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Dynamic Models for File Sizes
and Double Pareto
Distributions
Michael Mitzenmacher

Abstract. In this paper, we introduce and analyze a new, dynamic generative user

model to explain the behavior of file size distributions. Our Recursive Forest File model

combines multiplicative models that generate lognormal distributions with recent work

on random graph models for the web. Unlike similar previous work, our Recursive

Forest File model allows new files to be created and old files to be deleted over time, and

our analysis covers problematic issues such as correlation among file sizes. Moreover,

our model allows natural variations where files that are copied or modified are more

likely to be copied or modified subsequently.

Previous empirical work suggests that file sizes tend to have a lognormal body but a

Pareto tail. The Recursive Forest File model explains this behavior, yielding a double

Pareto distribution, which has a Pareto tail but close to a lognormal body. We believe

the Recursive Forest model may be useful for describing other power law phenomena

in computer systems as well as other fields.

1. Introduction

In this paper, we attempt to provide a simple generative user model that provides

a good approximation for file size distributions. Accurate models for file size

distributions are important for both our current understanding of and simulation

of file systems and the Internet. In the case of file systems, the problem of

capacity planning requires estimating when additional storage space will become

necessary. An accurate model for how file systems develop over time might allow

© A K Peters, Ltd.
1542-7951/04 $0.50 per page 305



306 Internet Mathematics

more accurate predictions, easing the burdens of system managers. Similarly,

simple generative models may enhance simulation tools for file system behavior.

For the Internet, many studies have shown that traffic patterns in the Internet

appear to have self-similarity (see, e.g., [Barford and Crovella 98, Barford et

al. 99, Crovella and Bestavros 97, Crovella et al. 98, Leland et al. 94]). This

self-similarity can possibly be explained if the underlying distribution of file sizes

obeys an appropriate power law [Crovella and Bestavros 97]. Understanding why

a power law distribution for files might or might not arise naturally is therefore

important. Tools used to generate web workloads such as SURGE [Barford and

Crovella 98], which can be useful in testing or simulating web servers, may also

require a suitable model for simulating file size distributions and how they change

over time.

We emphasize that providing a generative model is a fundamentally different

task than fitting a model to data, which has been the primary focus of most

previous work. In particular, determining possible dynamic generative models

is important if one wants to determine what the distribution might look like

in the future, as the system changes over time. Without a justified underlying

generative model, extrapolating future behavior based on fitting models to data

is a risky proposition.

We provide a model that combines long-known multiplicative models and

recent work on models for the web graph [Barabási et al. 99, Broder et al.

00, Drinea et al. 01, Kleinberg et al. 99, Krapivsky and Redner 01, Kumar et

al. 00]. Our work was inspired by recent work by Downey [Downey 01]. Downey

suggests the following idea: one way that users create new files is by taking old

files and performing modifications on them, including possibly editing, copying,

translating, or filtering. The size of such a new file can be modeled by taking the

size of an old file and multiplying it by a random variable. Downey suggests that

this model yields a lognormal distribution for file sizes, which arguably counters

other previous work that has suggested file size distributions have a lognormal

body, but a heavy tail [Barford and Crovella 98, Barford et al. 99].1

Downey’s model suffers from the weakness that all files derive from a single

initial file. Files not derived from extant files cannot enter the file system, and

old files are not deleted. We expand to a dynamic model; that is, we allow

additions and deletions in a natural way. As a result, we obtain a family of

models, which we refer to generally as the Recursive Forest File model. What

is most interesting is that our changes have a dramatic effect in the analysis.

The resulting distribution of file sizes is a double Pareto distribution, which we

1We believe that there are minor problems with Downey’s analysis, as we describe in Sec-

tion 3.
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define and describe in Section 2.3. Double Pareto distributions have recently been

suggested to describe income distributions and other power law phenomena [Reed

03, Reed and Jorgensen 01]. As we show, such distributions have a lognormal

body and a Pareto tail, which matches some previous studies of empirical data

for file sizes. We believe that such distributions may be useful for modeling other

power law phenomena in computer systems, and we believe our generative model

may prove useful for other applications.

We provide a detailed analysis of the Recursive Forest File model that is

interesting in its own right. In particular, we find several connections to the

theory of random graphs that we expect will provide a useful framework for

future work. We also show how to cope with the effects of correlation that are

implicit in a file system model where new files are derived from existing files,

using a martingale analysis.

In related prior work, the Highly Optimized Tolerance (HOT) model provides

another generative model for file size distributions which uses an optimization

framework [Carlson and Doyle 99, Zhu et al. 01]. Fabrikant, Koutsoupias, and

Papadimitriou specifically utilize this framework to develop a model for file sizes

[Fabrikant et al. 02]. Downey suggests (and we concur) that applying this

framework to web file systems requires strong assumptions about how web sites

are designed, and does not explain why local file systems have similar file size

distributions [Downey 01]. Downey’s simpler framework appears more intuitively

appealing, and therefore we have focused on improving it. We caution, however,

that any simple user model is necessarily only approximate, and certainly various

models may apply in different situations. Indeed, it may be that our model is

useful for describing some types of file systems while HOT-based models are

better for other types of systems.

It is also worth noting that this potential confusion between whether file size

distributions obey a power law or follow a lognormal distribution is not surpris-

ing. Similar discussions have arisen in many fields over several decades. Indeed,

there is a rich history of models that generate power law and lognormal dis-

tributions, and many models that have been recently proposed to explain such

distributions in computer systems have historical antecedents in other fields.

Moreover, there are extremely close connections between generative models for

power law distributions and lognormal distributions. Rather than dwell on these

issues here, we refer the reader to a related historically oriented survey [Mitzen-

macher 04].

A natural question not tackled in this paper is the question of verifying our

model. We have not focused on this issue because we believe the primary con-

tribution in this paper is the description and analysis of a simple, general model

that yields double Pareto distributions. We believe that our model is interesting
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in its own right and expect that it will find uses explaining other phenomena

besides file size distribution.

It is worth pointing out, however, that subsequent to this work, Mitzenmacher

and Tworetzky have performed a careful empirical study of file size distributions,

examining how various models fit various data sets [Mitzenmacher and Tworet-

zky 03]. To summarize this work, double Pareto distributions do appear to

fit data sets roughly as well as lognormal distributions, although they appear

slightly worse than lognormal Pareto hybrid distribution and another prospec-

tive distribution, the log-t distribution. We emphasize that none of these other

distributions currently have natural generative models of which we are aware.

