.

Let P̂n be an estimator of P such that P̂nf =
∫

f(x) dP̂n(x) can be written as∫
R

f(x) dP̂n(x) =
1
n

n∑
i=1

Yn,i(f),(3)

where Yn,1(f), Yn,2(f), . . . are i.i.d. random variables, linear in their argument f ∈
F . In case that the bias of {Ĝn(f), f ∈ F } is asymptotically negligible, we only
need to consider the centered process

Ĝ
0
n(f) =

1√
n

n∑
i=1

{Yn,i(f) − EYn,i(f)}, f ∈ F .(4)

The following result is our basic tool to establish weak convergence. It modifies
results obtained in [5] and parallels Theorem 3 in [6].
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Theorem 1. Consider the centered empirical process {Ĝ
0
n(f) : f ∈ F } based on

the general estimator P̂n defined in (3). Assume that

(A1) G
0
n(f) → N(0, σ2

f ) in distribution, as n → ∞, with σ2
f = Pf2 − (Pf)2.

(A2) there exists c ≥ 1 such that, for all δ > 0,

lim sup
n→∞

sup
f ∈F : Knn−1/2≤Pf2≤δ

E[Y 2
n,1(f)]
Pf2

≤ c

where Kn ≥ |Yn,i(f)| for all i and f ∈ F and Knn−1/2 → 0.
(A3)

E

[
sup

Pf2≤K2
nn−1/2

|Ĝ0
n(f)|

]
→ 0

as n → ∞.

Then {Ĝ
0
n(f), f ∈ F } converges weakly in �∞(F ) to a tight Gaussian process GP

with covariance structure

Cov(GP (f), GP (g)) = E[f(X)g(X)] − E[f(X)]E[g(X)].

Theorem 1 significantly simplifies the problem of stochastic equicontinuity of
{Ĝn(f), f ∈ F } since it only requires that the supremum in (A3) is taken over
balls P (f − g)2 ≤ Knn−1/2 instead of P (f − g)2 ≤ δ. Controling the supremum
still remains a formidable task and in general one needs to impose some additional
assumptions on the class of the functions F . This is the very source of various
requirements one finds in the literature: Bracketing classes, VC classes, VC -hull
classes, etc.

The main advantage of this theorem becomes apparent once it is applied to the
situations where both the estimator P̂n as well as the measure P are of the same
type. For example, a simple “two-line” proof that invokes Theorem 1 recovers the
Borisov-Durst type result for discrete P . To appreciate why, consider a discrete
measure P defined on the integers by the probabilities pk = P {X = k} and pk ≥
pk+1 (possibly after rearranging the original atoms) and

∑
k

√
pk < ∞, and let

pn,k = n−1
∑n

i=1 I{Xi=k} for k ∈ N. In order to establish weak convergence of the
empirical process {Gn(f), f ∈ F } for a P -pregaussian, uniformly bounded class of
functions F (‖f ‖∞ ≤ 1 for all f), we check assumptions (A1), (A2) and (A3). While
(A1) and (A2) are trivially met, it remains then to verify (A3). First we observe
that

E

[
sup

Pf2≤n−1/2

√
n

∣∣∣∣∣
∞∑

k=1

f(k)(pn,k − pk)

∣∣∣∣∣
]

≤

E

[
sup

Pf2≤n−1/2

√
n

∣∣∣∣∣
Mn∑
k=1

f(k)(pn,k − pk)

∣∣∣∣∣
]

+ 2
√

n
∞∑

k=Mn

pk

The first part on the right, after multplying and dividing by
√

pk and applying the
Cauchy Schwarz inequality, is bounded by{

sup
Pf2≤n−1/2

√
n

Mn∑
k=1

f2(k)pk

}1/2{
√

n

Mn∑
k=1

E
[
(pn,k − pk)2

]
pk

}1/2

≤
√

Mn

n1/2
.
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The result now follows easily since the condition
∑√

pk < ∞ implies that we can
find a sequence Mn such that both

√
n
∑∞

k=Mn
pk as well as n−1/2Mn converge to

zero. This little computation is simple and fully exploits the fact that we used a
discrete measure Pn to estimate the underlying discrete measure P .

The next step is to apply this idea to absolutely continuous measures P . We will
consider the density estimators p̂n(x) that possess the following property:

(5)
∫

R

f(x)p̂n(x) dx =
1
n

n∑
i=1

Yn,i(f),

where Yn,i(f) satisfies the above assumptions. The following corollary formalizes
the above computation and applies it to the smoothed empirical process. Every
nonparametric density estimator p̂n(x) has some inevitable bias p(x) − p̄n(x), where

p̄n(x) = E[p̂n(x)]

and the centered process {Ĝ
0
n(f), f ∈ F } is defined by

Ĝ
0
n(f) =

√
n

∫
R

f(x){p̂n(x) − p̄n(x)} dx =
1√
n

n∑
i=1

{Yn,i(f) − EYn,i(f)}.(6)

Corollary 2. Consider the centered process {Ĝ
0
n(f), f ∈ F } based on general den-

sity estimator p̂n(x) that satisfies (5). Assume that the class F is P −pregaussian,
that the assumptions A1 and A2 are satisfied, and

(7) lim
n→∞

Kn

√
n

∫
Var(p̂n(x))

p(x)
dx = 0.

