
Internet Mathematics Vol. 3, No. 1: 21-40

Protean Graphs
Tomasz �Luczak and Pawe�l Pra�lat

Abstract. We propose a new random model of web graphs in which the degree of
a vertex depends on its age. We characterize the degree sequence of this model and
study its behaviour near the connectivity threshold.

1. Introduction

One of the most characteristic features of the internet graph, which corresponds
to internet web connections (or more generally, of the so-called web graphs),
is its degree sequence, in which the fraction of vertices of degree larger than
k decreases as a power of k. Since in the standard models of sparse random
graphs the fraction of vertices of large degree decreases exponentially with k,
a number of new probabilistic models of web graphs for which degree sequence
obeys the power law have been proposed (see, for instance, [Bollobás et al. 03,
Bollobás et al. 01, Cooper and Frieze 03, Kumar et al. 00]). In this note we
introduce yet another random graph model in which the shape of the degree
sequence is controlled by some additional parameters. The formal definition of
the model, given in the next section, is somewhat technical, but the idea behind
it is simple and natural. We start with any graph G on n vertices, and in each
step we pick randomly one of the vertices v to be renewed. Thus, we delete
from G all edges incident to v (this corresponds to a removal of a random node
from the network). Then, we generate new edges incident to v according to
some prescribed distribution X = Xn−1 (which can be viewed as a new node
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that establishes connections with some nodes in the network). We allow the
probability that v is joined to w to depend on the age of w, i.e., the last time
the vertex w had been renewed (it seems natural to assume that older nodes
are more attractive for newcomers). Let Pk(X) = Pk(G; X) denote the graph
obtained by applying this procedure k times. Note that if by times k1 and k2

each vertex of a graph G is renewed at least once, the random graphs Pk1(G; X),
Pk2(G; X) are identical random objects whose properties do not depend on the
graph G with which we started, but only on the distribution X with which we
generate edges incident to a renewed vertex. We call the graph generated in this
process a protean graph and denote it by P(X).

Note that, unlike in most theoretical models of the internet graph, the number
of vertices of the protean graph is large but fixed and does not grow during the
protean process. One may view it as a weakness of our approach since the
internet graph is, at least at this moment, rapidly expanding. Let us, however,
point out a few features of protean graphs that, in our opinion, make this model
interesting. Protean graphs generalize some standard models of random graphs
(as G(n, p)) but could also be used to imitate real networks such as web graphs
or, after some modifications, peer-to-peer networks (see a remark in Section 2).
This is, of course, done by an appropriate selection of the distribution X; for
a particularly natural choice of X, the degree sequence of P(X) is studied in
Section 4. Our model takes into account an additional parameter of a vertex,
its age, and predicts how it influences the degree of a vertex. Moreover, it
seems that protean graphs not only are interesting as models of the web graphs
but also are attractive from a theoretical point of view: they have a very rich
dependence structure, and, unlike many other models of random graphs, P(X)
can be viewed as the stationary distribution of the protean process {Pk(X)}k.
In order to show similarities and differences between the behaviour of protean
graphs and other random graph models, in the last section we study how the
threshold of connectivity is affected by the dependence structure of the protean
graph and characterize the limit distribution of the recovery time for connectivity
near the connectivity threshold.

Finally, let us mention that most of the arguments that we use are fairly long
and technical. Thus, we often omit details of the proofs that can be easily filled
in by the reader (a much more elaborate treatment of the subject can be found
in the second author’s PhD dissertation [Pra�lat 04]).

2. Definition

Let Xn−1 = (X1, . . . , Xn−1) be an (n − 1)-dimensional nonnegative integer-
valued random variable, G be a graph with vertex set [n] = {1, 2, . . . , n}, and σ :
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[n] → [n] denote a permutation of [n]. Consider a Markov chain {(G̃k, σ̃k, Ak)}∞k=0

whose stages are triples (G̃k, σ̃k, Ak), where G̃k is a (multi)graph with vertex set
[n], σ̃k : [n] → [n] is a permutation of set [n], and Ak ⊆ [n]. The process starts
with (G̃0, σ̃0, A0) = (G, σ, ∅). In the kth step of the process, we choose a random
vertex i ∈ [n] and move i to the end of the permutation σ̃k−1, i.e., we set

σ̃k(j) =

⎧⎪⎨
⎪⎩

σ̃k−1(j) for σ̃k−1(j) < σ̃k−1(i)
σ̃k−1(j) − 1 for σ̃k−1(j) > σ̃k−1(i)
n for j = i .

Then, we remove all edges incident to i from G̃k−1 and generate randomly new
edges incident to it, so that the vector

(di(σ̃−1
k (1)), di(σ̃−1

k (2)), . . . , di(σ̃−1
k (n − 1))) ,

where di(σ̃−1
k (�)), � = 1, 2, . . . , n − 1, counts the number of edges joining i and

vertex σ̃−1
k (�), is distributed with distribution Xn−1. Thus, roughly speaking,

to get G̃k we delete a random vertex, update edges of the remaining vertices
accordingly, add a new vertex n, and join it to the other vertices according to
the distribution Xn−1. Note that the weight of a vertex v depends only on
its position σ̃k(v) in permutation σ̃k; we call σ̃k(v) the rank of v. Finally, we
modify the set Ak of the vertices of G̃k that have been renewed so far, putting
Ak = Ak−1 ∪ {i}.