Further experiments yield that the double Pareto distribution fits better for

HTML files than for GIF or JPEG files, a conclusion which is understandable

in light of our generative model described below. Another possible approach,

besides testing the fit of the distribution, would be to empirically validate the

underlying assumptions of our model. Such validation would be an interesting

area for for future work.

The paper proceeds as follows. In Section 2.1, we provide an extensive re-

view of the relevant terminology. This review includes definitions of Pareto,

lognormal, and the more recent double Pareto distributions. In Section 3, we

consider Downey’s model, examining its motivation and potential problems. We

develop the Recursive Forest File Model in Section 4, demonstrating interesting

connections to random graph theory. We present simulation results in Section 5.

2. Review of Definitions

We briefly review the relevant definitions. For greater details, we recommend

references [Aitchison and Brown 57, Crow and Shimura 88, Li 99, Mitzenmacher

04].

2.1. Power Law Distributions
For our purposes, a nonnegative random variable X is said to have a power

law distribution if the complementary cumulative distribution function (ccdf), or

Pr[X > x], satisfies

Pr[X > x] ∼ cx−α
for constants c > 0 and α > 0. Here, f(x) ∼ g(x) denotes that the limit of

the ratios goes to 1 as x grows large. One specific commonly used power law

distribution is the Pareto distribution, which satisfies

Pr[X > x] =
x

k

−α
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for some α > 0 and k > 0. Note the Pareto distribution requires X ≥ k. If α
falls in the range 0 < α ≤ 2, then X has infinite variance. If α ≤ 1, then X
also has an infinite mean. The density function for the Pareto distribution is

f(x) = αkαx−α−1.
If X has a power law distribution, then in a log-log plot of the ccdf, asymptot-

ically the behavior is a straight line. This is the basis for many tests for power

law behavior. The same is true for the density function, which we find easier to

work with mathematically. For example, for the Pareto distribution, the log of

the density function is exactly linear:

ln f(x) = (−α− 1) lnx+ α ln k + lnα.

2.2. Lognormal Distributions

A random variable X has a lognormal distribution if the random variable Y =

lnX has a normal (i.e., Gaussian) distribution. The density function for a log-

normal distribution satisfies

f(x) =
1√
2πσx

e−(ln x−µ)
2/2σ2 ,

where µ is the mean and σ is the standard deviation of the associated normal

distribution. We will say that X has parameters (µ,σ2) when the associated

normal Y has mean µ and variance σ2, where the meaning is clear. The lognormal

distribution is skewed, with mean eµ+
1
2σ

2

, median eµ, and mode eµ−σ
2

. Although

the lognormal distribution, in contrast to the Pareto distribution, has finite

moments, it is extremely similar in shape to power law distributions, in that a

large portion of the body of the density function and the ccdf can appear linear

[Mitzenmacher 04, Montroll and Shlesinger 83]. Specifically, for a lognormal

distribution, we have

ln f(x) = − lnx− ln
√
2πσ − (lnx− µ)

2

2σ2
. (2.1)

If σ is sufficiently large, then the quadratic term above is small for a large range

of x values, and hence the logarithm of the density function will appear linear

for a large range of values. (The same is also therefore true for the ccdf.)

Recall that normal distributions have the property that the sum of two inde-

pendent normal random variables Y1 and Y2 with means µ1 and µ2 and variances

σ21 and σ
2
2 , respectively, is a normal random variable with mean µ1+µ2 and vari-

ance σ21 + σ22 . It follows that the product of independent random variables with

lognormal distributions is a random variable with a lognormal distribution.

Lognormal distributions can be naturally generated bymultiplicative processes.

We start with a biological example. Suppose we start with an organism of size
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X0. At each step j, the organism may grow or shrink by a certain percentage,

according to a random variable Fj , so that

Xj = FjXj−1.

If the Fk, 1 ≤ k ≤ j, are all governed by independent lognormal distributions,
then so is each Xj , inductively, since the product of lognormal random variables

is again a lognormal random variable. More generally, approximately lognor-

mal distributions may be obtained even if the Fj are not themselves lognormal.

Specifically, consider

lnXj = lnX0 +

j

k=1

lnFk.

Assuming the random variables lnFk satisfy appropriate conditions, the Central

Limit Theorem says that
j
k=1 lnFk converges to a normal distribution, and

hence for sufficiently large j, Xj is well approximated by a lognormal distri-

bution. In particular, if the lnFk are independent and identically distributed

variables with finite mean and variance, then asymptotically Xj will approach

a lognormal distribution. Lognormal distributions are natural for describing

growth of organisms, growth in options prices, and any process where over a

time-step the underlying growth is a random factor independent of the current

size [Crow and Shimura 88, Mitzenmacher 04].

2.3. From Lognormal to Power Law: Double Pareto Distributions
Before presenting our model, we explain how a natural mixture of lognormal

distributions yields a power law distribution. This result provides the foundation

for much of our later analysis, and is interesting in its own right. We therefore

present it first and show how it arises in the context of the model subsequently.

Suppose we have a system Xt = FtXt−1, where X0 = 1 and Ft is a lognor-

mal distribution with parameters (µ,σ2). We think of the index t as referring

to time. If we let the system run and stop it at some fixed time k, we obtain

a random variable from the lognormal distribution with parameters (kµ, kσ2).

Suppose instead we run the process until some random time k. Then we ob-

tain a random variable that comes from a mixture of lognormal distributions.

Specifically consider the case where we have a geometric mixture of lognormal

distributions: we stop the process at time k ≥ 1 with probability γ(1 − γ)k−1,
where γ is the parameter for the geometric distribution. Hence, with probability

γ(1 − γ)k−1, we obtain random numbers from the lognormal distribution with

parameters (kµ, kσ2). We claim that the resulting distribution from this mixture

will have a power law.
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To see this, we present a result of Reed [Reed 03, Reed and Jorgensen 01]

for the continuous analogue where the “mixture” of an exponentially distrib-

uted number of lognormal distributions is considered, in a sense clarified below.2

Suppose that we choose a random number X from a lognormal distribution with

parameters (kµ, kσ2), where k itself is a random variable with an exponential

distribution with mean 1/λ. The resulting density function is

f(x) =
∞

k=0

λe−λk
1√
2πkσx

e−(ln x−kµ)
2/2kσ2dk. (2.2)

Using the substitution k = u2 gives

f(x) =
2λeµ ln x/σ

2

√
2πxσ

∞

u=0

e−(λ+µ
2/2σ2)u2e−(ln x)

2/2σ2u2du.

