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MULTIPLICATIVE STRUCTURE IN STABLE EXPANSIONS
OF THE GROUP OF INTEGERS

GABRIEL CONANT

Abstract. We define two families of expansions of (Z,+) by
unary predicates, and prove that their theories are superstable

of U -rank ω. The first family consists of expansions (Z,+,A),

where A is an infinite subset of a finitely generated multiplica-
tive submonoid of Z+. Using this result, we also prove stability

for the expansion of (Z,+) by all unary predicates of the form

{qn : n ∈N} for some q ∈N≥2. The second family consists of sets

A⊆ N which grow asymptotically close to a Q-linearly indepen-
dent increasing sequence (λn)

∞
n=0 ⊆ R+ such that { λn

λm
:m≤ n}

is closed and discrete.

1. Introduction

A common theme in model theory is to fix a mathematical structure, whose
definable sets satisfy certain tameness properties, and study expansions of
that structure by new definable sets which preserve tameness. Perhaps the
most widely known example of this kind of program is the study of o-minimal
expansions of the real ordered field R= (R,+, ·,<), where a particularly cele-
brated result, due to Wilkie [33], is that the expansion of R by the exponential
function remains o-minimal. The study of o-minimal expansions of R has been
used in applications to Diophantine geometry including a new proof of the
Manin–Mumford conjecture, and cases of the André–Oort conjecture (further
details can be found in [28]). Another example is the study of stable expan-
sions of the complex field C = (C,+, ·). In [4], Belegradek and Zilber study
expansions of C by finitely generated multiplicative subgroups of the unit cir-
cle. Expansions of C by arbitrary finitely generated multiplicative subgroups
are analyzed by Van den Dries and Günaydın in [32]. This work relates to
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study of finitely generated subgroups of A(C), where A is a semiabelian vari-
ety over C. In model-theoretic language, the Mordell–Lang conjecture, proved
by Faltings, is that the induced structure on any such subgroup is stable and
1-based (further details can be found in [24]).

In this article, we focus on expansions of the group of integers Z = (Z,+).
The group Z is a well-known example of a superstable group, whose behavior
has motivated the rich model theoretic study of modules and 1-based (or
weakly normal) stable groups, going back to the 1980s (see [13], [27]). On the
other hand, when compared to the breadth and depth of results on R and C,
much less is known about tame expansions of Z . The most well understood
example of a proper expansion of Z is the ordered group (Z,+,<), often called
Presburger arithmetic. While (Z,+,<) is not o-minimal, it does satisfy other
model theoretic notions of “minimality” such as quasi-o-minimality and dp-
minimality. However, results by several authors (e.g., [2], [3]) have shown that
(Z,+,<) has no proper expansions satisfying these tameness properties (or
even several weaker properties, e.g., [10]). Thus, for expansions of (Z,+,<),
the best possible hope for a nontrivial research program would seem to be
in the setting of NIP theories. For instance, in [25], Point obtains striking
quantifier elimination results for expansions of (Z,+,<) by various sparse
sequences, which allows one to conclude the expansions are NIP [1].

Being a totally ordered structure, (Z,+,<) is not stable. A surprising fact
is that, after its canonization in the 1980s as a foundational example of a
stable group, there was no known example of a proper stable expansion of
Z . This remained the case until 2014, when Palaćın–Sklinos [22] and Poizat
[26] independently gave the first examples, which included the expansions
(Z,+, qN) where q ∈N≥2 and qN = {qn : n ∈N}. The examples in [22] and [26]
were generalized by the author [9] to the class of geometrically sparse subsets
of Z, which is a robust class of sets whose growth rate is “at least geometric”
in a fairly strong sense (see Definition 4.3). Independently of [9], the examples
from [22] and [26] were also generalized by Lambotte and Point [17], who prove
stability for certain families of expansions of Z overlapping nontrivially with
those studied in [9]. In many of these examples of proper stable expansions
of Z by a single subset A ⊆ Z, the set A is inherently multiplicative in the
sense that its asymptotic behavior is dominated by the powers of a fixed real
number λ > 1. A specific example is the Fibonacci sequence, (Fn)

∞
n=0, which

satisfies |Fn − 1√
5
φn| ≤ 1 for all n ∈N, where φ is the golden ratio.

In this article, we generalize this multiplicative nature of proper stable
expansions of Z in two broad ways. First, we view the original examples
of Palaćın–Sklinos and Poizat as expansions of Z by cyclic multiplicative
submonoids of Z+. Our first result is the following generalization.

Theorem 3.1. Let Γ be a finitely generated multiplicative submonoid of
Z+. If A⊆ Γ is infinite then (Z,+,A) is superstable of U -rank ω.
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So, one the one hand, we find a commonality to the study of stable ex-
pansions of C = (C,+, ·) and the work of Van den Dries and Günaydın [32]
mentioned above. Indeed, the main non-model-theoretic tool in the proof of
Theorem 3.1 is a result from algebraic number theory, due to Evertse, Schlick-
ewei, and Schmidt [11], which gives bounds on the number non-degenerate
solutions to linear equations in finitely generated multiplicative subgroup of
(C∗, ·) (see Fact 3.4). There are many results of this kind, going back to
Schmidt’s Subspace Theorem [29], and this behavior in multiplicative groups
has many names (e.g., the Mann property or Mordell–Lang property in [32];
and Lang type in [24]). On the other hand, there is a stark difference in Theo-
rem 3.1 in that a stable expansion can be obtained using any arbitrary subset
of Γ. This is not the case in expansions of C since, for example, (C,+, ·,2Z) is
stable by [32], while (C+, ·,2N) is unstable since the ordering on 2N is defin-
able. Stability for the expansion of Z by arbitrary subsets of Γ also allows us
to obtain new examples of stable expansions of Z by many unary predicates.

Theorem 3.16. For any integers q1, . . . , qd ≥ 2, (Z,+, qN1 , . . . , q
N
d ) is super-

stable of U -rank ω. Therefore, (Z,+, (qN)q≥2) is stable.

Theorem 3.1 yields another new phenomenon in stable expansions of Z . In
particular, call a set A⊆ Z+ lacunary if limsupn→∞

an+1

an
> 1, where (an)

∞
n=0

is an increasing enumeration of A. The sets considered in [9], [17], [22], and
[26] are all lacunary (although there are examples where the limsup is as
close to 1 as desired). So this motivates the question, asked in [9] and [17],
of whether there is a stable expansion of Z by a non-lacunary subset of Z+.
Theorem 3.1 produces such examples since, by Furstenburg [12], a finitely
generated submonoid Γ of Z+ is non-lacunary whenever there are a, b ∈ Γ
such that logb a is irrational.

On the other hand, all known unstable expansions of the form (Z,+,A),
with A⊆ Z+, satisfy lim infn→∞

an+1

an
= 1 (e.g., the primes or perfect squares).

In Theorem 4.8, we give an example of an unstable expansion (Z,+,A) such
that limn→∞

an+1

an
exists and is strictly greater than 1 (in particular Aq :=

{qn + n : n ∈N} where q ≥ 2). This example provides new information about
the asymptotic behavior of sets A ⊆ Z+, which produce stable expansions
of Z . In [9], this is formulated using the notion of a geometric sequence,
which we define to be a strictly increasing sequence (λn)

∞
n=0 in R+ such that

{λm

λn
: n ≤ m} is closed and discrete (e.g., λn = bn for some b ∈ R>1). The

main result of [9] is that, for A= (an)
∞
n=0 ⊆ Z, if |an − λn| is O(1) for some

geometric sequence (λn)
∞
n=0, then (Z,+,A) is stable. While this notion of a

geometric sequence is a robust way to describe the nature of stable expansions
of Z , the examples in [17] show that O(1) can be relaxed in some cases. On
the other hand, the example in Theorem 4.8 shows that O(1) cannot even
be weakened to O(n) in general. Thus, our last main result is that O(1) can
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be weakened substantially if we impose further restrictions on the geometric
sequence.

Theorem 4.13. Fix B = (bn)
∞
n=0 ⊆ Z and a Q-linearly independent geo-

metric sequence (λn)
∞
n=0 such that |bn − λn| is o(λn). For any finite F ⊆ Z

and infinite A⊆B + F , (Z,+,A) is superstable of U -rank ω.