Then {Ĝ
0
n(f), f ∈ F }, converges weakly to a tight Gaussian process {GP (f), f ∈ F }

that has covariance structure Cov(GP (f), GP (g)) = Pfg − PfPg.

Examples. Many popular density estimators can be written in the form (5) as we
show in the following examples. For kernel density estimators with kernel K and
bandwidth hn, simply take

Yn,i(f) =
∫

f(x)
hn

K

(
x − Xi

hn

)
dx,

while for Fourier series based density estimators, put

Yn,i(f) =
∫

f(t)Dm(Xi − t) dt

where Dm(t) is the Dirichlet kernel

Dm(t) =
sin((m + 1/2)t)

sin(t/2)
.

The histogram density estimator pn,H(x) with binwidth hn fits in this framework
for

Yn,j(f) =
∑
i∈Z

I{ihn ≤Xj<(i+1)hn }

∫ (i+1)hn

ihn

f(x)
hn

dx

and finally, the wavelet based density estimator pn,W (x) is of the form (5) with

Yn,j(f) =
∑
L∈Z

∑
k∈Z

φk,L(Xj)
∫

f(x)φk,L(x) dx +
∑
k∈Z

∑
l>L

ψk,l(Xj)
∫

f(x)ψk,l(x) dx

for an appropriate scaling function φ(x) and mother wavelet ψ(x).
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Proofs

Proof of Theorem 1. Assumption (A1) and the Cramer-Wold device yield the finite
dimensional convergence of the process {Ĝ

0
n(f), f ∈ F }. To prove that {Ĝ

0
n(f), f ∈

F } is stochastically equicontinuous is more delicate. Let G(f) + (Pf)Z, where
{G(f), f ∈ F } is a centered Gaussian process with all its sample paths bounded and
uniformly continuous with respect to the semi metric ρ(f, g) = P (f − Pf)(g − Pg)
and Z is N(0, 1), independent of G. The existence of G is guaranteed by the P -
pregaussian condition on F . Let δn = K

1/2
n n−1/4 and let mn = N(δn, L2(P ), F )

be the δn-covering number of F in L2(P ). Sudakov’s lower bound, see [5, Theo-
rem 2.16], implies that there exists a finite set {g1, . . . , gmn } ⊆ F such that

P (gi − gj)2 > δ2
n for 1 ≤ i 
= j ≤ mn

and
log(mn) ≤ αnδ−2

n for some sequence αn → 0.

By the triangle inequality,

|Ĝ0
n(f) − Ĝ

0
n(g)| ≤ |Ĝ0

n(f) − Ĝ
0
n(gi)| + |Ĝ0

n(g) − Ĝ
0
n(gj)| + |Ĝ0

n(gi) − Ĝ
0
n(gj)|

for all f, g ∈ F δ and where we may take gi, gj such that P (f − gi)2 ≤ δ2
n and

P (g − gj)2 ≤ δ2
n as {g1, . . . , gmn } form a δn covering net of F in L2(P ). For n large

enough, as δn → 0, we have
P (gi − gj)2 ≤ 4δ2

and consequently,

sup
f ∈F δ

|Ĝ0
n(f))| ≤ 2 sup

f ∈F δn

|Ĝ0
n(f)| + max

f ∈G 2δ

|Ĝ0
n(f)|,(8)

where
G2δ =

{
gi − gj : δ2

n < P (gi − gj)2 ≤ 4δ2, 1 ≤ i < j ≤ mn

}
.

Since in condition (3) we assumed that

2E
∗

[
sup

f ∈F δn

|Ĝ0
n(f)|

]
→ 0,

it remains to bound E[maxf ∈G 2δ
|Ĝ0

n(f)|]. We argue as in [5, pages 952, 953]. For n

large enough, condition (2) implies that E[Y 2
n,1(f)] ≤ 2cPf2 for Pf2 > δ2

n. Observe
that, by Chebyshev’s inequality, uniformly in f ∈ G2δ, for n large enough

P

{
|Ĝ0

n(f)| ≤ 2ε
}

≥ 1 −
1
n

∑n
i=1 E[Y 2

n,i(f)]
4ε2

≥ 1 − 2cPf2

4ε2
≥ 1

2
(9)

for cδ2 ≤ ε2. Using a standard symmetrization argument [8, page 14], we obtain

P

{
max

f ∈G 2δ

|Ĝ0
n(f)| ≥ 4ε

}
≤ 4P

{
max

f ∈G 2δ

∣∣∣∣∣ 1√
n

n∑
i=1

σiYn,i(f)

∣∣∣∣∣ ≥ ε

}
where σ1, . . . , σn is a Rademacher sequence, independent of X1, . . . , Xn. Define the
set

An =

{
1
n

n∑
i=1

Y 2
n,i(gk − g�) ≤ (1 + 2c)P (gk − g�)2, 1 ≤ k, � ≤ mn

}
.
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Since Y 2
n,1(f), . . . , Y 2

n,n(f) are independent, bounded (by K2
n) random variables, we

may apply Bernstein’s inequality and obtain, for all f ∈ G2δ, and n large enough,

P

{
n∑

i=1

Y 2
n,i(f) > (1 + 2c)Pf2

}
≤ P

{
n∑

i=1

[
Y 2

n,i(f) − E[Y 2
n,i(f)]

]
> nPf2

}

≤ exp

(
− 1

2
n(Pf2)2

EY 4
n,1(f) + 2

3K2
nPf2

)

≤ exp
(

− n

2(c + 2
3 )K2

n

Pf2

)
.