An integral table gives us the identity

∞

z=0

e−az
2−b/z2 =

1

2

π

a
e−2
√
ab,

which allows us to solve for the resulting form. Note that in the exponent

2
√
ab of the identity we have b = (lnx)2/2σ2. Because of this, there are

two different behaviors, depending on whether x ≥ 1 or x ≤ 1. Let C1 =

λ/ σ (µ/σ)2 + 2λ and let C2 = (µ/σ)2 + 2λ /σ. For x ≥ 1, f(x) =
C1x

−1+µ/σ2−C2 , so the result is a power law distribution. For x ≤ 1, f(x) =

C1x
−1+µ/σ2+C2 . In particular, a case we use later is when µ = 0 and σ = 1.

In this case, for x ≥ 1, f(x) = λ/2 x−1−
√
2λ, and for x ≤ 1, f(x) =

λ/2 x−1+
√
2λ. Reed therefore suggests the following stringent definition:

Definition 2.1. A double Pareto distribution defined over x > 0 with parameters

α,β > 0 has f(x) = αβ
α+βx

β−1 for 0 < x ≤ 1 and f(x) = αβ
α+βx

−α−1 for x > 1.

A key characteristic of the double Pareto distribution is that it has a power

law at both tails. That is, if we look at the cumulative distribution function (cdf)

on a log-log plot, it will also have a linear tail (for the small files). This provides

a test for seeing whether a distribution has a double Pareto distribution; look at

both the ccdf and the cdf on log-log plots for linear tails.

2Huberman and Adamic [Huberman and Adamic 99, Huberman and Adamaic 00] also

examine this distribution and conclude that it has a power law distribution. Their earlier

work, however, fails to note that the behavior of the distribution goes through a phase shift,

which Reed clarifies.



312 Internet Mathematics

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-6 -4 -2 0 2 4 6
P

ro
ba

bi
lit

y

Log of Value (Base 2)

ccdf: Lognormal, Double Pareto, and Pareto

Lognormal
Double Pareto

Pareto

Figure 1. Shapes of lognormal, double Pareto, and Pareto distributions.
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Figure 2. Shapes of lognormal, double Pareto, and Pareto distributions–log-log plot.

The double Pareto distribution falls nicely between the lognormal distribution

and the Pareto distribution. Like the Pareto distribution, it is a power law dis-

tribution. But while the log-log plot of the density of the Pareto distribution is a

single straight line, for the double Pareto distribution the log-log plot of the den-

sity consists of two straight line segments that meet at a transition point. This

is similar to the lognormal distribution, which has a transition point around its

median eµ due to the quadratic term, as shown in (2.1). Hence, an appropriate

double Pareto distribution can closely match the body of a lognormal distrib-

ution and the tail of a Pareto distribution. For example, Figure 1 shows the

complementary cumulative distribution function for a lognormal, double Pareto,

and Pareto distribution. (These graphs have only been minimally tuned to give

a reasonable pictorial match; they could be made to match more closely.) The

lognormal and double Pareto distributions match quite well with a standard scale

for probabilities, but on the log-log scale in Figure 2 one can see the difference

in the tail behavior, where the double Pareto more closely matches the Pareto.
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When we have the discrete geometric mixture instead of the continuous expo-

nential mixture, the proper equation for the density function is

f(x) =

∞

k=1

γ(1− γ)k−1 1√
2πkxσ

e−(ln x−kµ)
2/2kσ2 . (2.3)

The summation is well approximated when lnx is very large or very small by

the corresponding integral

f(x) ≈
∞

k=1

γ√
2πkxσ(1− γ)e

k ln(1−γ)−(ln x−kµ)2/2kσ2dk. (2.4)

Comparing (2.2) and (2.4), we see that essentially the same tail behaviors from

the geometric mixture as the exponential mixture (although we do not obtain

such a nice closed form). That is, we have the following theorem:

Theorem 2.2. There exist positive constants α,β, c1, c2, c3, c4,m, and 6 such that

the density function in (2.3) satisfies c1x
β−1 ≤ f(x) ≤ c2xβ−1 for x < 6, and

c3x
−α−1 ≤ f(x) ≤ c4x−α−1 for x > m. (Here the ci may depend on γ, µ, and σ

but not on x.)

Proof. For the proof, let

f1(x) =

∞

k=1

γ(1− γ)k−1 1√
2πkxσ

e−(ln x−kµ)
2/2kσ2

and

f2(x) =
∞

k=0

λe−λk
1√

2πkσx
e−(ln x−kµ)

2/2kσ2dk.

As we have shown that f2(x) = x−α−1 for x > 1 and f2(x) = xβ−1 for x < 1

for appropriate α and β, it suffices to show that for sufficiently large and small

values of x that when λ = ln(1−γ), f1 and f2 differ by at most constant factors.
After separating out constant factors, we find

f1(x) =
C1
x

∞

k=1

e−ak−b/k−(ln k)/2

and

f2(x) =
C2
x

∞

k=0

e−ak−b/k−(ln k)/2dk,

where C1 and C2 are positive constants, b = (lnx)2/(2σ2), and a is a positive

constant independent of x. Hence, it suffices to show that

C3

∞

k=0

e−ak−b/k−(ln k)/2dk ≤
∞

k=1

e−ak−b/k−(ln k)/2 ≤ C4
∞

k=0

e−ak−b/k−(ln k)/2dk
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for some positive constants C3 and C4. The important point in showing this is

to keep track of the important term e−b/k, which is increasing in k. Hence, it is
easy to show that for k > 0,

e−ak−b/k−(ln k)/2 ≤ e−a{kQ−b/{kQ−(ln{kQ)/2ea+1;

this yields

∞

k=1

e−ak−b/k−(ln k)/2 ≤ C4
∞

k=0

e−ak−b/k−(ln k)/2dk.

Similarly, for k ≥ 1,

e−aukJ−b/ukJ−(ln{kQ)/2e−a−1 ≤ e−ak−b/k−(ln k)/2.