Let
L = min{k : Ak = [n]} .

The protean process P(Xn−1) is defined as the Markov chain {(Gi, σi)}∞i=0 whose
stages are pairs (Gi, σi), where Gi = G̃i+L and σi = σ̃i+L. Note that the
chain P(Xn−1) = {(Gi, σi)}∞i=0 is already in the stationary distribution, i.e., the
distribution determined by Gi on the set of all ordered graphs with vertex set
[n] is identical for all i ≥ 0. Furthermore, this distribution does not depend on
the choice of G or σ. The random graph corresponding to this distribution is a
protean graph. In order to make some of the notation below slightly easier, we
shall assume that the ranks of the vertices of the protean graph coincide with
their labels, i.e., we set

L̃ = min{i ≥ L : σ̃i is an identity}

and identify the protean graph P(Xn−1) with GL̃.
Clearly, the behaviour of P(Xn−1) is largely affected by the distributions of

Xn−1. Thus, for instance, if every coordinate of Xn−1 has the binomial distri-
bution B(1, p), then P(Xn−1) can be identified with a standard random graph
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model G(n, p). Another simple distribution is when a renewed vertex selects at
random precisely d neighbours from the remaining n− 1 vertices. This model is
somewhat similar to the models of peer-to-peer networks, where a new vertex is
connected to some number of cache vertices; in the case of peer-to-peer networks,
however, one needs to establish additional links to ensure that the network is
connected (see, for instance, [Pandurangan et al. 01]). Here, we concentrate
on certain multigraph variants of the above model, which can be used to study
(undirected) web graphs.

Let n, d ∈ N and η ≥ 0. We shall consider only a special type of protean
(multi)graphs with vertex set [n], where in each step a new vertex chooses a
neighbour among the existing vertices d times, and in each of these d independent
choices each vertex v is chosen with the probability proportional to the rank of v

raised to −η (e.g., we assume that old vertices of small ranks are more attractive
to newcomers). As we see shortly (Theorem 4.2), the distribution of the degrees
of the vertices in these graphs also obeys the power law, provided that η ∈ (0, 1).
In order to make this definition precise, for 1 ≤ s ≤ n − 1 and

δs = (0, 0, . . . , 0, 1, 0, . . . , 0) ∈ R
n−1 (1 at the sth position),

let Xη
n−1 and Xη,d

n−1 be nonnegative integer-valued random variables such that

P(Xη
n−1 = δs) = s−η

/ n−1∑
i=1

i−η .

Furthermore, for d ∈ N, let Xη
n−1(i), i = 1, 2, . . . , d, denote independent copies

of Xη
n−1, and finally let

Xη,d
n−1 =

d∑
i=1

Xη
n−1(i) .

Then, by Pn(d, η) we denote the protean graph P(Xη,d
n−1), while for the protean

process P(Xη,d
n−1) we write Pn(d, η) = {(Pt

n(d, η), σt)}∞t=0.

3. Basic Lemma

In this section we introduce the main tool in dealing with protean graphs:
Lemma 3.5, which, roughly speaking, states that Pn(d, η) is, in a way, related to
a random graph on the set of vertices [n] = {1, 2, . . . , n}, in which a pair of ver-
tices i, j, 1 ≤ i < j ≤ n, is adjacent with probability (1−η) d

n ( j
i )η, independently

for each such pair.
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Let ξ̃ = {ξi}0
i=−∞ denote a random sequence of integers, where ξi ∈ [n] and

P(ξi = r) = 1/n for each i ≤ 0 and 1 ≤ r ≤ n (the ξi correspond to the labels of
the vertices as they are renewed during the process). For i ∈ [n] and t ≤ 0, we
define T (t, i) by setting

T (t, i) = max{j ≤ t : ξj = i};

if such a j does not appear in {ξi}t
i=−∞ at all, which happens with probability

0, we put T (t, i) = −∞. Now, let ξ̂ = {ξi}0
i=−∞ be a random sequence obtained

from ξ̃ by conditioning on the event that

−∞ < T (0, 1) < T (0, 2) < · · · < T (0, n) = 0 .

Let σ
(j)
n denote a permutation of the set [n] obtained from a uniform random

permutation by conditioning on the event that the elements 1, . . . , j appear in it
in the correct order and σ

(j)
n (j) = n, i.e., that

σ(j)
n (1) < σ(j)

n (2) < · · · < σ(j)
n (j) = n . (3.1)

Our further argument is based on the following elementary observation, which
states that at the moment when the jth vertex of Pn(d, η) is renewed for the
last time, the rank of vertex i has been given by σ

(j)
n (i).

Fact 3.1. Let j ∈ [n]. Define a permutation σ̄j, setting σ̄j(i) = k, whenever the
kth smallest element in the sequence

T (T (0, j), 1), T (T (0, j), 2), . . . , T (T (0, j), n)

is equal to T (T (0, j), i). Then, σ̄j has the same distribution as the random
permutation σ

(j)
n .

Let us start with the distribution of the random variable σ
(j)
n (i).