A concrete family of examples covered by this theorem, which are straight-
forward but still illustrate the flexibility of the statement, is as follows. Fix al-
gebraically independent reals τ1, . . . , τk > 1 and construct a sequence (λn)

∞
n=0

by setting λ0 = τ1 and λn+1 = cnτinλn, where cn ∈ Z+ and in ∈ {1, . . . , k}
are arbitrary. Finally, pick g : N→ R+ such that g(n) is o(τn). Then the set
B = {�λn + g(n)� : n ∈ N} satisfies the assumptions of Theorem 4.13 (where
�·� denotes integer part). This theorem also generalizes a result of [17], which
covers the case when A = B is eventually periodic modulo any fixed m> 0,
and λn = ατn for some real number α > 0 and transcendental τ > 1.

To prove the theorems above, we use the same strategy from [9], [17], and
[22] for showing that an expansion of (Z,+) by some fixed unary predicate is
stable. Loosely speaking, we apply work of Casanovas and Ziegler [7] to show
that stability of the expansion reduces to stability of the induced structure
on the new predicate, and then we show that this induced structure is inter-
pretable in a more familiar stable structure (see, e.g., Theorem 3.11). This
general strategy is explored in [9] in the setting of expansions of U -rank 1
structures (e.g., (Z,+)), and by quoting the work done there we will circum-
vent most model-theoretic considerations in the proofs (see Section 2 and,
especially, Corollary 2.14).

2. Induced structure and stability

In this section, we summarize the strategy (briefly outlined in Section 1)
for proving stability of structures of the form (Z,+,A), where A ⊆ Z. For
background on basic first-order logic, including the notions of a first-order
structure and definable sets in such a structure, we refer the reader to [19].
For background on stability in first-order model theory, see [23]. For the reader
unfamiliar with this topic, we briefly, but emphatically, say that stability is
one of the first and most important notions of “tameness” in first-order struc-
tures, and the properties found in stable structures have motivated most of
modern research in the field of model theory. For instance, in stable struc-
tures, one finds a kind of paradise of good behavior, including a canonical
notion of independence and dimension for definable sets, as well as any hope
of classifying elementarily equivalent structures in higher cardinalities.

Definition 2.1. Given a first order L-structure M, with universe M , let
LM be the relational language consisting of, for any n≥ 1, an n-ary relation
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RX(x̄) for every M-definable X ⊆Mn. Given A⊆M , the M-induced struc-
ture on A, denoted AM is LM-structure with universe A such that, for each
M-definable X ⊆Mn, the relation RX(x̄) is interpreted in AM as An ∩X .

Next, we set notation for expansions of Z = (Z,+,0).

Definition 2.2. Given a sequence (Ai)i∈I of subsets of Z, let Z(Ai)i∈I de-
note the expansion of (Z,+) obtained by adding a unary predicate for each Ai.

Remark 2.3. We will deal with many structures of the form AZ , where
A ⊆ Z. Thus we recall that X ⊆ Zn is Z-definable if and only if it is in the
Boolean algebra generated by cosets of subgroups of Zn. This follows from
Presburger’s work on Th(Z) (see, e.g., [14, Lemma 1.9 & Fact 1.10]).

Definition 2.4 ([9]). Fix A⊆ Z.

(1) Given n≥ 0, set Σn(A) = {a1 + · · ·+ ak : k ≤ n,a1, . . . , ak ∈A}.
(2) A is sufficiently sparse if, for all n ≥ 0, Σn(±A) does not contain a

nontrivial subgroup of Z (where ±A := {x ∈ Z : |x| ∈A}).
For sufficiently sparse sets, stability of Z(A) is intimately tied to stability

of AZ , as detailed by the following fact. This result, which relies heavily on
[7], is proved by adapting techniques in [22, Section 2], which considers the
case A= qN. The full proof is given in [9, Theorems 2.11 & 4.5].

Fact 2.5. Suppose A⊆ Z is sufficiently sparse. Then Z(A) is stable if and
only if AZ is stable. Moreover, U(Z(A))≤ U(AZ) · ω.

In the above statement, the U -rank of a structure is ordinal valued and the
expression U(AZ) ·ω refers to standard multiplication of ordinals. We will not
need to deal directly with the definition of U -rank in this paper. For the reader
unfamiliar with U -rank, we recall that in a stable first-order structure M, the
geometry of definable sets is controlled by an abstract notion of independence
called “nonforking”, which generalizes linear independence in vector spaces
and algebraic independence in fields. One way to measure the complexity of
nonforking independence in stable structures is with a rank function on types
called U -rank; and a structure is superstable when the rank of types in one
variable is uniformly bounded by an ordinal. Fact 2.5 provides an upper bound
on the U -rank of Z(A) in terms of the U -rank of AZ . For the sets A considered
here, the U -rank of AZ will always be 1 (see Proposition 3.9), and so this will
yield an upper bound of ω for the U -rank of the structures Z(A) considered
in this paper. To see that the rank is exactly ω, we will apply the following
result of Palaćın and Sklinos [22].

Fact 2.6. (Z,+) has no proper stable expansions of finite U -rank.

We will apply this fact several times to conclude that certain expansions of
Z are proper expansions. In each case, the expansion in question will be proper
because of the following observation, which is immediate from Remark 2.3.
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Proposition 2.7. Suppose A⊆ Z is infinite and either bounded below or
bounded above. Then A is not definable in Z .

We now set some terminology concerning expansions and reducts requiring
a change of universe. Throughout the paper, definable always means with
parameters.

Definition 2.8. Let M and N be structures with universes M and N ,
respectively. Then M is a virtual reduct of N if there is a bijection f : M →N
such that the image under f of any M-definable set is N -definable. In this
case, N is a virtual expansion of M. If M is a virtual reduct of N via f , and
N is a virtual reduct of M via f−1, then M and N are interdefinable via f .
When M =N and f is the identity, we omit “virtual”, “virtually”, and “via
f” from the previous notions.

Throughout the the paper, we will use the following notation.

Notation 2.9. Given an integer n≥ 1, let ≡n denote the binary relation
on integers given by equivalence modulo n, and let [n] := {1, . . . , n}. Given
complex numbers z1, . . . , zn,w ∈C, we write z1+ · · ·+zn =̇w if z1+ · · ·+zn =w
and

∑
i∈I zi 	= 0 for all proper nonempty I ⊆ [n].

For the subsets A ⊆ N shown to be stable in [9], [17], and [22], most of
the difficulty in analyzing AZ comes from the induced structure from linear
equations.

Definition 2.10. Given A⊆ Z, let AZ
0 be the reduct of AZ to relations of

the form {ā ∈Ak : c1a1 + · · ·+ ckak =̇ r} where k ≥ 1, r ∈ Z, and c̄ ∈ {−1,1}k.

Proposition 2.11. Given A⊆ Z, AZ is interdefinable with the expansion
of AZ

0 by unary predicates of the form A∩ (nZ+ r) for 0≤ r < n.

Proof. Most of this is implicit in [22], [17], and [9], and so we only sketch
the argument. Let A be the expansion of AZ

0 by unary predicates for sets of
the form A∩ (nZ+ r), for 0≤ r < n. By the characterization of definable sets
in Z from Remark 2.3, we can describe AZ as the structure with universe
A and relations for sets of the form Ak ∩X , where X ⊆ Zk is of one of the
following forms:

(i) X = {ā ∈Ak : c1a1 + · · ·+ ckak = r} where k ≥ 1, r ∈ Z, and c̄ ∈ Zk; or
(ii) X = {ā ∈ Ak : c1a1 + · · · + ckak ≡n r} where k ≥ 1, 0 ≤ r < n, and

c̄ ∈ Zk.

We want to show any such set is definable in A. Clearly (since we have equality
in the language), we may assume c̄ ∈ {−1,1}k (this reduction is mainly done
for convenience later). It is also straightforward to show that any set X of
type (ii) is definable from the unary predicates A∩ (nZ+ r) for 0≤ r < n (see
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also [9, Proposition 5.2]). So suppose X is type (i). Then

X =
{
ā ∈Ak : c1a1 + · · ·+ ckak =̇ r

}
∪

⋃
∅	=I�[k]

{
ā ∈Ak :

∑
i∈I

ciai = 0 and
∑

i∈[k]\I
ciai = r

}
.