From this, we have that

∞

k=1

e−ak−b/k−(ln k)/2 ≥ C I3
∞

k=1

e−ak−b/k−(ln k)/2dk,

which is almost the desired result. It now suffices to note that

1

k=0

e−ak−b/k−(ln k)/2dk ≤
2

k=1

e−ak−b/k−(ln k)/2dk

for values of b sufficiently large, which occurs whenever lnx is sufficiently large.

Hence, using C3 = 2C
I
3, we obtain that there exists 6 and m such that for x < 6

and x > m,

∞

k=1

e−ak−b/k−(ln k)/2 ≥ C3
∞

k=0

e−ak−b/k−(ln k)/2dk,

yielding the result.

Technically, the geometric mixture of lognormal distributions yields an ap-

proximate double Pareto distribution, and not a true double Pareto distribution

according to Reed’s stringent definition. For convenience, we ignore this dis-

tinction henceforth in the paper, and refer to both the result of the exponential

mixture of lognormal distributions and the geometric distribution of lognormal

distributions as double Pareto. In particular, from Theorem 2.2 it follows at the

tails (for x < 6 and x > m) that the cumulative distribution function and com-

plementary cumulative distribution function of the geometric mixture are each

bounded by two power law distributions that differ only by constant factors.
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This fact, that a geometric mixture of lognormal distributions yields a double

Pareto distribution, plays an important role in the development of our Recursive

Forest File model throughout the rest of the paper.

The requirement that the exponential mixture be of lognormal distributions

can be weakened substantially without changing the tail behaviors [Reed and

Hughes 02]. We use exponential mixtures of lognormal distributions through-

out the paper for convenience. Also, Reed has suggested a generalization of the

double Pareto distributions called double Pareto-lognormal distributions with

similar properties [Reed and Jorgensen 01]. The double Pareto-lognormal dis-

tribution has more parameters, but might allow closer matches with empirical

distributions.

3. Downey’s Multiplicative File Size Model

3.1. The Basic Model

We now present Downey’s model to provide appropriate background. In par-

ticular, we point out weaknesses in Downey’s model that we ameliorate and

introduce features of analysis that prove useful subsequently for our dynamic

model.

Downey’s model for file sizes is based on the following idea: users tend to create

new files from old files, by copying, editing, or filtering in some way. Downey

therefore suggests the following model. The system begins with a single file S0,

and the user repeatedly performs the following actions.

• Select a file S to modify uniformly at random. Let the size of S be s.
• Choose a multiplicative factor f from a given distribution D.
• Create a new file SI with size fs.

The assumption behind this model is that creating a new file from a template file

from processes such as copying, editing, translating, or filtering yields a file whose

size differs from the template file by a factor that is independent of the size of the

template. With filtering, for example, a fraction of the input may be recorded.

For editing, if the amount of changes made is proportional to the size of the file

(three edits per page), then this assumption appears reasonable. (Arguably, in

many cases edits are additive rather than multiplicative; a constant number of

changes are made. This can be modeled in a way reasonably consistent with the

assumption by giving the distribution D a strong mode around 1.)

Looking at any individual file, there is a history of j steps that created all

the previous versions, or predecessors, of that file. That is, a file Sj was created



316 Internet Mathematics

from a file Sj−1 and so on back to the root S0. Let X0 represent the size of
S0 and let Fk represent the random multiplicative factor chosen from D in the

creation of Sk. Then lnXj = lnX0+
j
k=1 lnFk, and hence if D is lognormal the

distribution of the size of any specific individual file is lognormal. Alternatively,

even if D is not lognormal, Xj will be approximately lognormal if j is sufficiently
large. Downey therefore suggests that the entire file size distribution resulting

from this process is lognormal. This is not entirely accurate, as we explain below.

We note that preliminary empirical studies by Downey suggest that the right

distribution for D is roughly lognormal, although it is more leptokurtotic; that is,
there are more values near the mode, which is close to 1 since the most common

operation on a file is a copy or a small change [Downey 01]. Downey finds that

this has little effect on the overall results; again, this is justified by the analysis

in [Reed and Hughes 02].

3.2. Random Tree Models

We provide an alternative view of the generative file process above by embedding

it into a tree structure. Initially, we start with a root node, corresponding to the

initial file. For convenience let us here take the size of the original file to be 1.

At each step, a random node of the current tree is chosen, and a new child

of that node is created. Each node therefore corresponds to a new file that was

created from the file corresponding to its parent, and the path from the root to

the node corresponds to the file history. From here on, we use the terms node and

file interchangeably. If we think of each edge as being labeled by a multiplicative

factor, then by multiplying the numbers on the path from the root to a node we

obtain its size (relative to the root node). Alternatively, we consider each edge as

being labeled with the log of the multiplicative factor; then summing the weight

along each edge gives the logarithm of the file size. As in Downey’s model, let us

suppose the multiplicative factor is always chosen from a given distribution D.
When we say the distribution of file sizes of a file system with t files, we mean

the following. From some initial starting state, we generate new files according

to the process above, until there are t files. The file size distribution is the

distribution obtained by choosing a file uniformly at random from the t resulting

files.

This tree model emphasizes that files have varying depths. While nodes at

the same depth have the same size distribution, the size distribution varies for

nodes at different depths. Assuming that the distribution of the growth factor

is lognormally distributed, a node at depth k ≥ 1 has a lognormally distributed
size with parameters (kµ, kσ2). Hence, if the file sizes were independent, the dis-
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tribution would be a mixture of lognormal distributions, derived from weighing

the distribution for each depth with the proportion of nodes at each depth.

The tree developed under this model is well-studied in the combinatorial lit-

erature. It is known as a uniform random recursive tree, since the process looks

the same to each node in the tree. Results regarding the height of tree, the dis-

tribution of depths of nodes, and so on are known. We provide a brief summary,

based on [Smythe and Mahmoud 95]. An exact formula for the average number

of nodes of depth k in a tree with n nodes is

1

(n− 1)!
n

k + 1
,

where
n
k

is the Stirling number of the first kind, or the number of ways

to arrange n objects into k nonempty cycles. Asymptotically the distribution

of the depths of the nodes is sharply concentrated around lnn. This explains

why empirically Downey’s model yields close to a lognormal distribution for file

sizes; most nodes are at approximately the same depth and therefore have sizes

governed by almost the same lognormal distribution, with additional symmetry

to smooth out the effects of deep and shallow nodes. It is not clear that in

practice we would expect the average depth of a file should be dependent on n,

the number of files in the system, suggesting another problem with this model.