Fact 3.2. For 1 ≤ i < j ≤ n and i ≤ k ≤ n − j + i, we have

P(σ(j)
n (i) = k) =

(
k−1
i−1

)(
n−k−1
j−i−1

)
(
n−1
j−1

) . (3.2)

In particular, Eσ
(j)
n (i) = in/j.

Proof. The number of permutations σ : [n] → [n] for which (3.1) holds is equal to(
n−1
j−1

)
(n − j)!; among them there are

(
k−1
i−1

) (
n−k−1
j−i−1

)
(n − j)! for which we have
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σ(i) = k. Hence (3.2) holds, and

Eσ(j)
n (i) =

∑
k

k

(
k−1
i−1

)(
n−k−1
j−i−1

)
(
n−1
j−1

) =
in

j

∑
k

(
k
i

)(
n−k−1
j−i−1

)
(
n
j

) =
in

j
.

The last equation follows from the fact that
(
k
i

)(
n−k−1
j−i−1

)
/
(
n
j

)
is a hypergeometric

probability function, so the very last sum is equal to one.

It turns out that the random variable σ
(j)
n (i) is sharply concentrated around

its mean.

Fact 3.3. Let 0 < ε < 1/4, 1 ≤ i < j ≤ n, and

k±
ε =

in

j
(1 ± ε) .

Then,

P(σ(j)
n (i) ≤ k−

ε ) ≤ 3i exp
(
− ε2i

4

)
,

and

P(σ(j)
n (i) ≥ k+

ε ) ≤ 2j exp
(
− ε2i

12

)
.

Proof. Note that

P(σ(j)
n (i) = k) =

(
k−1
i−1

)(
n−k−1
j−i−1

)
(
n−1
j−1

) =
i(j − i)n
jk(n − k)

(
k
i

)(
n−k
j−i

)
(
n
j

) .

Thus, one can estimate the above probability by applying a well-known bounds
for the tails of the hypergeometric distribution (see, for instance, Theorem 2.10
in [Janson et al. 00]). Since the calculations are standard, we omit the technical
details.

Now let us consider a generalization of the well-known balls-into-bins model,
which will be useful to prove Lemma 3.5. Suppose that we sequentially put d

balls into m bins by placing each ball into a bin independently and the probability
that we choose a bin k, 1 ≤ k ≤ m, is equal to ρk, where

∑m
i=1 ρk = 1. Let

S1, S2 ⊆ [m], S1 ∩ S2 = ∅, |S1| ≤ d, and p(S1, S2) denote the probability that
every bin from set S1 has at least one ball and bins from set S2 have no balls.

Fact 3.4. Using the notations described above, we have

p(S1, S2) ≥ (1 −
∑

j∈S1∪S2

ρj)d−|S1|d(d − 1) . . . (d − |S1| + 1)
∏
i∈S1

ρi
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and

p(S1, S2) ≤ (1 −
∑
j∈S2

ρj)d−|S1|d(d − 1) . . . (d − |S1| + 1)
∏
i∈S1

ρi .

Proof. In the first inequality we estimate p(S1, S2) by the probability that each bin
from S1 contains precisely one ball; in the second we count some configurations
more than once.

Now we state the main result of this section, Lemma 3.5. Although its precise
formulation is rather technical, the lemma is a straightforward consequence of
the definition of Pn(d, η) and the large deviation inequalities stated in Fact 3.3.

Let 0 < η < 1, d ∈ N, and

E1, E2 ⊆ {{i, j} : log3 n < i < j ≤ n}, E1 ∩ E2 = ∅ .

For every i, j ∈ [n] and r = 1, 2, let

Vr(j) = {i : i < j and {i, j} ∈ Er} ,

w(i, j) = (1 − η)
1
n

(j

i

)η

=
(
1 + O

(
nη−1

)) (in/j)−η∑n
s=1 s−η

,

and

wr(j) =
∑

i∈Vr(j)

w(i, j) .

Then, the following holds.

Lemma 3.5. Let 0 < η < 1, d, E1, E2, V1(j), w(i, j), w1(j), and w2(j) be defined
as above, and let |V1(j)| ≤ d for every j ∈ [n].

Let Pn(E1, E2, d, η) denote the probability that all pairs from E1 are edges of
Pn(d, η) and no pair from E2 is an edge of Pn(d, η). Then,

Pn(E1, E2, d,η) ≤ o(exp(− log3/2 n))

+
n∏

j=1

[1 − (1 + O(log−1/2 n))w2(j)]d−|V1(j)|

× d(d − 1) . . . (d − |V1(j)| + 1)
∏

i∈V1(j)

(1 + O(log−1/2 n))w(i, j),
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and

Pn(E1, E2, d,η) ≥ o(exp(− log3/2 n))

+
n∏

j=1

[1 − (1 + O(log−1/2 n))(w1(j) + w2(j))]d−|V1(j)|

× d(d − 1) . . . (d − |V1(j)| + 1)
∏

i∈V1(j)

(1 + O(log−1/2 n))w(i, j).