Working by induction on k, we see that X is definable in A. �

For us, the key point of the previous proposition is that, given A⊆ Z, AZ

is an expansion of AZ
0 by unary predicates. In general, expanding a structure

by unary predicates can certainly affect stability of that structure (e.g. the
expansion of Z by N is unstable). However, for the sets A⊆ Z considered here,
we will show that the induced structure AZ

0 has the property that any expan-
sion of AZ

0 by unary predicates is stable of U -rank 1. This will be extremely
useful, as it will allow us to entirely ignore the extra induced structure in AZ

from predicates of the form A ∩ (nZ+ r) for 0≤ r < n. Even more, this will
allow us to conclude that, for any B ⊆A, BZ is also stable. This is formalized
by Proposition 2.13 below.

Definition 2.12. A structure M is monadically stable of finite U -rank if
the expansion of M by unary predicates for all subsets of M is stable of finite
U -rank.

Proposition 2.13. Given A⊆ Z, if AZ
0 is a virtual reduct of a structure,

which is monadically stable of finite U -rank, then, for any B ⊆ A, BZ is
monadically stable of finite U -rank.

Proof. Fix A as in the statement, and B ⊆ A. Let A be the expansion of
AZ

0 by unary predicates for all subsets of A, and let B be the same for B.
Then A is stable of finite U -rank, B is definable in A, and B is the A-induced
structure on B. By Proposition 2.11, BZ is a reduct of B. �

Altogether, this gives us the main conclusion of this section.

Corollary 2.14. Suppose A⊆ Z is sufficiently sparse and AZ
0 is a virtual

reduct of a structure, which is monadically stable of finite U -rank. For any
B ⊆A, if B is not definable in (Z,+) then Z(B) is superstable of U -rank ω.

Proof. Combine Fact 2.5, Fact 2.6, and Proposition 2.13, along with the
observation that subsets of sufficiently sparse sets are sufficiently sparse. �

3. Multiplicatively generated sets

The goal of this section is our first main theorem.

Theorem 3.1. Suppose Γ is a finitely generated multiplicative submonoid
of Z+, and A⊆ Γ is infinite. Then Z(A) is superstable of U -rank ω.
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For A= qN, stability of Z(A) was first shown by Palaćın–Sklinos [22] and
Poizat [26]. As 2N is geometrically sparse (see Definition 4.3), the generaliza-
tion to subsets A⊆ 2N follows from [9]. We will prove Theorem 3.1 using the
strategy described in Section 2. Specifically, to prove some expansion Z(A)
is stable, we first show that A is sufficiently sparse, and then show that the
Z-induced structure on A is interpretable in a stable structure.

3.1. Multiplicatively generated sets are sufficiently sparse.

Definition 3.2. A subset Γ⊆C∗ has the weighted sum property if for all
k ≥ 1 there is some n≥ 0 such that, for any r ∈ Z+, the equation x1 + · · ·+
xk =̇ r has at most n solutions in (±Γ)k.

Observe that the notation Σn(A) generalizes directly to sets A ⊆ C. The
proof of the next lemma, which is essentially an application of Van der Waer-
den’s Theorem, is a generalization of [16, Lemma 4] (although the proof is
more or less the same).

Lemma 3.3. If Γ⊆ C∗ has the weighted sum property, then for all n≥ 1,
Σn(±Γ) does not contain arbitrarily large arithmetic progressions whose com-
mon difference is a positive integer.

Proof. Given k ≥ 1 and r > 0, let Γ(k, r) ⊆ (±Γ)k be the set of solutions
to x1 + · · ·+ xk =̇ r. We prove the claim by induction on n. Suppose n = 1.
For any arithmetic progression (z+ td)kt=0 in Σ1(±Γ) =±Γ, with d ∈ Z+, the
tuple (z+ td,−(z+(t−1)d)) is in Γ(2, d) for all but at most two indices t ∈ [k].
Therefore, ±Γ does not contain arbitrarily large arithmetic progressions by
assumption. Fix n≥ 2 and suppose we have the result for n− 1. Let m be a
bound on the size of an arithmetic progression in Σn−1(±Γ). Given r ∈ Z+,
let X(r) be the set of elements of ±Γ, which appear in an element of Γ(p, r)
for some p≤ 2n. By assumption, there is an integer c≥ 1 such that |X(r)| ≤ c
for all r ∈ Z+.

Recall that, given integers u, v ≥ 1, the Van der Waerden number W (u, v)
is the smallest integer N such that any coloring of [N ] by u colors contains
a monochromatic arithmetic progression of length v. Let k =W (2c,m+ 1),
and suppose (z+ td)kt=0 is an arithmetic progression in Σn(±Γ), with d ∈ Z+.
For each 0≤ t≤ k, fix σt ∈ (±Γ)≤n such that

∑
σt = z + td. For 1≤ t≤ k we

have,

d= z + td−
(
z + (t− 1)d

)
=
∑

σt +
∑

−σt−1,

and thus we may find a subtuple μt of (σt,−σt−1) such that μt ∈ Γ(p, d) for
some 1≤ p≤ 2n. By construction, μt ∈X(d)≤2n. Let C =X(d)× {0,1} and
let f : [k] → C such that f(t)1 is the first coordinate of μt and f(t)2 = 0 if
and only if f(t)1 ∈ σt. By choice of k, there is (x, ε) ∈ C and an arithmetic
progression P ⊆ [k] of length m+1 such that f(t) = (x, ε) for all t ∈ P . After
exchanging x with −x and P with P − 1 if necessary, we obtain x ∈±Γ and
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an arithmetic progression P ⊆ {0,1, . . . , k} of length m+ 1 such that x ∈ σt

for all t ∈ P . Then (z−x+ td)t∈P is an arithmetic progression of length m+1
in Σn−1(±Γ), which is a contradiction. �

The following fact is a widely used and extremely versatile result from alge-
braic number theory concerning solutions to linear equations in multiplicative
subgroups of C∗. This has been an active field of study with contributions from
many people, and the following result of Evertse, Schlickewei, and Schmidt
[11] is in many ways a culmination of this work. In the statement of the result,
we say that x̄, ȳ ∈ Ck are scalar equivalent if there is some λ ∈ C∗ such that
xi = λyi for all i ∈ [k].

Fact 3.4. Suppose Γ is a finitely generated multiplicative subgroup of C∗.
Then for all k ≥ 0 there is some n > 0 such that, for any α1, . . . , αk ∈C∗,

(i) α1x1 + · · · + αkxk =̇ 0 has at most n solutions in Γk modulo scalar
equivalence, and

(ii) for all β ∈C∗, α1x1 + · · ·+ αkxk =̇ β has at most n solutions in Γk.

In particular, Γ has the weighted sum property by (ii).

In fact, this is only a weak version of the theorem in [11], in which C can
be replaced by any algebraically closed field K of characteristic 0, Γ is a finite
rank multiplicative subgroup of (K∗)k, and n is effective and depends only
on k and the rank of Γ.

From Lemma 3.3 and Fact 3.4, we obtain the following conclusion.

Corollary 3.5. Suppose A⊆Σk(±Γ)∩Z, where Γ is a finitely generated
multiplicative subgroup of C∗ and k ≥ 1. Then, for all n≥ 1, Σn(±A) does not
contain arbitrarily large arithmetic progressions. In particular, A is sufficiently
sparse.

It follows that any finitely generated multiplicative submonoid of Z+ is
sufficiently sparse.

Remark 3.6. Corollary 3.5 can be used to show that many sets given by
recurrence relations are sufficiently sparse. Specifically, suppose A⊆ Z is enu-
merated by a linear homogeneous recurrence relation (an)

∞
n=0, with constant

coefficients and characteristic roots λ1, . . . , λd ∈ C∗, each of multiplicity 1.
Then there are α1, . . . , αd ∈ C∗ such that an = α1λ

n
1 + · · · + αdλ

n
d . Thus if

Γ = 〈α1, . . . , αd, λ1, . . . , λd〉 then A ⊆ Σd(Γ), and so A is sufficiently sparse.
The multiplicity assumption on the roots is necessary, as an = 2n +n is given
by the recurrence an = 4an−1−5an−2+2an−3, with characteristic polynomial
(x−2)(x−1)2, and A= {an : n ∈N} is not sufficiently sparse (see Remark 4.6).

In [17], Lambotte and Point prove superstability for Z(A), where A is given
by a linear recurrence relation satisfying certain properties. In particular, it
covers the case that the characteristic polynomial is irreducible with a real
root θ > 1 of absolute value strictly greater than the modulus of any other
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root. This generalizes the results of [9] applied to recurrence relations since, in
order for such a recurrence to be geometrically sparse, one needs the modulus
of all other roots to be on the closed complex unit disk.