Consequently, we find by the union bound,

P(Ac
n) ≤ m2

n exp
{

− n1/2

2Kn(c + 1)

}
→ 0.

Next, observe that

E

[
max

f ∈G 2δ

∣∣∣∣∣ 1√
n

n∑
i=1

σiYn,i(f)

∣∣∣∣∣ IAn

∣∣∣∣∣X1, . . . , Xn

]

≤ E

[
max

f ∈G 2δ

∣∣∣∣∣ 1√
n

n∑
i=1

ZiYn,i(f)

∣∣∣∣∣ IAn

∣∣∣∣∣X1, . . . , Xn

]
where Z1, . . . , Zn are i.i.d. N(0, 1), and

E

⎡⎣( 1√
n

n∑
i=1

ZiYn,i(f)

)2

IAn

∣∣∣∣∣∣X1, . . . , Xn

⎤⎦ ≤ 1
n

n∑
i=1

Y 2
n,i(f)IAn ≤ (1 + 2c)Pf2.

This means that the Gaussian process {n−1/2
∑n

i=1 ZiYn,i(f)IAn , f ∈ F }, con-
ditionally given X1, . . . , Xn, is tighter than the tight Gaussian process {G(f) +
(Pf)Z, f ∈ F }. By Fernique’s comparison result between Gaussian processes [5,
Theorem 2.17], we find that

P

{
max

f ∈G 2δ

∣∣∣∣∣ 1√
n

n∑
i=1

σiYn,i(f)

∣∣∣∣∣ ≥ ε, An

}
converges to 0 as n → ∞. This concludes the proof of the asymptotic equicontinuity
of Ĝ

0
n and the theorem follows.

Proof for Corollary 2. We prove the corollary by showing that condition (7) implies
(A3) in Theorem 1. This follows easily as

E

[
sup

Pf2≤Knn−1/2

∣∣∣Ĝ0
n(f)

∣∣∣] =

E

[
sup

Pf2≤Knn−1/2

√
n

∣∣∣∣∣
∫

{x: p(x)>0}
f(x){p̂n(x) − p(x)} dx

∣∣∣∣∣
]

≤

sup
Pf2≤Knn−1/2

√
n

∫
f2(x)p(x) dx · E

[∫ {p̂n(x) − p(x)}2

p(x)
dx

]1/2

≤
{

Kn

√
n

∫
Var(p̂n(x))

p(x)
dx

}1/2

→ 0
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proving the result.

3. Fourier density estimators

Throughout this section we assume that density p(x) is defined on the interval
[0, 2π] and we consider classes F of periodic functions f : [0, 2π] → R with envelope
function

F (x) = sup
f ∈F

|f(x)|.

If x, t ∈ [0, 2π] and x + t > 2π, we set f(x + t) = f(x + t − 2π). The Fourier
coefficients of p and f are

ak =
1
2π

∫ 2π

0

e−ikxp(x) dx

and

bk,f =
1
2π

∫ 2π

0

e−ikxf(x) dx.

Given a sample X1, . . . , Xn and an integer sequence m depending on the sample
size n, the Fourier density estimator is defined by

pn,m(x) =
∑

|k|≤m

an
keikx

where

an
k =

1
2π

· 1
n

n∑
j=1

e−ikXj .

The smoothed empirical process is denoted by

Ĝn(f) =
√

n

∫
f(x){pn,m(x) − p(x)} dx, f ∈ F

while {GP (f), f ∈ F } stands for a Gaussian process with covariance structure

Cov(GP (f), GP (g)) = Pfg − PfPg.

Throughout this section we work under the following set of assumptions:
(B1) There exists c < ∞ such that for α ≥ 0 and β ≥ 0

sup
f ∈F

|bk,f | ≤ c

|k|β and |ak | ≤ c

|k|α

and
(B2) α + β > 2.

Theorem 3. Let F be a P -pregaussian class of functions. Assume (B1) and (B2)
and that d ≤ p(x) ≤ 1/d for some 0 < d < ∞. Then, {Ĝn(f) f ∈ F } converges
weakly to {GP (f), f ∈ F } in �∞(F ), provided either

(a) | |F | | ∞ ≤ 1 or β > 1, and m = nγ with 1/{2(α + β − 1)} < γ < 1/2,
(b) β ≤ 1 and α+2β > 3 and m = nγ with 1/{2(α+β − 1)} < γ < 1/{2(2 − β)}.
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Corollary 4. If α > 2 and d ≤ p(x) ≤ 1/d for some 0 < d < ∞, then, for uniformly
bounded classes of functions F , the following two statements are equivalent:

{Ĝn(f), f ∈ F } → {GP (f), f ∈ F } weakly in �∞(F )(10)
F is P -pregaussian.(11)

Proof. That (10) implies (11) follows from the very definition of P -pregaussian.
The implication (11) → (10) follows since α > 2 implies that we only need that
bk,f are uniformly bounded. This in turn is easily seen as

|bk,f | ≤ 1
2π

∫ 2π

0

|e−ikx| |f(x)|dx ≤ 1.