Proof. As we have already mentioned, Lemma 3.5 is a simple consequence of
Facts 3.1, 3.3, and 3.4. Indeed, Fact 3.1 says that at the moment when vertex
j is renewed for the last time, the rank of vertex i has the same distribution
as the random variable σ

(j)
n (i). Let ε = log−1/2 n. Fact 3.3 implies that with

probability 1 − o(exp(− log3/2 n)) for every i, j, log3 n ≤ i < j ≤ n, the rank of
i at the moment when j is refreshed for the last time is contained between k−

ε

and k+
ε . Now the assertion follows from Fact 3.4.

An analogous result for η = 0 has a particularly simple form. Indeed, in this
case we have w(i, j) = 1/n for every 1 ≤ i < j ≤ n, and so we do not need to
invoke Fact 3.3.

Lemma 3.6. Let d, E1, E2, V1(j), and V2(j) be defined as above, and let |V1(j)| ≤ d

for every j ∈ [n].
Let Pn(E1, E2, d, 0) denote the probability that all pairs from E1 are edges of

Pn(d, 0) and no pair from E2 is an edge of Pn(d, 0). Then,

Pn(E1, E2, d, 0) ≤
n∏

j=1

(1 − |V2(j)|/n)d−|V1(j)|

× d(d − 1) . . . (d − |V1(j)| + 1)n−|V1(j)|,

and

Pn(E1, E2, d, 0) ≥
n∏

j=1

(1 − |V1(j)|/n − |V2(j)|/n)d−|V1(j)|

× d(d − 1) . . . (d − |V1(j)| + 1)n−|V1(j)|.

From the above lemmas it follows that the behaviour of the protean graph
Pn(d, η) is related to that of the random graph with vertex set [n] in which two
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vertices i, j, log3 n ≤ i < j ≤ n, are adjacent with probability

p(i, j) = dw(i, j) = (1 − η)
d

n

(j

i

)η

, (3.3)

independently for each such pair.
Indeed, if |V1(j)| = o(d) for every j ∈ [n], then Lemma 3.5 gives

Pn(E1, E2, d, η) ∼
n∏

j=1

(
1 −

∑
i∈V2(j)

w(i, j)
)d

d|V1(j)|
∏

i∈V1(j)

w(i, j)

= (1 + o(1)) exp
(
−

∑
{i,j}∈E2

p(i, j)
) ∏

{i,j}∈E1

p(i, j) ,

whereas if we consider a graph with independent edges, the probability that an
analogous event holds is equal to

∏
{i,j}∈E2

(
1 − p(i, j)

) ∏
{i,j}∈E1

p(i, j)

= (1 + o(1)) exp
(
−

∑
{i,j}∈E2

p(i, j)
) ∏

{i,j}∈E1

p(i, j) .

Lemmas 3.5 and 3.6 state that the protean graph behaves just like the graph in
which two vertices i, j, i < j, are adjacent with probability p(i, j), independently
for each pair. We prove that for some properties this is indeed the case. However,
since we claim nothing about edges between “small vertices” i, 1 ≤ i < log3 n,
we cannot show a general theorem which relates, say, monotone properties of
our model with the one with independent edges (as it is done, for instance, in
[Chung and Lu 04]). Nonetheless, our lemmas are strong enough to show that any
property of the independent model which, roughly speaking, does not depend
on the behaviour of the first log3 n vertices and can be proved by computing
moments holds also for the protean graph (see Theorems 5.1 and 5.2). We also
emphasize that, in our opinion, it is its dynamical behaviour (cf., Theorem 5.3)
which makes the protean graph model interesting.

4. Degrees of Vertices

In this section we study the shape of degrees sequence of Pn(d, η). Let us start
with the following result on the expected degree of vertex i.
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Theorem 4.1. Let 0 ≤ η < 1 and d = o
(
n(1−η)/2

)
. Then, the expected degree of a

vertex i = i(n), log4 n ≤ i ≤ n, is given by

Ed(i) = (1 + o(1))d
1 − η

1 + η

((n

i

)η

+
2η

1 − η

i

n

)
.

Proof. Let d<(i) and d>(i) denote the number of neighbours j of i such that
j < i and j > i, respectively. We look first at the expectation of d<(i). It is
easy to see that in every moment of the process any set of log3 n vertices has the
total weight O(nη−1 log3 n); thus, the expected number of neighbours of i among
the first log3 n vertices is o(1). Furthermore, from Fact 3.3 we infer that with
probability 1−o(exp(− log3/2 n)) the total weight of all vertices j, log3 n ≤ j < i,
is

(1 + O(log−1/2 n))
i∑

j=log3 n

w(i, j) = (1 + O(log−1/2 n))i/n ,

so Ed<(i) = (1 + o(1))di/n + o(1).
On the other hand, one can use Lemma 3.5 (see also the remark made at the

end of the previous section) to show that

Ed>(i) =
(
1 + o(1)

) n∑
j=i+1

p(i, j)

=
(
1 + o(1)

)
d(1 − η)

(n

i

)η
∫ 1

i/n

xηdx

=
(
1 + o(1)

)
d

1 − η

1 + η

((n

i

)η

− i

n

)
.

Since d(i) = d<(i) + d>(i), the assertion follows.

Note that for η ∈ (0, 1) the above expectation is minimized for i = (1 +
o(1))cmin(η)n, where the constant

cmin(η) = [(1 − η)/2]1/(η+1)

depends only on η but not on d. We comment on this fact in the following
section, devoted to the threshold for the connectivity for Pn(d, η).