3.2. Induced structure on multiplicative monoids. In this section, we
consider the induced structure ΓZ where Γ is a finitely generated multiplica-
tive submonoid of Z+.

Definition 3.7. Fix Q⊆N≥2.

(1) Let Γ(Q) be the multiplicative submonoid of N generated by Q.
(2) Q is multiplicatively independent if, for all k ≥ 1, q̄ ∈Qk, and n̄ ∈ Zk,

qn1
1 . . . qnk

k = 1 implies ni = 0 for all 1 ≤ i ≤ k (equivalently, {log q : q ∈Q} is
Q-linearly independent).

In the case that Q is a set of primes, Γ(Q) is sometimes called the set of
Q-smooth numbers. We first show that if Q ⊆ N≥2 is finite and multiplica-
tively independent, then Γ(Q)Z is a virtual reduct of a structure which is
monadically stable of finite U -rank. We now define this structure.

Definition 3.8. Fix d≥ 1. Let Nd,s = (Nd, s1, . . . , sd) where, for 1≤ i≤ d
and n̄ ∈Nd, si(n1, . . . , nd) = (n1, . . . , ni−1, ni + 1, ni+1, . . . , nd).

Proposition 3.9. For any d≥ 1, Nd,s is monadically stable of U -rank 1.

Proof. Fix d ≥ 1, and let Zd,s = (Zd, s1, . . . , sd). Note that s1, . . . , sd are
commuting bijections on Zd. Let T be the complete theory of Zd,s, and let
T1 be the complete theory of the expansion of Zd,s by unary predicates for
all subsets of Zd. We first show T1 has U -rank 1, and the claim is that this
follows directly from [18, Theorem 3.3], which gives four equivalent conditions
for a theory to be “mutually algebraic”. Condition (4) (of [18, Theorem 3.3])
states that such theories are U -rank 1 with trivial pregeometry, and so T
is mutually algebraic. Condition (2) then implies that any expansion of any
model of T by unary predicates is a mutually algebraic structure, and so, with
condition (1), it follows that T1 is mutually algebraic. By condition (4) again,
T1 has U -rank 1, as claimed. Finally, since Nd,s is the Zd,s-induced structure
on Nd ⊆ Zd, we have the desired result. �

Remark 3.10. The previous result can be shown “by hand”, by demon-
strating quantifier elimination for the expansion ofNd,s by all unary predicates
and inverses for the successor functions, in a similar fashion as [9, Proposi-
tion 5.9] (which deals with the case d= 1). Then this expansion is superstable
of U -rank 1 by the characterization of such theories in [3, Theorem 21], us-
ing the notion of quasi-strong-minimality. Another interesting way to see just
monadic stability of Nd,s (without the bound on U -rank) is as follows. Con-
sider the directed graph relation R on Nd such that R(x̄, ȳ) holds if and only
if ȳ = si(x̄) for some 1≤ i≤ d. If R∗(x̄, ȳ) =R(x̄, ȳ)∨R(ȳ, x̄), then (Nd,R∗) is
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a graph in which every vertex has degree at most 2d. By [15, Theorem 1.4],
(Nd,R) is monadically stable. Now it is straightforward to show that Nd,s is a
reduct of the expansion of (Nd,R) by unary predicates Pi = {n̄ ∈Nd : ni ∈ 2N}
for 1≤ i≤ d.

The next result identifies the Z-induced structure on multiplicative sub-
monoids of Z+ of the form Γ(Q), where Q⊆N≥2 is finite and multiplicatively
independent.

Theorem 3.11. Suppose Q = {q1, . . . , qd} ⊆ N≥2 is multiplicatively inde-
pendent, and define f :Nd → Γ(Q) such that f(n1, . . . , nd) = qn1

1 . . . qnd

d .

(a) Γ(Q)Z0 is interdefinable with Nd,s via f .
(b) Let Nmod

d,s be the expansion of Nd,s by unary predicates for sets of the
form {

n̄ ∈Nd : f(n̄)≡m r
}
,

for all 0≤ r <m<∞. Then Γ(Q)Z is interdefinable with Nmod
d,s via f .

Proof. Note that part (b) follows from part (a) by Proposition 2.11. So it
suffices to prove part (a). The map f is clearly surjective, and the assumption
that Q is multiplicatively independent says precisely that f is injective. We
first show that Γ(Q)Z0 is a virtual reduct of Nd,s (via f−1). So fix k ≥ 1, r ∈ Z,
and c̄ ∈ {−1,1}k, and define

X(c̄, r) =

{
(n̄1, . . . , n̄k) ∈Ndk :

k∑
i=1

cif(n̄i) =̇ r

}
.

We want to show X(c̄, r) is definable in Nd,s. If r 	= 0 then X(c̄, r) is finite by
Fact 3.4(ii). So we may assume r = 0. Let X :=X(c̄,0). By Fact 3.4(i), there
are n(1), . . . ,n(t) ∈X such that, for all n ∈X there is 1 ≤ u ≤ t and λ ∈ R∗

such that, for 1≤ i≤ k, f(ni) = λf(n(u)i). Any such λ must be of the form
qm1
1 · . . . · qmd

d for some m̄ ∈ Zd. Now, given n= (n1, . . . ,nk) ∈Ndk and m̄ ∈ Zd,
let

n⊕ m̄= (n1 + m̄, . . . ,nk + m̄) and n� m̄= (n1 − m̄, . . . ,nk − m̄).

Note that if n ∈X , m̄ ∈ Zd, and n⊕ m̄ ∈Ndk, then n⊕ m̄ ∈X . Moreover, any
m̄ ∈ Zd is of the form m̄1 − m̄2 for some m̄1, m̄2 ∈ Nd, and for any n ∈ Ndk

there are only finitely many m̄ ∈ Nd such that n� m̄ ∈ Ndk. Therefore, after
enlarging the set {n(1), . . . ,n(t)} if necessary, we may assume

X =

t⋃
u=1

{
n(u)⊕ m̄ : m̄ ∈Nd

}
.

So it suffices to fix n= (n1, . . . ,nk) ∈Ndk and show that the set Z(n) = {n⊕m̄ :
m̄ ∈Nd} is definable in Nd,s. Given r̄ ∈Nd, define the function sr̄ = s

r1
1 ◦ · · · ◦
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s
rd
d , which is definable in Nd,s. Given m̄ ∈Nd, define

I(m̄) =

d⋂
i=1

{
n̄ ∈Nd : ni ≥mi

}
=

d⋂
i=1

{
n̄ ∈Nd : ∃x̄ s

mi
i (x̄) = n̄

}
,

and note that any such I(m̄) is definable in Nd,s. Given 1≤ i≤ k and 1≤ j ≤
d, let ri,j = ni,j − n1,j . Let

Z =
{(

sr̄1(n̄), . . . , sr̄k(n̄)
)
: n̄ ∈ I(n1)

}
,

and note that Z is definable in Nd,s. We claim Z(n) = Z. To see this, first
fix m̄ ∈ Nd. For 1 ≤ j ≤ d, set nj = mj + n1,j , and note that nj ≥ n1,j . By
definition of ri,j , we have n⊕ m̄= (sr̄1(n̄), . . . , sr̄k(n̄)). Conversely, fix n̄ ∈Nd

such that nj ≥ n1,j for all 1≤ j ≤ d. For 1≤ j ≤ d, let mj = nj − n1,j . Then
m̄ ∈Nd and n⊕ m̄= (sr̄1(n̄), . . . , sr̄k(n̄)).

Finally, we must show Nd,s is a virtual reduct of Γ(Q)Z0 (via f ). For this,
fix 1≤ i≤ d, and note that

f
({

(m̄, n̄) ∈Nd ×Nd : n̄= si(m̄)
})

=A2 ∩
{
(x, y) ∈ Z2 : y = qix

}
. �

Remark 3.12. When d= 1, the notation and technical details in the pre-
vious proof become much simpler. In particular, this gives a short proof that
for any integer q ≥ 2, (qN)Z is interdefinable with Nmod

1,s via n �→ qn. This was
first shown by Palaćın and Sklinos [22].