Remark. The condition α + β > 2 captures the trade-off between the smoothness
of underlying density p and the smoothness of the functions f . It is well known that
for β < 1 the class of functions F is not P −Donsker, which means that Theorem 3
establishes uniform central limit theorems for classes that are no longer P -Donsker
as soon as p has more than one derivative (α > 1). Pushing the conditions to the
extreme by considering β > 2, Ĝn converges weakly for any density p. This follows
since all L1 functions have uniformly bounded Fourier coefficients so that we can
formally set α = 0.

The obvious restriction of Theorem 3 is its assumption on the density p. We
now argue that by their very nature, Fourier series density estimators are intrin-
sically ill equiped when dealing with densities close to zero. Namely, the classical
representation using Dirichlet kernel reveals that

pn,m(t) =
1
n

n∑
i=1

sin(m + 1/2)(Xi − t)
sin((Xi − t)/2)

,

which means that the probability mass, although centered at Xi’s is spread out
over the whole interval. This follows from | |Dm| |L1 → ∞ as m → ∞. Thus, for
example, if p(x) ≈ e−1/x for x ≈ 0, mini≤n Xi is of the order 1/ lnn, which means
that for x ≈ 1/n, pn,m(x) ≈ 1/n while p(x) ≈ exp(−n).

We impose the following assumptions to ensure that p(x) behaves nicely around
zero.
(B3)

∫
p−1(x) dx < ∞ and ‖p‖∞ < ∞

(B4) The following four integrals
∫ 2π

0
p2(x) dx,

∫ 2π

0
F 2(x) dx,

∫ 2π

0
F 2(x)p2(x) dx

and
∫ 2π

0
F 2(x)p(x) dx are all finite.

Theorem 5. Assume (B1), (B3) and (B4) with α/2 + β > 2. Then, for m = nγ

with
1

α/2 + β − 1 + max(1 − β, 0)
< γ <

1
2 max(2 − β, 1)

the smoothed empirical process {Ĝn(f), f ∈ F } converges weakly to a tight Gaussian
process {GP (f), f ∈ F } in �∞(F ).

Proofs

For the remainder of this section we simplify the notation: Integration 1
2π

∫ 2π

0
will

be denoted by
∫

and the density estimator pn,m by pn. The usual notation for
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absolute value | · | is used for both real and complex functions, with the obvious
understanding that |a + bi| =

√
a2 + b2. We write a � b if a ≤ Cb for some fixed

constant C not depending on a or b. Finally the normalizing factor 1
2π in definition

of an
k is dropped.

A simple computation shows that

Ĝn(f) =
√

n

∫
f(x){pn(x) − E[pn(x)]} dx

=
√

n

∫
f(t)

⎧⎨⎩ ∑
|k|≤m

eikt(an
k − E[an

k ])

⎫⎬⎭ dt

=
√

n

∫
f(t)

⎧⎨⎩ ∑
|k|≤m

eikt 1
n

n∑
j=1

(e−ikXj − E[e−ikXj ])

⎫⎬⎭ dt

=
1√
n

n∑
j=1

∑
|k|≤m

∫
f(t)e−ikt

{
eikXj − E[eikXj ]

}
dt

=
1√
n

n∑
j=1

{Yn,j(f) − E[Yn,j(f)]}

for

Yn,j(f) =
∑

|k|≤m

eikXj bk,f =
∑

|k|≤m

eikXj bk,f = (Dm ∗ f)(Xj) =
∫

f(t)Dm(Xj − t) dt

where

Dm(t) =
sin(m + 1/2)t)

sin(t/2)
.

The proof of Theorem 3 requires a few auxiliary lemmas.

Lemma 6. Under B1, we have

(12) | |Yn,i| | ∞ � mmax(1−β,0).

If, in addition, 0 < δ ≤ p(x) < ∞, we have

(13) E
[
Y 2

n,j(f)
]

� Pf2 and | |Yn,i| | ∞ � ln n| |f | | ∞.

Proof. The first assertion follows from

| |Yn,i| | ∞ =

∥∥∥∥∥∥
∑

|k|≤m

eikXj bk,f

∥∥∥∥∥∥
∞

�
∑

|k|≤m,k �=0

k−β � mmax(1−β,0).

For the second claim we reason as follows. Since 0 < δ ≤ p(x) < ∞, we have

E
[
Y 2

n,1(f)
]
=
∫ ⎛⎝ ∑

|k|≤m

eikX1bk,f

⎞⎠2

p(x) dx

�
∫ ⎛⎝ ∑

|k|≤m

eikX1bk,f

⎞⎠2

dx

=
∫ ∑

|k|≤m

eikX1bk,f

∑
|k|≤m

eikX1bk,f dx
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=
∑

|k|≤m

∑
|l|≤m

bk,fb−l,f

∫
ei(k−l)x dx

=
∑

|k|≤m

bk,f b−k,f ≤
∑

|k|<∞
b2
k,f

=
∫

f2(x)dx

� Pf2

We write ‖f ‖q =
{∫

|f(x)|q dx
}1/q and we obtain, for q > 1,

(
E
[
Y q

n,i(f)
])1/q ≤ δ−1| |Yn,i| |q

≤ δ−1| |Dm| |1| |f | |q
≤ δ−1 ln(n)| |f | |q

by Young’s inequality. Take q = 2 and q = ∞ to conclude the proof.