(Arguing that the maximum depth depends on n is more clear; perhaps some

file, such as a script file, is used and modified occasionally as new files arise.)

One obvious way to generalize the file model is to use a different recursive tree

model, such as plane-oriented recursive trees [Devroye 98, Smythe and Mahmoud

95]. In this model, the probability that a new node is the child of a node x is

proportional to c(x) + 1, where c(x) is the number of existing children of x.

(Adding one avoids problems at the leaves and root.) This model is entirely

similar to current models for the web graph, which use this sort of preferential

attachment in order to obtain power law distributions [Barabási et al. 99, Drinea

et al. 01, Kleinberg et al. 99, Kumar et al. 00]. Such a model could apply if

a user is more likely to modify versions of files that have already been modified

several times. This may be quite possible–a useful shell script, for instance,

may be more likely to be modified multiple times for various situations.

Specifically, in this tree model, the fraction of nodes with k children is roughly

proportional to 1/k3, a power law distribution. In this case, in a tree with n

nodes the depth of the nodes are sharply concentrated around 1
2 lnn.

One can generalize this model by having the probability that a new node is

the child of a node x be proportional to b · c(x) + 1 for some constant b > 0.

A larger constant b strengthens the effect that nodes with children get more
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children; as b approaches 0, the model becomes more like the uniform random

recursive tree. We revisit this possibility in the context of our Recursive Forest

File model. We also note that further variations can be created by using different

probabilities for the generation of children at each depth; however, such models

seem excessively complex to be useful, and we avoid them here.

3.3. Correlations

The tree model also clarifies that file sizes are necessarily correlated: a child

is clearly correlated to the size of its parent. Because of this, it is not clear

what the resulting overall distribution of file sizes will be in this model. For

example, one large multiplicative factor close to the root will affect several nodes,

changing the overall distribution for an entire subtree. We emphasize that while

the distribution of individual nodes is not affected by correlation, because of

correlation it is difficult to make statements about the resulting joint distribution

of the entire file system determined by the model.

We attempt to highlight the problem of correlation with a simple experiment.

We simulated Downey’s model, placing weights chosen from a normal distribu-

tion with mean 0 and variance 1 on each edge. Recall the logarithm of the ratio

of the file size at a node to the initial file size is the sum of the weights on the

edges along the path from the root; using this distribution, the average of these

values, or the average log ratio, should be 0. Over 1,000 different runs generating

10,000 files, we found the average log ratio varied significantly, between −4.2 and
5.2. The absolute value of the average log ratio was greater than 2 more than

150 times. These high average log ratios occur even though the sample variance

is small; it is generally between 5 and 10. Moreover, similar experiments gen-

erating 100,000 and 1,000,000 files yield the same high average log ratios; over

1,000 trials, the range was roughly the same, and about 15% of the trials have

average log ratio with absolute value at least 2. This effect is entirely due to

the fact that a single large edge near the root can affect many nodes, moving

the entire average log ratio. For a comparison, we performed 1,000 trials of

taking the average of 10,000 independent normal random variables with mean

0 and an extremely large variance of 100. The distribution of the average is a

random variable with mean 0 and a standard deviation of 0.1; over 1,000 trials,

the averages ranged between −0.33 and 0.32.
Such correlations are problematic both philosophically and practically. At an

abstract level, we do not expect that the behavior of the distribution resulting

from the model should potentially vary so significantly from trial to trial. More

practically, such correlations are problematic because they render the model

much less useful for predicting behavior based on the results.
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Figure 3. The cdf of the average log ratio using Downey’s model.

3.4. Minimum File Sizes

A further potential argument against the multiplicative model is that it allows

files to grow arbitrarily small as well as arbitrarily big. In practice, there is

generally a natural lower bound to a file size (for instance, one byte). It is

therefore worth asking how the multiplicative process behaves when there is a

lower bound on the minimum size. That is, suppose that we have a (near)

multiplicative process

Xj = max{FjXj−1, 6}
for some constant 6. In this case, the limiting distribution of Xj is not lognormal,

but instead a power law [Gabaiz 99]. This close connection between the lognor-

mal and power law distributions is discussed more fully in [Mitzenmacher 04],

but it suggests that attempting to distinguish strictly between file size models

that yield lognormal distributions from models that yield power law distributions

may be a futile exercise. We avoid further focus on this issue in the analysis,

however; generally we believe the effect on the model is relatively minor.

4. The Recursive Forest File Model

4.1. Insertions

We now suggest a new class of dynamic models, based on similar dynamic models

for modeling web graphs. We call our models dynamic because they allow the

introduction of new files into the system as well as the deletion of old files. We

begin by handling the insertion of new files only. We also temporarily ignore the

problems of correlation until Section 4.3.
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The ability to handle the insertion of new files is clearly important for modeling

current systems, where new content (such as audio, video, and text) are often

created or downloaded from external sources, such as the Internet. Our model

begins with a collection of one or more files, whose sizes are drawn from a

distribution D1. Repeatedly, new files are generated as follows:

• with probability γ, add a new file with size chosen from a given distribu-

tion D1.

• with probability 1 − γ: select a file S (with size denoted by s) uniformly

at random, choose a multiplicative factor f from a given distribution D2,
and create a new file SI with size fs.

This generalizes the uniform random recursive tree model, so that the model

produces a random recursive forest [Balinska et al. 94]. This explains why we

refer to our class of models as Recursive Forest File models. Also, we have given

each file an initial size. Implicitly, we may think of an edge to each root giving

its initial size.

We first ask in this model how many nodes of each depth k there are when

n files are in the system. Note that we could write exact recurrences for the

expected value of these variables and use martingale arguments to obtain high

probability results. In the interest of space and highlighting the idea of the

model, we present here a more intuitive limiting argument. Let Xt,j be the

number of nodes at depth j at time t. Since new nodes of depth 0, or roots,

enter the system with probability γ, it is clear that Xt,0/t→ γ, where→ signifies

convergence with probability 1 in the limit as t goes to infinity. Now for Xt,1
to increase, a new node that is the child of an existing node must enter; this

happens with probability 1 − γ. Its parent must be a root; if Xt,0 is γt, this

occurs with probability γ. Hence, nodes of depth 1 arise at a rate of γ(1−γ), so
Xt,1/t → γ(1 − γ). Continuing inductively, we find (asymptotically) that Xt,j
approaches γ(1− γ)jt; that is, node depths have a geometric distribution.
Lemma 4.1. In the Random Recursive Forest File model,

lim
t→∞

Xt,j
t
= γ(1− γ)j .