3.3. Main results and consequences. We can now prove the first main
result.

Proof of Theorem 3.1. First, note that for any finitely generated multi-
plicative submonoid Γ of Z+, there is some finite, multiplicatively independent
Q⊆N≥2 such that Γ⊆ Γ(Q). So it suffices to assume Γ has a multiplicatively
independent finite generating set. The result then follows from Corollary 2.14,
Corollary 3.5, Proposition 3.9, and Theorem 3.11(a). �

Theorem 3.1 can be used to exhibit some new and interesting behavior
in stable expansions of (Z,+). Recall that a subset A ⊆ Z+ is lacunary if
limsupn→∞

an+1

an
> 1, where (an)

∞
n=0 is a strictly increasing enumeration of A.

In particular, A ⊆ Z+ is not lacunary if and only if limn→∞
an+1

an
= 1. The

results of [9] and [17] provide examples of lacunary sets A ⊆ Z+ such that
Z(A) is stable and limn→∞

an+1

an
can be chosen arbitrarily close to 1 (e.g.

A= {�bn� : n ∈N} for some fixed b ∈R>1, by the main result of [9], in which
case both expansions define the ordering). On the other hand, many well-
known examples of unstable expansions of the form Z(A) are given by non-
lacunary sets. For example, if A = {nk : n ∈ N} for some fixed k ≥ 1, then
Z(A) defines the ordering since any sufficiently large integer is a uniformly
bounded sum of elements of A (see also [9, Section 8.1]). In fact, if k ≥ 2
then Z(A) defines multiplication (see [6, Proposition 6]). Another example is
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the the expansion of Z by the (non-lacunary) set of primes, which is defines
the ordering (whether multiplication is definable is an open question, see [6]).
This motivates the question, asked in both [9] and [17], of whether there is a
stable expansion Z(A) where A⊆ Z+ is not lacunary. Theorem 3.1 provides
such examples, when combined with the following characterization lacunary
multiplicative submonoids of Z+.

Fact 3.13. Let Γ be a multiplicative submonoid of Z+, and suppose Q⊆
N≥2 is a set of generators. The following are equivalent:

(i) Γ is lacunary.
(ii) For any q, r ∈Q, logq r is rational.

(iii) There is an integer q ≥ 2 such that Γ⊆ qN.

Proof. The equivalence of (ii) and (iii) is straightforward, and (iii) ⇒ (i) is
obvious. The implication (i) ⇒ (iii) is a result of Furstenberg [12]. Specifically,
in Part IV of [12], a submonoid Γ is called non-lacunary if it satisfies condition
(iii), and Lemma IV.1 of [12] shows that if Γ is non-lacunary and (an)

∞
n=0 is

an increasing enumeration of Γ, then limn→∞
an+1

an
= 1. �

So, by Theorem 3.1, we have:

Corollary 3.14. There exist infinite non-lacunary sets A⊆ Z+ such that
Z(A) is superstable of U -rank ω.

As remarked above, many unstable expansions of the form Z(A) are by
non-lacunary subsets A ⊆ Z+ (e.g., primes or perfect powers). Moreover, it
is not hard to find a lacunary set A ⊆ Z+ such that Z(A) is unstable (e.g,
A= {2n + k : n,k ∈ N, k ≤ n}; see [9, Proposition 8.10]). On the other hand,
there seems to be no previously known example of an unstable expansion Z(A)
where A is strongly lacunary, that is, lim infn→∞

an+1

an
> 1, where (an)

∞
n=0

is a strictly increasing enumeration of A. In Theorem 4.8, we provide such
examples, which, together with Corollary 3.14, give positive answers to both
parts of Question 8.15 from [9].

For the next consequence of Theorem 3.1, we need a technical lemma.

Lemma 3.15. For any integers q1, . . . , qd ≥ 2 there is a finitely generated
multiplicative submonoid Γ of Z+, and a subset A⊆ Γ, such that Z(qN1 , . . . , q

N
d )

is a reduct of Z(A).

Proof. Define the equivalence relation ∼ on N≥2 by q ∼ r if and only if
logq r is rational. Let R1, . . . ,Rt be the partition of {q1, . . . , qd} induced by ∼.

By Fact 3.13, each Ri generates a lacunary multiplicative submonoid of Z+,
and so there is an integer bi ≥ 2 such that Ri ⊆ bNi . Given 1≤ i≤ t, let ui be
the least common multiple of the set of positive integers {logbi r : r ∈Ri}, and
set ci = bui

i . By construction ci � cj for all 1 ≤ i < j ≤ t. Let A =
⋃t

i=1 c
N
i ⊆

Γ(c1, . . . , ct).
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We first show that, for all 1≤ i≤ t, cNi is definable in Z(A). So fix 1≤ i≤ t,
and let c= ci. We claim that x ∈ cN if and only if cmx ∈A for all 1≤m≤ t.
The forward direction is clear, so fix x ∈ Z such that cmx ∈A for all 1≤m≤ t.
For 1 ≤ m ≤ t, we may fix 1 ≤ im ≤ t and nm ≥ 1 such that cmx = cnm

im
. If

im = i for some 1≤m≤ t, then we have x= cnm−m and so x ∈ cN, as desired.
Otherwise, by pigeonhole there are 1 ≤m<m∗ ≤ t and 1 ≤ j ≤ t such that
j 	= i and im = j = im∗ . Then cmx = cnm

j and cm∗x = c
nm∗
j , which implies

cm∗−m = c
nm∗−nm

j , contradicting c� cj .

Finally, to finish the proof, it suffices to fix 1 ≤ i ≤ d and show qNi is de-
finable in Z(cNj ), where 1 ≤ j ≤ t is such that qi ∈ Rj . Let q = qi, b = bj ,
u = uj , and c = cj = bu. By choice of u, there is some integer v ≥ 1 such
that q = bv and v divides u. Fix k ≥ 1 such that u = kv. We show that
x ∈ qN if and only if qmx ∈ cN for some 0 ≤ m ≤ k − 1. For one direction,
fix x ∈ Z such that qmx ∈ cN for some 0≤m≤ k − 1. Then, for some n≥ 1,
qmx = cn = bnu = bnkv = qnk, and so x = qnk−m ∈ qN. Conversely, suppose
x = qn for some n ≥ 1. Let n = ak + r where 0 < r ≤ k. Set m = k − r, and
note 0≤m≤ k− 1. Then

qmx= qk−rqak+r = q(1+a)k = c1+a ∈ cN,

as desired. �

We can now state and prove the second main result of this section.

Theorem 3.16. For any integers q1, . . . , qd ≥ 2, Z(qN1 , . . . , q
N
d ) is superstable

of U -rank ω. Therefore Z(qN)q≥2 is stable.

Proof. The first statement follows from Fact 2.6, Theorem 3.1, and
Lemma 3.15. For the second statement, recall that stability of a structure
is equivalent to stability of all reducts to finite sublanguages. �

In particular, Theorem 3.16 gives the first known examples of proper stable
expansions of (Z,+) by at least two unary predicates each of which is unde-
finable from the others. Using similar kinds of techniques one can construct a
variety of interesting stable expansions of (Z,+). Here is one more example.

Corollary 3.17. Given n≥ 1, let Γn be the multiplicative submonoid of
Z+ generated by the first n prime numbers. Then Z(Γn)n≥1 is stable.

Proof. For any fixed n ≥ 1, Γk is definable in Z(Γn) for all k ≤ n. Now
apply Theorem 3.1. �

We still do not have an example of a strictly stable expansion of (Z,+) or
a superstable expansion with U -rank greater than ω (recall that finite U -rank
is prohibited by [22]). This motivates the following questions.
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Question 3.18. Are Z(qN)q≥2 and Z(Γn)n≥1 superstable? If so, what are
their U -ranks? Is the expansion of Z by all finitely generated multiplicative
submonoids of Z+ stable?

It is worth mentioning that the structure (Z,+,<, qN), for some fixed q ≥ 2,
is also known to be model theoretically tame (e.g., NIP) by quantifier elim-
ination results of Cherlin and Point [8] (see also the remarks after Theo-
rem 4.8). On the other hand, given multiplicatively independent p and q,
whether (Z,+,<, pN, qN) is model theoretically tame appears to be open. In
this structure, one can express statements about the number of solutions to
equations such as px− qy = z, which is a well-studied topic related to rational
approximation of algebraic numbers (see, e.g., [31]). Incidentally, by a result
of Bès [5], (Z,+, Vp(x), q

N) defines multiplication, where Vp(x) is the largest
power of p dividing x.