Lemma 7. Assume B1, B2 and B4. Then, for m = nγ with 1/{2(α + β − 1)} <
γ < 1/2, we have

(14) lim
n→∞

sup
f

∣∣∣∣√
n

∫
f(t){E[pn(t)] − p(t)} dt

∣∣∣∣ = 0.

Proof. First observe that

E[pn(t)] = E

⎡⎣ ∑
|k|≤m

an
keikt

⎤⎦
=
∑

|k|≤m

eikt 1
n

∑
j=1,n

E[e−ikXj ]

=
∑

|k|≤m

eikt
E[e−ikX1 ]

=
∑

|k|≤m

eikt

∫
e−ikxp(x) dx

=
∑

|k|≤m

eiktak.

Consequently,∫
f(x)E[pn(x)] dx =

∑
|k|≤m

ak

∫
f(x)eikx =

∑
|k|≤m

akb−k,f .

B4 allows us to invoke Parseval’s identity:

(15)
∫

p(x)f(x) dx =
∑
k∈Z

akb−k,f



94 D. Radulović and M. Wegkamp

whence

sup
f

√
n

∣∣∣∣∫ f(x){E[pn(x)] − p(x)} dx

∣∣∣∣
=

√
n sup

f

∣∣∣∣∣∣
∑

|k|>m

akb−k,f

∣∣∣∣∣∣
�

√
n

∞∑
k=m

1
kα+β

� n1/2

mα+β−1

=
n1/2

nγ(α+β−1)
→ 0,

by B1 and B2.

Lemma 8. Assume B1, B2 and B4. Then, for any integer m,

(16) sup
f

∣∣E[Y 2
n,1(f)] − Pf2

∣∣ � 1
mα/2+β−1

Proof. Again B4 allows us to invoke Parseval’s identity:

Pf2 =
∑
k∈Z

ck,f b−k,f ,

where ck,f =
∫

f(x)p(x)e−ikxdx. Another application of Parseval’s identity yields

ck,f =
∫

f(x)p(x)eikxdx =
∫

p(x)e−ikxf(x)dx =
∑
l∈Z

glb−l,f =
∑
l∈Z

ak+lb−l,f .

Since gl is the l-th Fourier coefficient of p(x)e−ikx, we have gl = ak+l. and hence

Pf2 =
∑
k∈Z

∑
l∈Z

ak+lb−l,f b−k,f =
∑
k∈Z

∑
l∈Z

a−(k+l)bl,fbk,f .

On the other hand,

E[Y 2
n,1(f)] = E

⎡⎣ ∑
|k|≤m

eikX1bk,f

⎤⎦2

= E

⎡⎣ ∑
|k|≤m

eikX1bk,f

∑
|k|≤m

eikX1bk,f

⎤⎦
= E

⎡⎣∑
|l|≤m

e−ilX1b−l,f

∑
|k|≤m

eikX1bk,f

⎤⎦
=
∑

|k|≤m

∑
|l|≤m

bk,f bl,fEeilX1eikX1

=
∑

|k|≤m

∑
|l|≤m

bk,f bl,f

∫
eilxeikxp(x) dx
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=
∑

|k|≤m

∑
|l|≤m

bk,f bl,f

∫
ei(l+k)xp(x) dx

=
∑

|k|≤m

∑
|l|≤m

bk,f bl,fa−(l+k).

This yields further that

Pf2 − E[Y 2
1,f ] =

∑
k∈Z

∑
l∈Z

a−(k+l)bk,f bl,f −
∑

|k|≤m

∑
|l|≤m

bk,f bl,fa−(l+k)

=
∑

|(l,k)∈([−m,m]∗[−m,m])c

bk,f bl,fa−(l+k)

so that, using B2,

sup
f

∣∣E[Y 2
1,f ] − Pf2

∣∣ � ∑
|(l,k)∈([−m,m]∗[−m,m])c

1
|k|β |j|β |l + k|α

� m1−β−α/2,

with the obvious convention that the summation is not taken for k = 0, l = 0 and
l + k = 0. The final estimate on the right is obtained by breaking the summation
over k, l into six regions: I = {(k, l) : l ∈ (m, ∞), k ∈ [1, ∞)}, II = {(k, l) : l ∈
(m, ∞), k ∈ [−∞, 0]}, III = {(k, l) : l ∈ (−∞, −m), k ∈ [1, ∞)}, IV = {(k, l) :
l ∈ (−∞, −m), k ∈ [−∞, 0)}, V = {(k, l) : l ∈ (−m, m), k ∈ [m, ∞)}, and
V I = {(k, l) : l ∈ (−m, m), k ∈ [−∞, −m)} and obtain for each region a similar
estimate. The computation is straightforward but lengthy and for this reason we
present only one typical case, namely region I. Since

1
(l + k)α

=
1

(l + k)α/2

1
(l + k)α/2

≤ 1
lα/2

1
kα/2

,

we have

∞∑
l=m

∞∑
k=1

1
kβlβ(l + k)α

≤
∞∑

l=m

∞∑
k=1

1
kβlβlα/2kα/2

=
∞∑

l=m

1
lβ+α/2

∞∑
k=1

1
kβ+α/2

�
∞∑

l=m

1
lβ+α/2

� m1−β−α/2,

since β + α/2 > 1. The estimates for the regions II, . . . , V I are very similar.

