ON LOGARITHMIC DIFFERENTIAL OPERATORS AND EQUATIONS IN THE PLANE

JULIEN SEBAG

Abstract

Let k be a field of characteristic zero. Let $f \in k\left[x_{0}, y_{0}\right]$ be an irreducible polynomial. In this article, we study the space of polynomial partial differential equations of order one in the plane, which admit f as a solution. We provide algebraic characterizations of the associated graded $k\left[x_{0}, y_{0}\right]$-module (by degree) of this space. In particular, we show that it defines the general component of the tangent space of the curve $\{f=0\}$ and connect it to the V-filtration of the logarithmic differential operators of the plane along $\{f=0\}$.

1. Introduction

Let k be a field of characteristic zero and $f \in \mathbf{A}:=k\left[x_{0}, y_{0}\right]$ be an irreducible polynomial.
1.1. Let E be a polynomial partial differential equation of order one such that

$$
\sum_{i, j \geq 0} a_{i, j}\left(x_{0}, y_{0}\right) \partial_{x_{0}}(f)^{i} \partial_{y_{0}}(f)^{j}=a\left(x_{0}, y_{0}\right) f
$$

We call such a datum a logarithmic polynomial PDE along $\{f=0\}$. To such a differential equation, we attach the polynomial $\operatorname{Sb}(E) \in \mathbf{A}_{1}:=k\left[x_{0}, y_{0}, x_{1}, y_{1}\right]$ defined by $\operatorname{Sb}(E)=\sum_{i, j \geq 0} a_{i, j} x_{1}^{i} y_{1}^{j}$, and call it the symbol of E. In particular, we have $\operatorname{Sb}(E)\left(\partial_{x_{0}}(f), \partial_{y_{0}}(f)\right) \in\langle f\rangle \mathbf{A}$. The degree of E is that of its symbol $\mathrm{Sb}(E)$; it is said to be homogeneous if its symbol is homogeneous (as a polynomial in x_{1}, y_{1} with coefficients in \mathbf{A}). We justify this terminology by the analogy with the one variable case where every object which is homogeneous of degree one corresponds to an ordinary differential equation of the form $f^{\prime}(x) / f(x)=a$ with $a \in k(x)$. The set of the logarithmic polynomial PDE
can be identified, via symbols, with an ideal of \mathbf{A}_{1} (the inverse image of the ideal $\langle f\rangle \mathbf{A}$ by the morphism of k-algebras $\mathbf{A}_{1} \rightarrow \mathbf{A}$ defined by $x_{1} \mapsto \partial_{x_{0}}(f)$, $\left.y_{1} \mapsto \partial_{y_{0}}(f)\right)$ that we denote by $\mathscr{E}_{k}(f)$. For every integer $i \in \mathbf{N}$, we denote by $\mathscr{E}_{k}^{(i)}(f)$ the A-module generated by the elements of $\mathscr{E}_{k}(f)$ homogeneous of degree i. It is a finite \mathbf{A}-module. We consider the associated homogeneous ideal in the ring \mathbf{A}_{1}

$$
\hat{\mathscr{E}}_{k}(f)=\bigoplus_{i \geq 0} \mathscr{E}_{k}^{(i)}(f) .
$$

In particular, every element of $\hat{\mathscr{E}}_{k}(f)$ is a combination with coefficients in \mathbf{A} of the symbols of homogeneous elements of $\mathscr{E}_{k}(f)$, but in general this inclusion is strict. The aim of this article is to study the ideal $\hat{\mathscr{E}}_{k}(f)$ and to show that this object appears in various contexts of algebra or geometry.
1.2. We introduce the polynomial $\Delta(f) \in \mathbf{A}_{1}$ by the following formula