4. Independent geometric sequences

The results in this section are motivated by the main result of [9] showing
that Z(A) is stable for any geometrically sparse subset of N. The following is
the main definition.

Definition 4.1 ([9]). A strictly increasing sequence (λn)
∞
n=0 of positive

real numbers is geometric if the set { λn

λm
: 0≤m≤ n} is closed and discrete.

The following crucial fact about geometric sequences is proved in [9,
Lemma 7.3] by modifying an unpublished argument by Poonen (which is sim-
ilar in flavor to Fact 3.4).

Fact 4.2. Suppose S ⊆ R+ is such that { s
t : s, t ∈ S, t ≤ s} is closed and

discrete. For any k ≥ 1 there is some ε > 0 such that, for any c̄ ∈ {−1,1}k and
λ1, . . . , λk ∈ S, if

∑
i∈I ciλi 	= 0 for all nonempty I ⊆ [k], then

|c1λ1 + · · ·+ ckλk| ≥max{ελ1, . . . , ελk}.

Throughout this section, all enumerated infinite sequences of integers or
reals are assumed to be strictly increasing. Given functions f, g :N→R+, we
say f(n) is O(g(n)) if there is some constant C such that f(n)≤Cg(n) for all
n ∈N, and we say f(n) is o(g(n)) if, given ε > 0, f(n)≤ εg(n) for sufficiently
large n.

Definition 4.3 ([9]). A set A⊆ Z is geometrically sparse if there is a set
B = (bn)

∞
n=0 ⊆N and a geometric sequence (λn)

∞
n=0 such that |bn−λn| is O(1)

and A⊆B + F for some finite F ⊆ Z.

The following is the main result in [9].

Fact 4.4. If A ⊆ Z is geometrically sparse then Z(A) is superstable of
U -rank ω.
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The natural question is whether the O(1) restriction in Definition 4.3 can
be relaxed. For instance, many examples in [17] of sets A⊆N, for which Z(A)
is stable, are not geometrically sparse, but are such that |an − λn| is o(λn)
for some geometric sequence (λn)

∞
n=0. This motivates the following example,

which is also relevant to the discussion of strongly lacunary subsets of Z+

after Corollary 3.14.

Definition 4.5. Given q ≥ 2, let Aq = {qn + n : n ∈N}.

Remark 4.6. For any q ≥ 2, Aq is strongly lacunary since, if an = qn + n,
then limn→∞

an+1

an
= q. Moreover, the sequence (qn)∞n=0 is geometric and |an−

qn| is o(qn). It is also worth pointing out that Aq is not sufficiently sparse
since (q− 1)n= qan+1 − an+2 − qa1+ a2 for any n ∈N, and so Σ2q+2(±Aq) =
(q− 1)Z.

The first main result in this section is that Z(Aq) is unstable for any
q ≥ 2. This question, even for just A2, is discussed in both [9] and [17]. In
particular, A2 often emerges as an obstacle in attempts to generalize the
“sparsity assumptions” on a set A⊆ Z+ which ensure Z(A) is stable. For this
reason, settling the question of whether Z(A2) is stable provides a concrete
and useful barrier in future work toward generalizing the methods in [9], [17],
and [22]. For the proof, we first recall asymptotic density of subsets of Z+.

Definition 4.7. Given X ⊆ Z+, define

d∗(X) = limsup
n→∞

|X ∩ [n]|
n

and d∗(X) = lim inf
n→∞

|X ∩ [n]|
n

,

called the upper asymptotic density and lower asymptotic density of X , re-
spectively.

Theorem 4.8. For any q ≥ 2, Z(Aq) is interdefinable with (Z,+,<, qx),
where qx denotes the function x �→ qx with domain N. In particular, Z(Aq) is
unstable.

Proof. Note that Aq is definable in (Z,+,<, qx), since N is definable. So it
suffices to show < and qx are definable in Z(Aq). Given n ∈N, let an = qn+n.
We first assume < is definable in Z(Aq), and use this to show qx is definable.
If < is definable in Z(Aq) then the successor function s :Aq →Aq , such that
s(an) = an+1, is definable. Since (q − 1)qN = {s(a)− a− 1 : a ∈Aq}, we have
that qN is definable in Z(Aq). Now y = qx if and only if y ∈ qN, 0≤ x < y, and
x+ y ∈Aq .

Now we show that < is definable in Z(Aq). Since Z(Aq) expands the group
structure, it suffices to show N is definable. As observed in Remark 4.6, the
following identity holds for any n ∈N,

(1− q)n= an+2 − qan+1 + q− 2.
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Define

B = (q− 1)Z∩ {u− qv+ q− 2 : u, v ∈Aq}.
Then B is definable in Z(Aq), and {b ∈ B : b ≤ 0} = (q − 1)Z≤0. Let X =
{b ∈ B : b > 0} and C = ((q − 1)Z+)\X . Then C is definable in Z(Aq) since
C = ((q− 1)Z)\B.

To prove Z(Aq) defines N, we will show d∗(X) = 0. This will suffice since,
if d∗(X) = 0, then d∗(C) = d∗((q − 1)Z+) − d∗(X) = 1

q−1 > 0 and so, by a

result of Nash and Nathanson [21, Lemma 1], there is some n > 0 such that
Σn(C ∪ {0,1}) =N.

To show d∗(X) = 0, let V be the set of z ∈ Z+ such that z = u− qv+ q− 2
for some u, v ∈Aq . Then X = V ∩ (q− 1)Z+, so it suffices to show d∗(V ) = 0.
Any element of V is of the form

al − qak + q− 2 = ql − qk+1 + l− kq+ q− 2,

for some k, l ≥ 0. Since every element of V is positive, we claim that k and l
must also satisfy k+ 1≤ l. Indeed, if l≤ k, then

al − qak + q− 2≤ ql
(
1− qk−l+1

)
+ k+ q− kq− 2≤ 0.

So, setting r = l− k− 1, we have that every element of V is of the form,

f(k, r) := qk+1
(
qr − 1

)
+ k+ r− kq+ q− 1,

for some k ≥ 0 and r ≥ 0. Given n≥ 1, define

g(n) =
∣∣{(k, r) ∈N×N : 1≤ f(k, r)≤ n

}∣∣.
Then |V ∩ [n]| ≤ g(n) and so, to show d∗(V ) = 0, it suffices to show g(n) is
o(n). In the following, log denotes logq . First note that if r ≥ 1 then

f(k, r)≥ qk+1 − kq ≥ qk,

and so if f(k, r)≤ n then k ≤ logn. On the other hand, f(k,0) = (k−1)(1−q),
and so f(k,0) ≤ 0 whenever k ≥ 1. Thus, for any k, r ≥ 0, if 1 ≤ f(k, r) ≤ n
then k ≤ logn. Now we also have

f(k, r)≥ qr − 1− kq+ q− 1≥ qr − kq.

Therefore, for any k, r ≥ 0, if 1≤ f(k, r)≤ n then

qr ≤ n+ kq ≤ n+ q logn≤ (q+ 1)n,

and so r ≤ c + logn for c = log(q + 1). Altogether, for any k, r ≥ 0, if 1 ≤
f(k, r)≤ n then k ≤ logn and r ≤ c+ logn, and so

g(n)≤ (c+ logn) logn,

So g(n) is o(n), as desired. �
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Quantifier elimination and decidability for (Z,+,<, qx) was investigated by
Semenov [30]. In [8], Cherlin and Point give a detailed account for q = 2. It is
also interesting to note that (Z,+,<, qN) is a proper reduct of (Z,+,<, qx). In
particular, if Vq : Z

+ → qN is such that Vq(x) is the greatest power of q dividing
x, then (Z,+,<,Vq(x)) is decidable while (Z,+,<, qx, Vq(x)) is undecidable.

1

It follows that qx is not definable in (Z,+,<,Vq(x)), and thus not definable
in (Z,+,<, qN).

Theorem 4.8 shows that if O(1) is weakened to O(n) in Definition 4.3, then
the resulting analog of Fact 4.4 fails. So we ask:

Question 4.9. Is there a set A⊆N such that Z(A) is unstable and |an −
λn| is o(n), for some geometric sequence (λn)

∞
n=0?

The second main result of this section is that the asymptotic bound O(1)
underlying Fact 4.4 can be substantially weakened if one makes further as-
sumptions on the associated geometric sequence.