Observe also that, for small i, the expected degree of a vertex i is dominated by
the factor d 1−η

1+η

(
n
i

)η. Consequently, the degrees of the protean graph Pn(d, η)
are distributed according to the power law. More specifically, let Zk = Zk(n; d; η)
denote the number of vertices of degree k in Pn(d, η) and Z≥k =

∑
�≥k Z�. Here

and below a.a.s. means “with probability tending to 1 as n → ∞.”
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Theorem 4.2. Let d ∈ N, 0 < η < 1, log2 n ≤ k = k(n) = O(nη/ log3 n), and
d = d(n) = o(log2 n). Then, a.a.s.

Z≥k = (1 + o(1))n
(1 − η

1 + η
· d

k

)1/η

+ O(log3 n) .

Proof. We just outline an argument, omitting technical details. Let Yi,j , log3 n ≤
i < j ≤ n, be a family of independent random variables such that

P(Yi,j = 1) = 1 − P(Yi,j = 0) = p(i, j),

where p(i, j) is defined by (3.3). Then, from Lemma 3.5 it follows that the
probability that i has k neighbours among vertices j, with j > i, can be well
approximated by the probability that

∑
j>i Yi,j = k. One can use this fact also

to estimate tails of the distribution and show that large deviation inequalities
for

∑
j>i Yi,j imply that for every ε > 0 a.a.s. all vertices i such that

i ≥ (1 + ε)n
(1 − η

1 + η
· d

k

)1/η

has fewer than k − d = (1 + o(1))k neighbours among vertices j > i, and each
vertex i for which

i ≤ (1 − ε)n
(1 − η

1 + η
· d

k

)1/η

has more than k neighbours. Since the vertex i has at most d = o(k) neighbours
j with j < i, the assertion follows.

In a graph in which the number of vertices of degree k decreases roughly as
k−γ , the fraction of vertices of degree at least k changes roughly as

∑
�≥k

O(�−γ) = O(k1−γ) .

Thus, to imitate this distribution, one should set the parameter η of the protean
graph Pn(d, η) to be equal to η ∼ 1/(γ − 1). For the web graph the distribution
of total degrees is, at this moment, unknown. However, the number of vertices
of in-degree k decreases roughly as k−2.1, while the fraction of vertices of out-
degree k can be approximated by k−2.7 (cf., [Broder et al. 00]). Thus, if the
total degree of the graph is close to the distribution of in-degree, then it can be
approximated by the protean graph with ηwww ∼ 0.91.
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5. Connectivity

Theorem 4.2 shows that protean graphs can be treated as a (stationary) model
of web graphs; some properties interesting for this type of application such as the
diameter and the size of the largest component of Pn(d, η) will be treated in the
forthcoming paper [Pra�lat 06] (see also [Pra�lat 04]). In this section we study the
connectivity of Pn(d, η) to illustrate similarities and differences both in results
and methods between protean graphs and the standard binomial random graph
model G(n, p).

Let ρn(d, η) denote the probability that Pn(d, η) is connected. First, we deal
with the simplest case η = 0. Then, all vertices have the same weight, and the
probability that two vertices are connected by an edge is given by

p̄(i, j) = p̂(n) = 1 − (1 − 1/n)d = d/n + O(d2/n2) .

Thus, one should expect that the threshold function for connectivity is the same
as in the binomial random graph model G(n, p̂). Theorem 5.1 shows that it is
roughly the case, but the dependence structure of Pn(d, 0) influences the second
term of the threshold function.

Theorem 5.1. Let d = d(n) = log n − 1
2 log log n + a(n), with a(n) = o(log log n).

Then,

lim
n→∞ ρn(d, 0) =

⎧⎪⎨
⎪⎩

1 if a(n) → ∞
exp

( − √
π/2e−a

)
if a(n) → a

0 if a(n) → −∞ .

Before we prove Theorem 5.1, let us remark that Lemma 3.6 (and Lemma 3.5)
are not strong enough to deduce Theorem 5.1 (and the following Theorem 5.2)
directly from the corresponding result for an independent model. However, they
are sufficient to compute all the moments of an appropriate random variables,
so the proof for an independent model can be mimicked in this case.

Proof. Note first that for the expectation of the number Yn of isolated vertices in
Pn(d, 0) we have

n∑
i=1

(
1− i − 1

n

)d(
1 − 1

n

)d(n−i)

= (1 + o(1))ne−d

∫ 1

0

exp
(
− x2d

2
+ O(x3d)

)
dx

= (1 + o(1))
√

π

2d
ne−d = (1 + o(1))

√
π

2
e−a .
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One can also check that, for a given r ≥ 2, the rth factorial moment of Yn tends
to (π/2)r/2e−ra, so the Yn tends to a Poisson distribution and, in particular, the
probability that Pn(d, 0) contains no isolated vertices tends to exp(−√

π/2e−a)
as n → ∞.