$$
\Delta(f):=\partial_{x_{0}}(f) x_{1}+\partial_{y_{0}}(f) y_{1} .
$$

Recall that, for every polynomial $h \in \mathbf{A}$, the ideal $\left(\langle f, \Delta(f)\rangle: h^{\infty}\right)$ of the ring \mathbf{A}_{1} is formed by the polynomials $P \in \mathbf{A}_{1}$ such that there exists an integer $N \in \mathbf{N}$ satisfying $h^{N} P \in\langle f, \Delta(f)\rangle$. Let $\tau: \mathbf{A}_{1} \rightarrow \mathbf{A}_{1}$ be the \mathbf{A}-automorphism defined by

$$
\left\{\begin{array}{l}
\tau\left(x_{1}\right)=y_{1} \tag{1.1}\\
\tau\left(y_{1}\right)=-x_{1}
\end{array}\right.
$$

We show the following main technical statement, which is the first algebraic characterization of $\hat{\mathscr{E}}_{k}(f)$:

Proposition 1.1. Let k be a field of characteristic zero. Let \mathscr{C} be an integral affine curve of the affine plane \mathbf{A}_{k}^{2} defined by the datum of the irreducible polynomial $f \in \mathbf{A}$. Let us denote by $\partial(f)$ a nonzero partial derivative of f. Then we have $\tau\left(\hat{\mathscr{E}}_{k}(f)\right)=\left(\langle f, \Delta(f)\rangle: \partial(f)^{\infty}\right)$ (see formula (1.1)).
1.3. One usually attaches to the integral affine plane curve $\mathscr{C}=\operatorname{Spec}(\mathbf{A} /\langle f\rangle)$ its tangent space $\pi: T_{\mathscr{C} / k}:=\operatorname{Spec}\left(\operatorname{Sym}\left(\Omega_{\mathcal{O}(\mathscr{C}) / k}^{1}\right)\right) \rightarrow \mathscr{C}$. Recall that, one has an irreducible decomposition of $T_{\mathscr{C} / k}$ given by

$$
\left(T_{\mathscr{C} / k}\right)_{\mathrm{red}}=\overline{\pi^{-1}(\operatorname{Reg}(\mathscr{C}))} \cup\left(\bigcup_{x \in \operatorname{Sing}(\mathscr{C})} \pi^{-1}(x)\right)
$$

We call $\overline{\pi^{-1}(\operatorname{Reg}(\mathscr{C}))}$ the general component of $T_{\mathscr{C} / k}$ by analogy with the theory of ODE. We obtain the following consequence of Proposition 1.1.

Corollary 1.2. Let k be a field of characteristic zero. Let \mathscr{C} be an integral affine curve of the affine plane \mathbf{A}_{k}^{2} defined by the datum of the irreducible polynomial $f \in \mathbf{A}$. The general component of $T_{\mathscr{C} / k}$ is isomorphic to the (reduced) closed subscheme $V\left(\hat{\mathscr{E}}_{k}(f)\right)$ of \mathbf{A}_{k}^{4}.
1.4. Recall that a differential operator D is the datum of a combination with coefficients in \mathbf{A} of the form $D=\sum_{i, j \geq 0} a_{i, j}\left(x_{0}, y_{0}\right) \partial_{x_{0}}^{i} \partial_{y_{0}}^{j}$. The order of D then is the maximum of the integers $i+j$ for $a_{i, j} \neq 0$. We call (total) symbol of D the underlying polynomial $\mathrm{Sb}(D):=\sum_{i, j \geq 0} a_{i, j} x_{1}^{i} y_{1}^{j}$. Let \mathscr{D} be the ring of the differential operators on \mathbf{A}. We recall that one can endow it with the V-filtration $V_{\star}^{\mathscr{C}}$ along \mathscr{C} defined as follows: for every integer $s \in \mathbf{N}$, one sets

$$
\begin{equation*}
V_{s}^{\mathscr{C}}=\left\{D \in \mathscr{D} \mid \forall \ell \in \mathbf{Z} D\left(\langle f\rangle^{\ell}\right) \subset\langle f\rangle^{\ell-s}\right\} . \tag{1.2}
\end{equation*}
$$

In this formula, one adopts the convention that $\langle f\rangle^{t}=\mathbf{A}$ for every negative integer $t \in \mathbf{Z}$. We obtain the following characterization of $\hat{\mathscr{E}}_{k}(f)$.