Definition 4.10. A set A ⊆ Z is independently sparse if there is a set
B = (bn)

∞
n=0 ⊆ N and a geometric sequence (λn)

∞
n=0 such that {λn : n ∈ N}

is Q-linearly independent, |bn − λn| is o(λn), and A⊆ B + F for some finite
F ⊆ Z.

Example 4.11. Suppose τ > 1 is transcendental. Then the sequence
(τn)∞n=0 is Q-linearly independent and geometric, and so a straightforward
example of an independently sparse set, which is not geometrically sparse, is
the set enumerated by an = �τn� + n (where �·� denotes integer part). More
generally, fix algebraically independent reals τ1, . . . , τk > 1 and define (λn)

∞
n=0

such that λ0 = τ1 and λn+1 = cnτinλn for arbitrarily chosen cn ∈ Z+ and
in ∈ [k]. Then (λn)

∞
n=0 is Q-linearly independent and geometric. So for any

function g : N → R+ such that g(n) is o(λn) (e.g., if g(n) is 2o(n)), the set
A= {�λn+ g(n)� : n ∈N} is independently sparse (taking B =A and F = {0}
in Definition 4.10).

Remark 4.12. The class of independently sparse sets satisfies the following
strong closure property: if A⊆ Z is independently sparse and F ⊆ Z is finite,
then any subset of A+ F is independently sparse. The class of geometrically
sparse sets also satisfies this property.

The main result of this section is the following theorem.

Theorem 4.13. If A⊆ Z is independently sparse and infinite, then Z(A)
is superstable of U -rank ω.

1 The history of the first claim is given in [20]; the second claim is shown in [8] for q = 2,

and the generalization to arbitrary q ≥ 2 is straightforward.
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Remark 4.14. Theorem 4.13 generalizes the “transcendental limit” case
of a result of Lambotte and Point [17, Theorem 3.8], which shows that if
A= (an)

∞
n=0 is such that |an−ατn| is o(τn) for some α > 0 and transcendental

τ > 1, then Z(A) is superstable of U -rank ω.

The proof strategy for Theorem 4.13 is the same as in Section 3. We first
show that independently sparse sets are sufficiently sparse, and then we in-
terpret the induced structure on such a set in a superstable structure of finite
U -rank.

Proposition 4.15. If A⊆N is independently sparse then it is sufficiently
sparse.

Proof. First, for any A ⊆ Z, A is sufficiently sparse if and only if, for all
n≥ 1, d∗(Σn(±A)∩Z+) = 0 (this is a direct consequence of [21]; see [9, Propo-
sition 4.2]). It follows that if A⊆ Z is sufficiently sparse and F ⊆ Z is finite,
then A + F is sufficiently sparse (see, e.g., [9, Lemma 4.3]). Altogether, to
prove the claim, it suffices to fix A= (an)

∞
n=0 ⊆ N and a Q-linearly indepen-

dent geometric sequence (λn)
∞
n=0, such that |an−λn| is o(λn), and prove that

A is sufficiently sparse.
Given k ≥ 1 and c̄ ∈ {−1,1}k, let X(c̄) = {n̄ ∈Nk : c1an1 + · · ·+ ckank

	= 0},
and then define X∗(c̄) = {n̄ ∈ Nk : (ni)i∈I ∈ X((ci)i∈I) for all nonempty I ⊆
[k]}.

Claim. For any k ≥ 1, there is ε > 0 and N > 0 such that, for any c̄ ∈
{−1,1}k and n̄ ∈X∗(c̄), if max n̄≥N then |c1an1 + · · ·+ ckank

| ≥ ελmax n̄.

Proof. Given k ≥ 1, c̄ ∈ {−1,1}k, and n̄ ∈ Nk, set g(c̄, n̄) = c1λn1 + · · · +
ckλnk

. Fix k ≥ 1, c̄ ∈ {−1,1}k, and n̄ ∈ Nk, and suppose g(c̄, n̄) = 0. We first
show n̄ /∈ X(c̄). Let P be the partition of [k] induced by the equivalence
relation ni = nj . Given P ∈ P , let nP be the unique value of ni for i ∈ P , and
let cP =

∑
i∈P ci. Then nP 	= nQ for distinct P,Q ∈ P , and

∑
P∈P cPλnP

=
g(c̄, n̄) = 0. By Q-linear independence, cP = 0 for all P ∈ P . Therefore c1an1 +
· · ·+ ckank

=
∑

P∈P cPanP
= 0.

By Fact 4.2 and the above, there is ε > 0 such that |g(c̄, n̄)| ≥ 4ελmax n̄ for
all c̄ ∈ {−1,1}k and n̄ ∈X∗(c̄). For n ∈N, let θn = an − λn. Since |an − λn| is
o(λn), there is M > 0 such that for all n≥M , |θn| ≤ 2ε

k λn. Define

θ =max
{
|c1θn1 + · · ·+ clθnl

| : l < k, c̄ ∈ {−1,1}l, ni <M for all 1≤ i≤ l
}
.

For any c̄ ∈ {−1,1}k and n̄ ∈Nk, if max n̄≥M then

|c1θn1 + · · ·+ ckθnk
| ≤ θ+ 2ελmax n̄.

Therefore, for any c̄ ∈ {−1,1}k and n̄ ∈X(c̄), if max n̄≥M then

|c1an1 + · · ·+ ckank
| ≥

∣∣g(c̄, n̄)∣∣− |c1θn1 + · · ·+ ckθnk
| ≥ 2ελmax n̄ − θ.

Now choose N ≥M such that ελN ≥ θ. �
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Fix k ≥ 1. We want to show Σk(±A) does not contain a nontrivial subgroup
of Z. Let B = Σk(±A) ∩ Z+. We will show d∗(B) = 0. Define f : B → N so
that, given x ∈B, f(x) =max n̄ where n̄ ∈Nl for some l≤ k and c1an1 + · · ·+
clanl

=̇ x for some c̄ ∈ {−1,1}l. By the claim, we may fix ε > 0 and N > 0

such that for all x ∈B, if f(x)≥N then x≥ ελf(x). Let b= inf{λn+1

λn
: n ∈N}.

Then b > 1 since (λn)
∞
n=0 is geometric. For any n ≥ N , if x ∈ B ∩ [n] then

f(x)≤max{N, logb
n

ελ0
} ≤ c logn for some c= c(k). Fix n ∈N. For m ∈N, let

Bm = {x ∈B ∩ [n] : f(x) =m}. We have shown that B ∩ [n] =
⋃

m≤c lognBm.

By definition of f , |Bm| ≤ (3m)k for any m ∈N. Altogether∣∣B ∩ [n]
∣∣≤ ∑

m≤c logn

(3m)k ≤ (c logn)(3c logn)k = 3kck+1(logn)k+1.

Altogether, we have d∗(B) = 0, as desired. �

For the rest of the section, we fix A ⊆ Z, which is independently sparse
witnessed by B = (bn)

∞
n=0 ⊆ N, (λn)

∞
n=0 ⊆ R+, and F ⊆ Z. We assume A =

(an)
∞
n=0 is infinite, and thus we can construct a function f : N→N such that,

for each n ∈ N, an = bf(n) + rn for some rn ∈ F . By enlarging F , we may
assume without loss of generality that f is weakly increasing, that is, m≤ n
implies f(m)≤ f(n). Given k ≥ 1 and n̄ ∈Nk, let P(n̄) be the partition of [k]
induced by the equivalence relation f(ni) = f(nj).

Definition 4.16. Given k ≥ 1, c̄ ∈ {−1,1}k, and r ∈ Z, define

A(c̄, r) =
{
n̄ ∈Nk : c1an1 + · · ·+ ckank

= r
}
.

Define A0(c̄, r) = {n̄ ∈A(c̄, r) :
∑

i∈P ci 	= 0 for all P ∈ P(n̄)}.

Let N 1
s denote the expansion of N1,s = (N, x �→ x+1) by unary predicates

for all subsets of N. Our goal is to interpret AZ
0 in N 1

s , and the next lemma
shows that, using the successor function and arbitrary unary predicates, we
may reduce to sets of the form A0(c̄, r). The proof is elementary but technical.

Lemma 4.17. Suppose A0(c̄, r) is definable in N 1
s for all k ≥ 1, c̄ ∈ {−1,1}k,

and r ∈ Z. Then A(c̄, r) is definable in N 1
s for all k ≥ 1, c̄ ∈ {−1,1}k, and

r ∈ Z.