Lemma 9. Assume B3 or 0 < δ ≤ p(x). Then we have

E

[
sup

Pf2≤Knn−1/2

∣∣∣∣√
n

∫
f(x){pn(x) − E[pn(x)]} dx

∣∣∣∣
]

�
√

mKn√
n

.
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Proof. We start with the simple observation that 0 < δ ≤ p(x) implies
∫

1/p(x) dx <
∞. Next, we bound

E

[
sup

Pf2≤Knn−1/2

∣∣∣∣∣√
n

∫
f(x){pn(x) − E[pn(x)]}

√
p(x)√
p(x)

dx

∣∣∣∣∣
]

≤

E

[
sup

Pf2≤Knn−1/2

√
nPf2

√∫
(pn(x) − E[pn(x)])2

p(x)
dx

]
≤√

Knn1/2

∫
Var(pn(x))

p(x)
dx.

Using the Dirichlet kernel representation, we get

Var(pn(x)) = Var

⎛⎝ 1
n

∑
i=1,n

Dm(x − Xi)

⎞⎠ ≤ 1
n

E
[
D2

m(x − X1)
]
,

and consequently, for q(x) = 1/p(x),

Knn1/2

∫
Var(pn(x))

p(x)
dx ≤ Knn−1/2

∫
q(x)

∫
D2

m(x − t)p(t) dt dx

= Knn−1/2

∫ ∫
D2

m(x − t)p(t)q(x) dx dt

= Knn−1/2

∫
p(t)

∫
q(x)D2

m(x − t) dx dt

� Knn−1/2

∫ ∫
D2

m(t − x)q(x) dx dt

= Knn−1/2| |D2
m ∗ q| |1

≤ Knn−1/2| |D2
m| |1| |q| |1

� Knn−1/2m

since | |D2
m| |1 � m and | |q| |1 =

∫
1/p(x) dx < ∞.

Proof of Theorem 3. We verify conditions (A1), (A2) and (A3) from Theorem 1.
Clearly, Yn,i(f) are i.i.d. and linear in f . By Lemma 6, ‖Yn,i(f)‖∞ ≤ m = o(

√
n),

so that Lemmas 7 and 8 easily yield E[Yn,i(f)]k → Pfk for k = 1, 2. The Central
limit theorem implies (A1).

Second, since by assumption p(x) is bounded away from zero, (B3) and (B4) are
automatically satisfed and we can apply Lemmas 6–9. Lemma 7 states that we only
need to consider centered process Ĝ

0
n.

For case (a) of Theorem 3, Lemma 6 implies that | |Yn,i| | ∞ � lnn as well as
E[Y 2

n,i(f)] � Pf2. A1 and A2 are satisfied by Lemma 6 and Lemma 7 with Kn =
ln2(n). Lemma 9 implies that

E

[
sup

Pf2≤(ln2 n)n−1/2

∣∣∣∣√
n

∫
f(x){pn(x) − E[pn(x)]} dx

∣∣∣∣
]

is bounded by
m ln2(n)

n1/2
= nγ−1/2 ln2 n → 0
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since γ < 1/2 by assumption.
Case (b) of Theorem 3 is handled in similar way. Since now β < 1, α + 2β > 3

implies (B2). Again, as p(x) is bounded away from zero, (B4) is satisfied so that
we can invoke Lemmas 6–9. Lemma 6 implies that | |Yn,i| | ∞ � Kn = m1−β as well
as E[Y 2

n,i(f)] � Pf2, whence (A1) and (A2) follow from Lemmas 6 and 7. Since

mKn

n1/2
= nγ(1−β)−1/2 → 0

as γ(1 − β) < 1/2 by the assumption, Lemma 9 concludes our proof.

Proof of Theorem 5. Since α/2 + β > 2 implies (B2), we can apply Lemmas 6–9.
Lemma 7 implies that we only consider the centered process Ĝ0

n, while Lemma 6
implies that | |Yn,i| | ∞ � Kn for Kn � mmax(1−β,0). Lemma 8 yields that∣∣E[Y 2

n,i(f)] − Pf2
∣∣ � 1

mα/2+β−1
� Kn

n1/2

since γ > 1/{α/2 + β − 1 + max(1 − β, 0)}. Thus (A1) and (A2) are met. Finally,
condition (A3) follows from Lemma 9 and the following estimate

Knm

n1/2
=

mmax(2−β,1)

n1/2
= nγ max(2−β,1)−1/2 → 0

since γ < 1/{2 max(2 − β, 1)}.

4. Kernel density estimators

Let X1, X2, . . . be i.i.d. with density p(x) and let p̂n(x) be a kernel density estimator
of p(x),

p̂n(x) =
1

nhn

n∑
i=1

K

(
x − Xi

hn

)
,(17)

where the kernel K satisfies, for some d > 1,

K ≥ 0,

∫
K(z) dz = 1, sup

z
K(z) < ∞,

(18) ∫
zK(z) dz = 0,

∫
z2K(z) dz < ∞

and the sequence of bandwidths hn converges to zero as n → ∞. Let F be a
P -pregausian class of uniformly bounded functions,

‖f ‖ ∞ ≤ 1 for all f ∈ F .