Thus, it is enough to show that if, say, d(n) > 0.99 log n, the protean graph
consists of one giant component and, perhaps, some number of isolated vertices.
The probability that Pn(d, 0) contains a component of size k, where 2 ≤ k ≤
2n/3, is, by Lemma 3.6 (see also the remark made after this lemma), bounded
from above by

2n/3∑
k=2

(
n

k

)
kk−2(1 − d/n)(k−2k/

√
d)(n−k)(d/n)k−1

and tends to 0 as n → ∞. (Since at most 2k/
√

d vertices from a spanning tree
have degree more than

√
d, we can estimate the probability that the vertices from

a tree have no neighbours outside this component by (1 − d/n)(k−2k/
√

d)(n−k).)
Thus, a.a.s. the protean graph consists of a giant component and some number
of isolated vertices, which completes the proof of the theorem.

In the case when η ∈ (0, 1), the threshold for the connectivity is affected by a
constant factor.

Theorem 5.2. Let η ∈ (0, 1) and d = d(n) = a log n, where a is a positive constant.
Then,

lim
n→∞ ρn(d, η) =

{
1 if a > 1/g(x0(η))
0 if a < 1/g(x0(η)) ,

where

g(x) =
1 − η

1 + η
(x−η − x) − log(1 − x) (5.1)

and x0 is the value of x that minimizes g(x) in the interval (0, 1), i.e., x0 is the
root of equation

(1 − η)ηx−1−η + 1 − η =
1 + η

1 − x
. (5.2)

Proof. The proof basically follows the argument that we use to show Theorem 5.1.
We first find the expectation of the number of Yn of the isolated vertices in
Pn(d, η). Using Lemma 3.5, and observing that the probability that a vertex is
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connected to one of the first log3 n vertices is negligible, we get

EYn = o(exp(− log3/2 n))

+
n∑

i=1

(
1 − (1 + O(log−1/2 n))

i−1∑
j=1

1 − η

n

( i

j

)η)d

×
n∏

j=i+1

[
1 − (1 + O(log−1/2 n))(1 − η)

d

n

(j

i

)η]

= (1 + o(1))n
∫ 1

0

[
(1 − (1 + O(log−1/2 n))x)d

× exp
(
− (1 + o(1))

1 − η

1 + η
(x−η − x)

)d]
dx

= n1+o(1)

∫ 1

0

exp
( − (1 + o(1)) g(x) d

)
dx .

(5.3)

It is not hard to check that g′′(x) > 0 for x ∈ (0, 1) and limx→0+ g′(x) = −∞
while limx→1− g′(x) = ∞. Hence, g(x) has a unique minimum in the point x0(η),
which is the root of Equation (5.2).

If a < 1/g(x0(η)), then for some ε > 0 we have a < 1/g(x) for each x ∈
(x0(η) − ε, x0(η) + ε). Consequently,

EYn ≥ 2εn1+o(1) exp
( − (1 + o(1))a log n max

x∈(x0(η)−ε,x0(η)+ε)
{g(x)}) → ∞ .

One can use Lemma 3.5 to show that for such a we have VarYn = o((EYn)2) so,
if a < 1/g(x0(η)), then Pn(d, η) a.a.s. contains an isolated vertex.

Now, suppose that d(n) = a log n and a > 1/g(x0(η)); then,

EYn ≤ n1+o(1) exp(−(1 + o(1))ag(x0) log n) = o(1) ,

and so a.a.s. Pn(d, η) contains no isolated vertices. Thus, in order to show the
assertion, we have to check that for some small δ > 0 and d(n) > (1/g(x0(η)) −
δ) log n, the protean graph Pn(d, η) consists of a giant component and, perhaps,
some number of isolated vertices.

Let c be a small positive constant to be chosen later, and let H denote the
subgraph of Pn(d, η) induced by vertices i, cn < i ≤ n. One can use Lemma 3.5
to show that a.a.s. H consists of one large component and o(n0.5) isolated ver-
tices. Again, we just outline the proof, omitting technical details. Estimating
the number of isolated vertices Ŷn in H the same way as EYn above, we infer
that EŶn = o(n0.4), and so a.a.s. Ŷn = o(n0.5) by Markov’s inequality. Using
calculations similar to those in (5.3), one can show that the probability that a
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vertex i = �xn
, c < x ≤ 1, from a spanning tree has no neighbours outside this
component of a fixed size which belong to the subgraph H is equal to

(1 + o(1))
(

1 − (1 + O(log−1/2 n))
i−1∑

j=�cn	

1 − η

n

( i

j

)η)d

×
n∏

j=i+1

[
1 − (1 + O(log−1/2 n))(1 − η)

d

n

(j

i

)η]

= (1 + O(log−1/2 n))d(1 − x + c1−ηxη)d

× exp
(
− (1 + o(1))

1 − η

1 + η
d(x−η − x)

)

and tends to no(1) exp[−(1 + o(1)) d g(x0(η))] as c → 0. Thus, this probability
is smaller than, say, no(1) exp[−0.75 d g(x0(η))] for c small enough. From this
we can show that the probability that H contains a component of size k, where
2 ≤ k ≤ k0 = O(1), is bounded from above by

k0∑
k=2

(
(1 − c)n

k

)
kk−2

(
no(1) exp[−0.75 d g(x0(η))]

)k( d

cn

)k−1

(5.4)

and tends to 0 as n → ∞, for δ small enough. Moreover, the expectation of the
number of components of H that are larger than k0 and smaller than 2n/3 is,
for c small enough, bounded from above by

2n/3∑
k=k0+1

(
(1 − c)n

k

)
kk−2

(
1 − (1 − η)

d

2n

)(k−2k/
√

d)((1−c)n−k)( d

cn

)k−1

(5.5)

and tends to 0 as n → ∞, provided that δ is small enough. Notice that in order
to show (5.4) and (5.5) we cannot use Lemma 3.5 since the error term, following
from the concentration of random variables, is too big. Instead of this we are
using the universal upper bounds for the probabilities that an edge is present or
absent in the subgraph H. For example, the probability that an edge is present
in H is smaller than or equal to the probability that {cn, n} is an edge in G.