Proof. Assume A0(c̄, r) is definable in N 1
s for all k ≥ 1, c̄ ∈ {−1,1}k, and

r ∈ Z. We may fix an integer K ≥ 0 such that, for all m,n ∈N, if f(m) = f(n)
then |m−n| ≤K. We use [−K,K] for the interval of integers from −K to K.
Fix k ≥ 1, c̄ ∈ {−1,1}k, and r ∈ Z.

Let P be the set of partitions of [k]. Fix P ∈ P. Then P determines the
following objects (which depend only on initial choice of P). Given P ∈ P , let
cP =

∑
i∈P ci. Let Q= {P ∈ P : cP = 0}, E =

∏
P∈Q[−K,K]P , and I =

⋃
Q.

Let Σ(P) = F I .
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For a fixed P ∈ P and σ = (si)i∈I ∈Σ(P), we define a set X(P , σ) as follows.
Identify elements of E as u= (ūP )P∈Q, where ūP ∈ [−K,K]P for all P ∈ Q.
Identify elements of NQ as n= (nP )P∈Q. Given u ∈E and n ∈NQ, define u⊕n

to be the tuple n̄ ∈ NI such that for P ∈Q and i ∈ P , ni = nP + uP,i. Given
P ∈Q and ū ∈ [−K,K]P , define

U(P, ū) =

{
n ∈N :

f(n+ ui) = f(n+ ui) for all i, j ∈ P , and
an+ui = bf(n+ui) + si for all i ∈ P

}
.

Given P ∈ Q, set sP =
∑

i∈P cisi. Let s= r −
∑

P∈Q sP . Note that, by con-

struction, we may view A0((ci)i/∈I , s) as a subset of N[k]\I . Given m̄ ∈NI and
n̄ ∈N[k]\I , let n̄⊗ m̄ be the tuple v̄ ∈Nk such that vi =mi if i ∈ I and vi = ni

if i /∈ I . Finally, we define

X(P , σ) =
⋃
u∈E

{
n̄∗ ⊗ (u⊕ n) : n̄∗ ∈A0

(
(ci)i/∈I , s

)
,n ∈

∏
P∈Q

U(P, ūP )

}
.

Given a fixed u ∈E, the set {u⊕n : n ∈
∏

P∈QU(P, ūP )} is definable in N 1
s us-

ing the successor function and unary predicates. By assumption, A0((ci)i/∈I , s)
is definable in N 1

s . Therefore, since E is finite, X(P , σ) is definable in N 1
s .

Let Δ= {(P , σ) : P ∈ P, σ ∈Σ(P)}, and note that Δ is finite. To finish the
proof, we show

A(c̄, r) =
⋃

(P,σ)∈Δ

X(P , σ).

For the right-to-left direction, fix (P , σ) ∈Δ, u ∈ E, n̄∗ ∈ A0((ci)i/∈I , s), and
n ∈

∏
P∈QU(P, ūP ). We show n̄∗ ⊗ (u ⊕ n) ∈ A(c̄, r). Write the tuple n̄∗ ⊗

(u ⊕ n) as n̄ ∈ Nk where, for i /∈ I we have ni = n∗,i and, for i ∈ P ∈ Q,
ni = nP + uP,i. For each P ∈Q, since nP ∈ U(P, ūP ), we may let mP be the
common value of f(nP + uP,i) for i ∈ P . In particular, anP+uP,i

= bmP
+ si

for all i ∈ P ∈Q. Therefore,∑
i∈[k]

ciani =
∑
i/∈I

ciani +
∑
i∈I

ciani

= s+
∑
P∈Q

∑
i∈P

cianP+uP,i

= s+
∑
P∈Q

∑
i∈P

ci(bmP
+ si)

= s+
∑
P∈Q

(
cP bmP

+
∑
i∈P

cisi

)
= s+

∑
P∈Q

sP = r.

So n̄ ∈ A(c̄, r), as desired. For the left-to-right containment, fix n̄ ∈ A(c̄, r).
Let P = P(n̄) and σ = (rni)i∈I(P). We want to show n̄ ∈X(P , σ). Let n̄∗ =
(ni)i/∈I . For each P ∈ Q, fix some iP ∈ P and let n = (niP )P∈P . Then, for
each P ∈ Q, let ūP = (ni − niP )i∈P . By construction, niP ∈ U(P, ūP ) for all
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P ∈Q. By choice of K, u ∈E. By construction, n̄= n̄∗⊗ (u⊕n). So it remains
to verify n̄∗ ∈ A0((ci)i/∈I , s) (where recall s = r −

∑
P∈Q

∑
i∈P rni). Similar

to the equations above, we have
∑

i∈I ciani =
∑

P∈Q
∑

i∈P rni , and so n̄∗ ∈
A0((ci)i/∈I , s) since n̄ ∈A(c̄, r). �

Lemma 4.18. A0(c̄, r) is finite for any k ≥ 1, c̄ ∈ {−1,1}k, and r ∈ Z.

Proof. Fix k ≥ 1, c̄ ∈ {−1,1}k, and r ∈ Z. Define C = {
∑

i∈I ci : I ⊆ [k]}
and S = {|c|λn : n ∈N, c ∈C\{0}}. Since C is finite we still have that the set
{ s
t : s, t ∈ S, t≤ s} is closed and discrete. By Fact 4.2, we may fix ε > 0 such

that, for any 1 ≤ l ≤ k, n̄ ∈ Nl, and c′1, . . . , c
′
l ∈ C, if

∑
i∈I c

′
iλni 	= 0 for all

nonempty I ⊆ [l], then |c′1λn1 + · · ·+ c′lλnl
| ≥ ελmax n̄. Let R =max{|x| : x ∈

F}.
For a contradiction, suppose we have an infinite sequence (n̄(t))∞t=0 in

A0(c̄, r). After passing to a subsequence and permuting indices, we may as-
sume without loss of generality that f(n(t)1)≤ · · · ≤ f(n(t)k) for all t ∈N. In
particular, supt∈N f(n(t)k) =∞. For m ∈ N, let θm = bm − λm. Since |θm| is
o(λm), there is M0 > 0 such that |θm| ≤ ε

2kλm for all m≥M0. Define

d=max
{
|c1θm1 + · · ·+ clθml

| : l < k,mi <M0

}
.

We may choose M ≥M0 such that r+kR+d < ε
2λM . Choose t ∈N such that

f(n(t)k)≥M and, for 1≤ i≤ k, let mi = f(n(t)i). Let P = P(n̄(t)). For each
P ∈ P , let mP be the common value of mi for i ∈ P , and let cP =

∑
i∈P ci.

Then mP 	=mP ′ for distinct P,P ′ ∈ P , and cP ∈C\{0} for all P ∈ P since n̄ ∈
A0(c̄, r). Let m̄= (mP )P∈P and Λ=

∑
P∈P cPλmP

. Let Q ∈ P be the unique
set containing k. By construction, mQ = max m̄ ≥ M . Since n̄(t) ∈ A0(c̄, r),
we have

|Λ| =
∣∣r− (

c1(rn1 + θm1) + · · ·+ ck(rnk
+ θmk

)
)∣∣

≤ r+ kR+ d+
ε

2
λmQ

< ελmQ
.

By choice of ε, it follows that
∑

P∈X cPλmP
= 0 for some nonempty X ⊆ P .

By Q-linear independence, cP = 0 for all P ∈X , which is a contradiction. �

We can now prove the main result of this section.

Proof of Theorem 4.13. By Lemmas 4.17 and 4.18, AZ
0 is a virtual reduct

of N 1
s , which is monadically stable of U -rank 1 by Proposition 3.9. Now apply

Proposition 4.15 and Corollary 2.14. �

Remark 4.19. The independently sparse sets described in Example 4.11
are all of the form A = (an)

∞
n=0 such that |an − λn| is o(λn) for some Q-

linearly independent geometric sequence (λn)
∞
n=0. So in this case, we may use

F = {0} and f(x) = x in the above analysis. It follows that A0(c̄, r) =A(c̄, r)
for any k ≥ 1, c̄ ∈ {−1,1}k, and r ∈ Z. By Lemma 4.18, AZ

0 is interdefinable,
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via n �→ an, with N in the language of equality, and thus AZ is interdefinable,
via n �→ an, with an expansion of N by unary predicates.
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