Martingale arguments, quite similar to those in [Kumar et al. 00], can be

used to yield high probability results. Alternatively, the framework relating

differential equations and martingales used by Kurtz [Kurtz 81] and enhanced

by the work of Wormald [Wormald 95] allow one to state concentration results
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for nodes of any constant depth j. (See, for example, Theorem 1 of [Wormald

95].)

This model has several appealing implications. Starting from a collection of

roots, the average depth of a node is bounded above by a constant independent

of the number of files in the system [Balinska et al. 94], which seems more

reasonable than the logarithmic average depth in Downey’s model. The maxi-

mum depth still depends on the number of nodes. The most likely depth of a

file is 0, which means it is not derived from other files. The forests themselves

demonstrate preferential attachment: a forest with several nodes is more likely

to produce new children. Hence, the forest sizes obey a power law, and in par-

ticular a constant fraction of the nodes are roots that have no children. These

features appear realistic.

The geometric distribution of the depths is also appealing considering our

results of Section 2.3. If D1 is a lognormal distribution with parameters (µ,σ2)
and D2 is a lognormal distribution with parameters (µ,σ2), then the results of
Section 2.3 imply that the resulting distribution of file sizes is (approximately)

double Pareto, since the size of a node of depth k has a lognormal distribution

with parameters ((k + 1)µ, (k + 1)σ2). Indeed, we take advantage of this fact

repeatedly in this section; with the above assumptions on D1 and D2, as long as
the resulting depth distribution is geometric, the resulting file size distribution is

double Pareto.

It is clear that in this model the choice of distributions for D1 and D2 can
have an important effect. If D1 and D2 are both lognormal (but do not neces-
sarily have the same distribution), the resulting distribution is what Reed calls a

double lognormal-Pareto distribution, which has properties similar to the double

Pareto distribution [Reed and Jorgensen 01]. Similarly, if D1 is double Pareto or
double lognormal-Pareto and D2 is lognormal, we still expect a distribution sim-
ilar to the double Pareto (with Pareto tails and an approximately lognormal

body).

If D2 is not lognormal, then nodes with sufficiently large depth will appear ap-
proximately lognormal (by the Central Limit Theorem argument of Section 2.2),

but shallow nodes will not. The resulting distribution may therefore depend

on how deep the nodes are and how quickly the product of random variables

chosen from D2 converges to a lognormal distribution; however, we again em-
phasize that D2 does not strictly need to be lognormal for our results to hold
[Reed and Hughes 02, Reed 01]. Specifically, the deepest nodes in the forest have

the largest variation, and hence the small number of nodes with large depth are

sufficient to yield a power law tail; the shape of the body of the distribution

may be more complex. As mentioned previously, Downey’s preliminary results

suggest that D2 appears to be close enough to a lognormal distribution that it
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quickly converges to an almost lognormal distribution after a small number of

multiplicative steps, which is favorable for our analysis. Further experimental

analysis and understanding of both the initial file size distribution and the mul-

tiplicative growth distribution would be an excellent starting point for future

work. Also, a stronger result demonstrating the robustness of our model to de-

viations in the distribution of D2 would be useful, but outside the scope of this
work.

4.2. Deletions

We now consider the addition of deletions to the Recursive Forest File model.

Suppose at each step that a new root enters with probability γ, a file chosen

uniformly at random is deleted with probability η, and a new child node is

introduced as before with probability 1 − γ − η. The introduction of deletions

into the model has a surprisingly small overall effect on our previous analysis. We

again give an intuitive argument for the limiting distribution, using a mean-field

limit approach; these results can easily be made more rigorous using standard

martingale arguments (see [Motwani and Raghavan 95]). Let Xt,j be the number

of nodes at depth j at time t, and n(t) be the number of nodes at time t. It

is important to clarify that the depth of a node is still computed by taking the

deleted files into account, which is appropriate in our model, since the depth is

meant to account for the number of modifications the file corresponding to that

node has undergone. Then

dXt,0
dt

= γ − ηXt,0
n(t)

,

and for j ≥ 1
dXt,j
dt

= (1− γ − η)Xt,j−1
n(t)

− ηXt,j
n(t)

.

Now n(t) = (1 − 2η)t in the limit as t goes large, since a node is added with
probability (1 − η) and deleted with probability η at each time-step, and in-

ductively we can solve for the limiting values of Xt,j . The fraction of nodes at

time t with depth j is then Xt,j/n(t), and a simple induction yields Xt,j/n(t)→
γ(1− γ − η)j/(1− η)j+1.
Lemma 4.2. In the Random Recursive Forest File model,

lim
t→∞

Xt,j
t
=
γ(1− 2η)
(1− η)

1− γ − η
1− η

j

.

Hence the final distribution is again a geometric mixture of lognormal distri-

butions, with the parameters slightly changed to account for deletions. As a
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result, the incorporation of deletions into the model does not disrupt the result-

ing double Pareto distribution of file sizes.

More complex models can naturally be introduced in this framework. For ex-

ample, in some situations it might be reasonable to suppose that the probability

of a file being deleted is related to its depth; shallower (older) nodes may be more

likely to disappear. This approach can be generalized to handle such situations,

although it will affect the distribution of node depths, and again such models

may be too complex to be useful.

4.3. Correlations

In our model, the file system is represented by a forest, instead of single tree.

There are still correlations between file sizes; a file is still related to the size of

its parent. However, the effect of these correlations is smaller, since the number

of files descended from a single node is generally small compared to the size of

the file system.

We can make this statement rigorous with a martingale argument. For con-

venience throughout, we consider the case where there are no deletions; the

argument generalizes naturally.

Theorem 4.3. Consider the Random Recursive Forest File model starting with only

a single root node. For a specific value z (which may depend on n), let Zn be the

number of files with size greater than z when there are n nodes in the system.

Then

Pr[|Zn − E[Zn]| ≥ 6n] ≤ 2e−62f(n),
where f(n) is a polynomial in n dependent on γ.