We impose conditions on the kernel K, the bandwidth hn, the tails of p(x) and
we require smoothness of the convolutions (f ∗ p̃)(x) and (f2 ∗ p̃)(x), where p̃(x) =
p(−x), to establish weak convergence of {Ĝn(f), f ∈ F }. Let Cs

M (R) be the class
of functions g : R → R with |g(�s	)(x) − g(�s	)(y)| ≤ M |x − y|s− �s	.

Theorem 10. Let β = 2 ∧ s > 1. Assume that both (f ∗ p̃) and (f2 ∗ p̃) are in
Cs

M (R) for some M < ∞ for all f ∈ F , and that

lim
t→∞

tαP{ |X| ≥ t} < ∞(19)



98 D. Radulović and M. Wegkamp

for some α > β/(β − 1) and

nh2β
n → 0 and n

α−1
α h2

n → ∞ as n → ∞.(20)

Then {Ĝn(f), f ∈ F } converges weakly to a tight Gaussian process in �∞(F ).

Remark. Notice that if p(x) has exponential tails, corresponding roughly to the
case α = +∞ in (19), the condition on the bandwidth becomes n−1/2 � hn �
n−1/(2β). Hence we need some minimal smoothness s > 1.

Remark. We require that F is a P -pregaussian class of uniformly bounded func-
tions. The condition that (f ∗ p̃) ∈ Cs(R) follows if p ∈ Cs(R), independent of f .
On the other hand, it follows from the proof of [6, Theorem 5] that, if f ∈ BV (R)
and p ∈ Csp(R), then (f ∗ p̃) ∈ C1+sp(R). However, note that any bounded subset
of BV (R) is P -Donsker.

Remark. How does our result compare to results recently obtained by [6]? Minor
differences are the conditions on p(x) and hn. Whereas we assume condition (19) on
the density p(x), [6] requires that supx

√
1 + x2 p(x) < ∞. For non-negative kernels

K, we share the same upper bound for hn that makes the bias of Ĝn disappear.
The paper [6] allows for a smaller lower bound in some special cases described in [6,
Theorems 9, 10]. Our method relies on closeness of p̂n(x) to p(x), which we achieve
by requiring that at least nh2

n → ∞. The restriction on hn is the (small) price to
pay for our more general approach that allows for arbitrary P -pregaussian classes
F . The proof of Theorem 10 does not require any structure of F in contrast to the
approach taken in [6]. This is the main difference between the two papers. Notice
that too small bandwidths hn force the smoothed measure dP̂n(x) = p̂n(x) dx to be
close to the empirical measure Pn = n−1

∑n
i=1 δXi and this should be prevented for

non P -Donsker classes F . Higher order kernels are allowed in [6]. Our proof relies
on non-negative p̂n(x) (and thus on K ≥ 0).

Nickl [7] shows that certain subsets of certain Besov spaces are P -pregaussian, yet
not P -Donsker for all P that have bounded densities with respect to the Lebesgue
measure. Our result immediately implies that the smoothed empirical process in-
dexed by any class of truncated functions of these Besov spaces converges, since
truncation does not increase the metric entropy numbers. (It is possible that trun-
cation makes the classes in fact smaller, perhaps even P -Donsker, but we do not
need to verify this to apply our result.)

The remainder of the section is devoted to the proof of Theorem 10.

Proof. Throughout we will use the notation Kh(x) = (1/h)K(x/h) and β = 2 ∧ s.
We first show that the bias of Ĝn is asymptotically negligible. Recall that p̄n(x) =
E[p̂n(x)]. Using a standard Taylor argument with the smoothness condition (f ∗p̃) ∈
Cs(R), we find

√
n

∣∣∣∣∫ f(x){p̄n(x) − p(x)} dx

∣∣∣∣
=

√
n

∣∣∣∣∫ f(x)
∫

K(z){p(x − hnz) − p(x)} dz dx

∣∣∣∣
=

√
n

∣∣∣∣∫ K(z){(f ∗ p̃)(zhn) − (f ∗ p̃)(0)}dz

∣∣∣∣
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=
√

n

∣∣∣∣∫ K(z)zhn(f ∗ p̃)′(0) dz +
∫

K(z)zhn{(f ∗ p̃)′(ξ) − (f ∗ p̃)′(0)}dz

∣∣∣∣
≤

√
n

∣∣∣∣∫ zK(z)hnM |ξhn|β−1 dz

∣∣∣∣
where ξ is between 0 and z. The right hand side is of order

√
nhβ

n by assumption
(18) which is asymptotically negligible by assumption (20).

Consequently, Ĝn − Ĝ
0
n → 0 in probability, as n → ∞. We now verify conditions

(1)–(3) of Theorem 1.
Note that

√
n

∫
R

f(x){p̂n(x) − p̄n(x)} dx =
1√
n

n∑
i=1

{Yn,i(f) − EYn,i(f)}

with

Yn,i(f) =
∫

f(x)Khn(x − Xi) dx, i = 1, . . . , n.

Each term is bounded as

|Yn,i(f)| =
∣∣∣∣∫ f(x)Khn(x − Xi) dx

∣∣∣∣ = ∣∣∣∣∫ f(Xi + zhn)K(z) dz

∣∣∣∣ ≤
∫

K(z) dz = 1.

The Lebesgue density theorem implies the pointwise convergence (f ∗ Khn)(x) →
f(x) as n → ∞ and an application of the dominated convergence theorem yields

lim
n→∞

E
[

{(f ∗ Khn)(X1)}j
]

= E[f j(X1)] = Pf j , j = 1, 2.