Finally, one can show that a.a.s. every vertex i < cn is connected with the
large component in H, completing the proof of Theorem 5.2.

Let us note that, as follows from the argument in the proof, a.a.s. near the
threshold all isolated vertices have labels (1+o(1))x0(η)n. This is more evidence
of the middle-age crisis of vertices of the protean graph that we pointed out in
the remark following Theorem 4.2: the vertices of medium labels are of smallest
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degrees since they have lost their old neighbours, which have already been re-
newed, yet they are not old enough to attract new ones. We also remark that the
minimum cmin(η) related to the expected degrees of vertices is not equal to x0(η),
which identifies the labels of the isolated vertices at the connectivity threshold.
For instance, for the internet constant ηwww = 0.91, we have cmin(ηwww) ∼ 0.197
while x0(ηwww) ∼ 0.177.

We conclude this paper with one more result on the protean process Pn(d, η) =
{(Pt

n(d, n), σt)}∞t=0 that does not have its counterpart for the random graph
process {G(n, p)}0≤p≤1. Let A be a graph property such that A holds for Pn(d, η)
a.a.s. but for τ(A), defined as

τ(A) = min{t : Pt
n(d, η) has not A} ,

we have P(τ(A) < ∞) = 1, i.e., with probability one, at some stage of the
protean process Pn(d, η) = {(Pt

n(d, n), σt)}∞t=0 the property A disappears for
some time. Then, a recovery time rec(A) for A is defined as

rec(A) = min{t > τ(A) : Pt
n(d, η) has A} − τ(A) ,

i.e., rec(A) tells us how long it takes for a protean graph to regain a typical
property A. Note that since A holds a.a.s., and after O(n log n) steps, each vertex
of Pn(d, η) is renewed at least once, so a.a.s. rec(A) = O(n log n). However,
typically, the recovery time is smaller than the above bound implied by the
coupon collector problem. The following theorem estimates rec(C) in the case
when the graph is connected.

Theorem 5.3. Let η ∈ (0, 1) and d = a log n, where a > 1/g(x0) and the function
g(x) and x0 are defined as in (5.1) and (5.2), respectively. Then

rec(C) · (1 − η)a
(x0)η

log n

n
−→D Z ,

where the random variable Z has the exponential distribution, i.e., for every
z ≥ 0,

P(Z ≥ z) = e−z .

Proof. The main part of the proof is to show that a.a.s. at the moment τ(C) the
protean graph consists of a large component and a single isolated vertex i of
rank w = (1 + o(1))x0n (note that for such vertices w the probability of being
isolated is maximized). Note also that x0 minimizes the continuous function
g(x) in the interval (0, 1), which means that it is enough to show that g(w/n) ≤
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(1 + o(1))g(x0). Again, we just give a sketch of the proof, leaving out technical
details.

Let us consider first n log2 n steps of the process. The probabilities that during
that time in the protean process

• an isolated vertex of the rank w, where g(w/n) ≤ (1 + ε)g(x0),

• an isolated vertex of the rank w, where g(w/n) > (1 + ε)g(x0),

• a component of size k, 2 ≤ k ≤ 2n/3,

appears, we denote by ρ1(ε), ρ2(ε), and ρ3, respectively. In order to estimate
them, let us compute first the probability ρ(i, j, t) that a vertex i becomes isolated
at time t due to the fact that in this step we chose the only neighbour j of i

in the preceding graph to be renewed. Let �i and �j denote the ranks of i and
j, respectively, in the protean graph constructed after first t − 1 steps. Then,
arguing as in (5.3), we may estimate ρ(i, j, t) by

o(n exp(− log3/2 n)) + (1 + o(1))
1
n

p(�i, �j)

×
�i−1∏
r=1

[
1 − (1 + O(log−1/2 n))

1 − η

n

(�i

r

)η]d

×
n∏

s=�i+1,s �=�j

[
1 − (1 + O(log−1/2 n))

1 − η

n
d
( s

�i

)η]

= n−2+o(1)
(�j

�i

)η

exp
(
− (1 + o(1))g

(�i

n

)
d
)

(5.6)

for �i < �j and

o(n exp(− log3/2 n)) + (1 + o(1))
1
n

p(�j , �i)

×
�i−1∏

r=1,r �=�j

[
1 − (1 + O(log−1/2 n))

1 − η

n

(�i

r

)η]d

×
n∏

s=�i+1

[
1 − (1 + O(log−1/2 n))

1 − η

n
d
( s

�i

)η]