Proof. Let Yj be the expected number of nodes with size greater than z once
the first j nodes and values of the corresponding edges from their parents are

revealed. (Recall that we may think of the root node of a tree as having an edge

providing the size of the node.) Then Y0, Y1, Y2, . . . , Yn is a martingale, with

Y0 = E[Zn] being the expected number of nodes with value at least z before any

information is revealed, and Yn = Zn being the actual number of nodes with

value at least z. Let νj be the expected number of nodes in the subtree rooted

at the jth node, where the nodes are numbered in the order of arrival (initial

root nodes may be ordered arbitrarily). Notice that νj is independent of where

the jth node is placed in the forest. Since the value of the edge corresponding

to the jth node only affects the nodes in this subtree, νj gives an upper bound

on the expected number of nodes whose final value depends on the revelation of

the edge corresponding to the jth node, which implies that νj is an upper bound

on |Yj − Yj−1|.
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Using Azuma’s inequality (see [Motwani and Raghavan 95]), we have

Pr[|Yn − Y0| ≥ 6n] ≤ 2e−62n2/(2 n
j=1 ν

2
j ).

Suppose that we can show that
n
j=1 ν

2
j is O(n

2−ζ) for some ζ > 0. Then

we have that for any value z, the fraction of nodes with value greater than z is

within 6 of its expectation with very high probability; specifically, the probability

is exponential in nζ . This would demonstrate that the effect of correlation is very

small when looking at the ccdf.

Hence, we need an upper bound on
n
j=1 ν

2
j . One approach is to simply

use ν1 as an upper bound on νj , so
n
j=1 ν

2
j ≤ nν21 . To bound ν1, let ν1,k

be the expected number of nodes in the tree of the initial root when there

are k total nodes. If we begin with a single root node, then ν1,1 = 1 and

ν1,k = ν1,k−1 1 + 1−γ
k−1 . Using 1 + x ≤ ex, we obtain

ν1,n =

n−1

j=1

1 +
1− γ
j

≤ e(1−γ) n−1
j=1 1/j

= e(1−γ)(lnn+O(1)).

This gives us that ν1 is O(n
1−γ). This is only sufficient for Azuma’s inequality

if γ > 1/2, which is fairly limiting.

One way to cope with this problem is to use more initial nodes at the beginning

of the process. For example, suppose that we begin with
√
n root nodes in the

file system originally. The expected size of the tree rooted at any of these nodes

follows the same recurrence, but now the initial condition is ν1,
√
n = 1. Hence,

ν1,n =

n−1

j=
√
n

1 +
1− γ
j

≤ e(1−γ) n−1
j=
√
n
1/j

= e(1−γ)(lnn−ln
√
n+O(1))

= e(1−γ)(lnn)/2+O(1).

Now for any γ > 0, ν1 is O(n
(1−γ)/2), and Azuma’s inequality applies.

Using the above analysis, however, we can obtain a tighter bound on νj , even

if we begin with a single root node. Let νj,k be the expected number of nodes

in the subtree of the jth node when there are k total nodes. Then νj,j = 1, and
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νj,n = νj satisfies

νj,n =

n−1

k=j

1 +
1− γ
k

≤ e(1−γ) n−1
k=j 1/k

= e(1−γ) ln(n/j)+O(1).

In the above the O(1) term can be taken to be independent of j for sufficiently

large n. Hence, ν2j is O((n/j)
2(1−γ)). Algebra now yields that for γ < 1/2,

n
j=1 ν

2
j is O(n

2(1−γ)); for γ = 1/2,
n
j=1 ν

2
j is O(n lnn); and for γ > 1/2,

n
j=1 ν

2
j is O(n). In all cases, Azuma’s inequality gives strong probabilistic

bounds.

We may conclude that the fraction of node values greater than any particular

value is very close to its expectation with high probability. In broader terms,

the effects of correlation are small for large enough systems with small enough

trees. Note that this argument demonstrates that correlation can be substan-

tially reduced if we have more initial nodes to start the process.

Experiments using the average log ratio demonstrate that the unusual effects

of correlation evident in Downey’s original model do not occur in the Recursive

Forest File model, as we show in Section 5.

4.4. Variations on the Derivation of New Nodes

In our dynamic Recursive Forest File model, it is again possible to consider

variations on how new nodes derive from old nodes, just as it was in the recursive

tree model. The variety of possibilities is rather broad, so we content ourselves

here to variations of the plane-oriented recursive forest. We call this variation

the Recursive Forest File model with preferential attachment. In this setting a

new root is introduced at each step with probability γ; otherwise, a new child

node is introduced, and the probability that the new node is the child of a node

x is proportional to b · c(x)+1, where b > 0 is a constant and c(x) is the number
of children of x.

Again we may begin by looking at the number of children of each depth. As

before, let Xt,j be the number of nodes of depth j at time t. Let w(t), or the

weight at time t, be the sum of b · c(x)+1 over all nodes. In the mean field limit,
with one node added per unit time,

dXt,0
dt

= γ,



326 Internet Mathematics

so that Xt,0/t → γ. The case for j ≥ 1 simplifies once we use the fact that the
total number of children of nodes of depth j equals the number of nodes of depth

j + 1. Hence, the probability of creating a child at depth j is proportional to

bXt,j +Xt,j−1, since this is the sum of b · c(x) + 1 over all nodes of depth j − 1.
Hence,

dXt,j
dt

= (1− γ)bXt,j +Xt,j−1
w(t)

.

In the limit for large t, w(t) grows to ((1 + b)(1− γ) + γ)t, since every new root

node contributes 1 to the weight and every other node contributes 1+ b. Now if

Xt,j/t approaches xj asymptotically, we find from the above that

xj = (1− γ) bxj + xj−1
((1 + b)(1− γ) + γ)

.

Simplifying the above yields

xj = (1− γ)xj−1,

so a simple induction again yields Xt,j/t→ γ(1− γ)j .

Lemma 4.4. In the Random Recursive Forest File model with preferential attach-

ment,

lim
t→∞

Xt,j
t
= γ(1− γ)j .

Surprisingly, this is the same result as in the Random Recursive Forest File

model, regardless of the value of b!

The value of b therefore does not affect the resulting geometric distribution

of the depths of the nodes, and hence the double Pareto analysis still applies.

We believe this demonstrates substantial robustness for this model in the face of

changes.

The value of b does affect the model, however, in how the nodes are distributed

among the trees in the forest. As a concrete example, comparing the uniform case

(b = 0) with the plane-oriented recursive forest model (b = 1), we find for the

larger b value that there are a substantially greater number of trees consisting of

just a single vertex and there is greater variance in the number of offspring from

a root node. Hence, the choice of b might be used to fine-tune the underlying

model to various file systems.