This, coupled with the fact that f and K are bounded, verifies condition (A1) of
Theorem 1.

Next we establish condition (A2) with c = 1 and Kn = 1. For all n ≥ 1,

E[Y 2
n,1(f)] = E

[∫
f(x)Khn(x − Xi) dx

]2
=
∫ {∫

f(x + zhn)K(z) dz

}2

p(x) dx

≤
∫ {∫

f2(x + zhn)K(z) dz

}
p(x) dx

=
∫

{(f2 ∗ p̃)(−zhn)}K(z) dz

= Pf2 + O(hβ
n)

= Pf2 + o(n−1/2),

uniformly in f ∈ F .
Finally we verify condition (A3). We abbreviate F n−1/4 by F n. Let Bn = {x :

p̄n(x) 
= 0} so that

E

[
sup

f ∈F n

∣∣∣∣∣
∫

Bc
n

f(x){p̂n(x) − p̄n(x)} dx

∣∣∣∣∣
]

≤ 2
∫

Bc
n

E[|p̂n(x)|] dx = 2
∫

Bc
n

p̄n(x) dx = 0
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and

E

[
sup

f ∈F n

∣∣∣∣√
n

∫
R

f(x){p̂n(x) − p̄n(x)} dx

∣∣∣∣
]

= E

[
sup

f ∈F n

∣∣∣∣√
n

∫
Bn

f(x){p̂n(x) − p̄n(x)} dx

∣∣∣∣
]

.

By condition (20) on the bandwidth, there exists a sequence Ln → ∞ such that

n

L2α
n

→ 0 and
L2

n

nh2
n

→ 0.(21)

(We can take Ln slightly larger than n1/(2α).) Then

E

⎡⎣ sup
f ∈F

n−1/4

|Ĝ0
n(f)|

⎤⎦
≤ 2
∫

Bn ∩[−Ln,Ln]c

√
nE[|p̂n(x)|] dx

+ E

⎡⎣ sup
f ∈F

n−1/4

∣∣∣∣∫
Bn ∩[−Ln,Ln]

f(x)
√

n{p̂n(x) − p̄n(x)} dx

∣∣∣∣
⎤⎦

:= I + II.

The first term I equals

I = 2
√

n

∫
Bn ∩[−Ln,Ln]c

∫
K(z)p(x − hnz) dz dx

≤ 2
√

n

∫
K(z)(P{X ≥ Ln − zhn} + P{X ≤ −Ln − zhn}) dz.

Split the integration into two parts: |z| ≤ Ln/(2hn) and its complement, and obtain

I ≤ 2
√

n

∫
|z|≤Ln/(2hn)

K(z)(P{X ≥ Ln − zhn} + P{X ≤ −Ln − zhn}) dz

+2
√

n

∫
|z|≥Ln/(2hn)

K(z)(P{X ≥ Ln − zhn} + P{X ≤ −Ln − zhn}) dz

≤ 2
√

nP

{
|X| ≥ 1

2
Ln

}
+ 4

√
n

∫
|z|≥Ln/(2hn)

K(z) dz

≤ 2
√

nP

{
|X| ≥ 1

2
Ln

}
+ 4

√
n

(2hn)β

Lβ
n

∫
|z|βK(z) dz.

By assumptions (19), (20) and by construction of Ln, the term on the right con-
verges to zero.

Next we show that II → 0 in probability. Using the Cauchy-Schwarz inequality,
we find [∫

Bn ∩[−Ln,Ln]

f(x){p̂n(x) − p̄n(x)} dx

]2

≤
∫

f2(x)p̄n(x) dx ·
∫

Bn ∩[−Ln,Ln]

{p̂n(x) − p̄n(x)}2

p̄n(x)
dx.
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By condition (18) on the kernel and the smoothness condition on f2 ∗ p̃ imply that

sup
f ∈F n

∣∣∣∣∫ f2(x){p̄n(x) − p(x)} dx

∣∣∣∣
= sup

f ∈F n

∣∣∣∣∫ f2(x)
{∫

K(z)p(x − zhn) dz − p(x)
}

dx

∣∣∣∣
= sup

f ∈F n

∣∣∣∣∫ K(z)
{∫

f2(x)p(x − zhn) − f2(x)p(x) dx

}
dz

∣∣∣∣
= O(hβ

n) = o(n−1/2).

Next, it follows easily that

Var(p̂n(x)) ≤ 1
nh2

n

E

[
K2

(
x − X1

hn

)]
≤ 1

nhn
‖K‖∞E[Khn(x − X1)]

=
‖K‖∞
nhn

p̄n(x).

and hence ∫
Bn ∩[−Ln,Ln]

Var(p̂n(x))
p̄n(x)

dx ≤ 2‖K‖∞Ln

nhn
.

Combining the preceding four displays, we obtain

E

[
sup

f ∈F n

∣∣∣∣∣√
n

∫
Bn ∩[−Ln,Ln]

f(x){p̂n(x) − p̄n(x)} dx

∣∣∣∣∣
]

= O

(
L2

n

nh2
n

)1/4

= o(1)

as n → ∞, by construction of the sequence Ln. This concludes the verification of
condition (A3), and Theorem 10 follows now from Theorem 1.
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