= n−2+o(1)
( �i

�j

)η

exp
(
− (1 + o(1))g

(�i

n

)
d
)

(5.7)

for �i > �j .
Let ε > 0 be a positive constant. Let us denote by At(i) the event that a

vertex i of the rank w becomes isolated at step t of the process and g(w/n) ≤
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(1 + ε/4)g(x0); moreover, let At =
⋃n

i=1 At(i). The events B′
t(i) and B′(i) are

defined in a similar way, but this time, for the rank w of i at the moment when i

becomes isolated, we want to have g(w/n) > (1 + ε)g(x0). From (5.6) and (5.7)
we get

n−1−(1+o(1))(1+ε/4)ag(x0) ≤ P(At(i)) ≤ n−1−(1+o(1))ag(x0),

while
P(B′

t(i)) ≤ n−1−(1+o(1))(1+ε)ag(x0),

and

P(B′
t) ≤

n∑
i=1

P(B′
t(i)) ≤ n−(1+o(1))(1+ε)ag(x0). (5.8)

To estimate P(At) we have to notice that one can use Lemma 3.5 to prove that
for i �= i′ the events At(i) and At(i′) are, in a way, weakly dependent, i.e.,

P(At(i) ∩ At(i′)) = P(At(i))P(At(i′))no(1)Θ(1 + n2η−1).

Thus, Bonferroni’s inequality gives

P(At) = P

( n⋃
i=1

At(i)
)

≥
n∑

i=1

P(At(i)) −
∑

1≤i<i′≤n

P(At(i) ∩ At(i′)) ≥ n−(1+ε/3)ag(x0) .

From (5.8) we get immediately that

ρ2(ε) =
n log2 n∑

t=1

P(B′
t) ≤ n1−(1+o(1))(1+ε)ag(x0). (5.9)

Again, one can use Lemma 3.5 to show that for t1 < t2

P(At1 ∩ At2) = P(At1)P(At2)no(1)

and from Bonferroni’s inequality

ρ1(ε) ≥ P

( n log2 n⋃
t=1

At

)
≥ n1−(1+ε/2)ag(x0). (5.10)

Moreover, it can also be proved that

ρ3 ≤ n1+o(1)[P(At)]2 ≤ n1−(1+o(1))2ag(x0) ≤ ρ2(ε). (5.11)
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(In order to do it, one should notice that, since the expected number of large
components tends to zero quickly, it is enough to consider only the components
of the bounded size. Then, use Lemma 3.5 to estimate the probability that they
appear; since the argument is fairly standard, we omit the details.)

Now let us consider the first n(1+ 3
4 )ag(x0) log2 n steps of the protean process.

From (5.9), (5.10), and (5.11), it follows that if the graph becomes disconnected
during this period then, a.a.s., it is due to the appearance of a single isolated
vertex of rank w, where g(w/n) ≤ (1 + ε)g(x0).

Let Dk, k = 0, 1, . . . , k0, where k0 = n(1+ 3
4 )ag(x0)−1/3, be an event that be-

tween 2kn log2 n and (2k+1)n log2 n steps an isolated vertex of the rank w, where
g(w/n) ≤ (1 + ε)g(x0), appears. Let F be the event that every vertex of the
graphs was at least one time renewed in time t ∈ ((2k−1)n log2 n, 2kn log2 n)), for
each k = 1, . . . , k0. Then, P(F) ≥ 1−exp(− log3/2 n). Moreover, P(Dk) = ρ1(ε),
and conditioned on F, all events Dk are independent. Thus, since k0ρ1(ε) → ∞
as n → ∞, we have

P

( k0⋃
k=0

Dk

)
→ 1.

Consequently, a.a.s. τ(C) = n(1+o(1))ag(x0)), and at the moment τ(C) the protean
graph consists of a giant component and a single isolated vertex i0 of rank
(1 + o(1))x0n.

The rest of the proof is straightforward. Let us consider the first Θ(n/ log n)
steps after the moment when the graph became disconnected. The probability
that we renew vertex i0 at that time tends to 0 as n → ∞, and by the argument
similar to the one used to estimate ρ1(ε), ρ2(ε), and ρ3 above, so is the probability
that we create additional small component of Pt

n(d, η). Thus, the graph becomes
connected if one of the renewed vertices will choose i0 as a neighbour. Since the
weight of i0 can change only slightly during Θ(n/ log n) steps, the probability
that for some z ≥ 0

rec(C) ≥ z
(x0)η

(1 − η)a
n

log n
= z

(x0)η

1 − η

n

d

is given by

[
1 − (1 + o(1))(1 − η)

d

n

( n

x0n

)η]z
(x0)η

1−η
n
d

=
[
1 − (1 + o(1))(1 − η)

d

n
(x0)−η

]z
(x0)η

1−η
n
d

= (1 + o(1))e−z,

so the assertion follows.
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towska 87, 61-614 Poznań, Poland (tomasz@amu.edu.pl)

Pawe�l Pra�lat, Department of Combinatorics and Optimization, University of Waterloo,
Waterloo ON, N2L 3G1, Canada (ppralat@math.uwaterloo.ca)

Received September 24, 2004; accepted in revised form April 6, 2006.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