To see how b affects the distribution of the size of trees in the forest, we again

describe an asymptotic mean field argument. Let Yt,j be the number of trees

with j nodes at time t. Note that the total weight corresponding to a tree with
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j nodes is (j − 1)b + j, since every node contributes 1 + b to the weight except
for the root. Hence, we obtain the following equations:

dYt,1
dt

= γ − (1− γ) Yt,1
w(t)

,

and for j ≥ 2,
dYt,j
dt

= (1− γ)Yt,j−1((j − 2)b+ j − 1)− Yt,j((j − 1)b+ j)
w(t)

.

The asymptotic behavior of this system is easy to solve for, and the distribution

of tree sizes in the forest follows a power law with the exponent in the power law

depending on b [Drinea et al. 01, Krapivsky and Redner 01].

We also note that a similar derivation shows that the distribution of the depths

of the nodes remains geometric under these variations when random deletions

occur as in Section 4.2.

5. Simulations
In this section, we examine simulations using the Recursive Forest File model to

compare it to the theory. In particular, we examine the issues of correlation and

convergence to the limiting depth distribution. Overall, we find that simulations

match the theory well. Rather than compare with actual data sets, we refer the

reader to [Mitzenmacher and Tworetzky 03] for a detailed evaluation.

Consider first the problem of correlation. Recall that we simulated Downey’s

model by placing weights chosen from a normal distribution with mean 0 and

variance 1 on each edge. In 1,000 runs of generating 10,000 files, the average log

ratio varied between −4.2 and 5.2. We repeated the experiment using our dy-
namic model with γ = 0.1; also, the original size of each root node is lognormally

distributed, so that there is an implicit edge with mean 0 and variance 1 into

each root. Starting initially with 1 root node, the average log ratio varied be-

tween −2.26 and 2.52; starting with 10 root nodes, it varied between −0.95 and
1.22; and starting with 100 root nodes, it varied between −0.38 and 0.49. While
it is clear that there are still correlations in the file sizes, they are dramatically

reduced over Downey’s model. Similarly, increasing the number of files leads to

sharper concentration of the average log ratio, as our analysis would predict.

A second issue is convergence in the depth distribution. While asymptotically

the depths will converge to a geometric distribution, it is not clear how many

files are necessary for this to occur, especially if one starts with multiple roots at

the beginning. Indeed, we find that the convergence in the depth distribution is

slow, but it does not dramatically change the characteristics of the distribution

shapes produced.
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A representative example is instructive. We generated sets with 10,000 and

100,000 nodes, using γ = 0.1 and beginning with 1 and 100 initial roots. The

results are presented in Figure 4. The resulting distribution does not match the

theoretical geometric distribution; there is a bump in the distribution depending

on the number of nodes generated and the number of initial roots. The more

nodes generated, the closer to equilibrium.

Despite this deviation from the theory, examining plots on a log-log scale

reveals that the cdf and the ccdf of the file sizes generated by the Recursive Forest

File model still have essentially linear bodies and tails, as shown in Figures 5

and 6. The deviation of the model from the theoretical double Pareto distribution

appears to add a small curvature to the distribution. Also, the linear tails break

down somewhat at the extremes, because of the small number of samples and

because the distribution has not reached the theoretical equilibrium. Indeed, part

of the argument for using a lognormal distribution over a Pareto distribution in

previous work has been the curvature at the tail of the distribution [Downey

01]. The Recursive Forest File model demonstrates that this curvature could be

arising simply because the snapshot of the dynamically changing distribution is

taken at some specific finite point in time, before the long-term equilibrium has

been reached.

To test that our results hold even when the multiplicative distribution is not

lognormal, we have performed similar simulations using other multiplicative dis-

tributions, for example, using edge weights that are 1 and −1 with probability
1/2 for all edges (except those into the root, so that there is some asymmetry).

This distribution yielded entirely similar curves for 100,000 nodes.

6. Conclusions

We have provided and analyzed a new generative user model, the Recursive

Forest File model, for file size distributions. Understanding the behavior of

file size distributions is an important building block for understanding both file

systems and Internet behavior. Our model is extremely simple and well suited

for simulation tools.

The underlying idea behind the model is to combine a multiplicative generating

process with a dynamic insertion and deletion process reminiscent of recent web

graph models. A fundamental point in the analysis is to connect the file size

model with corresponding random tree and forest models. We have shown that

for many natural model variations the depth distributions are asymptotically

geometrically distributed, and this in turn yields a double Pareto distribution

for the file sizes.
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From a practical standpoint, this model explains why file size distributions may

appear to have a lognormal body and a Pareto tail. (In fairness, we point out

that the shape of these distributions is still a subject of debate.) While previous

work has suggested using specific hybrid distributions to model file sizes, our

generative model appears sufficiently accurate, and has the advantage that it

can be used to simulate dynamic systems where files may change over times. An

open question for future work is how to design tools to fit properly parametrized

double Pareto (or double Pareto-lognormal) distributions to empirically observed

distributions.

From a theoretical standpoint, a Recursive Forest model provides a general

mechanism for producing power law distributions that may apply to other nat-

ural systems. The robustness of the model to deletions and to changes in how

elements produce offspring appears to be an extremely appealing feature. The

flexibility and simplicity of the random graph framework should allow for further

variations worthy of study.

There remain many open problems to pursue. On the practical side, there

does not appear to be experimental work that considers how files change or are

generated over time. Such data might validate this model or lead to other dy-

namic models for file sizes. Specifically, understanding how files are created and

deleted over time, knowing the distribution of file sizes when they are created,

and determining whether modifications truly lead to multiplicative changes in

the file size would be useful information for studying the dynamic behavior of

file systems. Dynamic traces covering long time spans are important for further

research in this area.

On the theoretical side, perhaps the most interesting question is the rate of

convergence to the double Pareto distribution. Our simulations have shown

that it takes significant time for the node depths to converge to a geometric

distribution. The general shape of the corresponding file size distribution does

not seem to change significantly, however; the major difference appears to be that

the distribution appears more like a lognormal distribution, in that the tail dies

off somewhat more quickly than expected. It is an open problem to formalize

these findings theoretically. Another issue is to provide a better understanding of

the sensitivity of the Recursive Forest File model to the underlying distributions

D1 and D2. Finally, determining alternative generative models that could justify
a lognormal distribution or another distribution for file sizes could lead to new

debates on the appropriateness of various models for file sizes.
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