Theorem 1.3. Let k be a field of characteristic zero. Let \mathscr{C} be an integral affine curve of the affine plane \mathbf{A}_{k}^{2} defined by the datum of the irreducible polynomial $f \in \mathbf{A}$. Let $d \in \mathbf{N}$. Let $P=\sum_{j=0}^{d} a_{j}\left(x_{0}, y_{0}\right) x_{1}^{j} y_{1}^{d-j}$ be an homogeneous polynomial in \mathbf{A}_{1} with (total) degree (in x_{1}, y_{1}) equal to d. Let $D_{P}=\sum_{j=0}^{d} a_{j}\left(x_{0}, y_{0}\right) \partial_{x_{0}}^{j} \partial_{y_{0}}^{d-j}$ be the associated differential operator. The following assertions are equivalent:
(1) The polynomial P is the symbol of an homogeneous element of $\mathscr{E}_{k}(f)$ of degree d, that is, $P\left(\partial_{x_{0}}(f), \partial_{y_{0}}(f)\right)$ belongs to $\langle f\rangle \mathbf{A}$.
(2) The differential operator D_{P} belongs to $V_{d-1}^{\mathscr{C}}$.
(3) The differential operator D_{P} satisfies $D_{P}\left(f^{d}\right) \in\langle f\rangle$.
1.5. In the end, Theorem 1.3 and Proposition 1.1 improve the understanding of the scheme structure of the arc scheme $\mathscr{L}(\mathscr{C})$ associated with the (integral) affine plane curve \mathscr{C}. Recall that the k-scheme $\mathscr{L}(\mathscr{C})$ is classically defined by the following adjunction formula $\operatorname{Hom}_{\text {sch }_{k}}(T, \mathscr{L}(\mathscr{C})) \cong \operatorname{Homsch}_{k}\left(T \hat{\otimes}_{k} k[[t]], \mathscr{C}\right)$ for every affine k-scheme T. (We refer, e.g., to [6], [8] for the details on arc scheme.) In [10], we proved in particular that $\mathscr{L}(\mathscr{C})$ is reduced if and only if the curve \mathscr{C} is smooth (see also [3], [9]). The following statement provides a new characterization for a polynomial $P \in \mathbf{A}_{1}$ to induce a nilpotent function in $\mathcal{O}(\mathscr{L}(\mathscr{C}))$ in terms of differential operators.

Corollary 1.4. Keep the notation of Proposition 1.1. Let $P \in \mathcal{O}\left(\mathscr{L}\left(\mathbf{A}_{k}^{2}\right)\right)$. Let us assume that the polynomial P belongs to \mathbf{A}_{1} with (total) degree d (in $\left.x_{1}, y_{1}\right)$. Then P induced a nilpotent element in $\mathcal{O}(\mathscr{L}(\mathscr{C}))$ if and only if the differential operator $D_{\tau(P)}$ associated with $\tau(P)$ is a combination with coefficients in \mathbf{A} of homogeneous differential operators D_{i} of order $i(i \leq d)$ such that $D_{i}\left(f^{i}\right) \in\langle f\rangle$.

Let us stress that, in the smooth case, the ideal $\left(\langle f, \Delta(f)\rangle: \partial(f)^{\infty}\right)$ coincides with $\langle f, \Delta(f)\rangle$; hence, Corollaries 1.2 and 1.4 are obvious. (See also [5] for related topics.)
1.6. Conventions, notation. Let k be a field of characteristic zero. Let $f \in \mathbf{A}:=k\left[x_{0}, y_{0}\right]$ be an irreducible polynomial. Let $\mathbf{A}_{1}:=k\left[x_{0}, y_{0}, x_{1}, y_{1}\right]$. A polynomial in \mathbf{A}_{1} will (always) be considered as a polynomial with variables x_{1}, y_{1} and coefficients in \mathbf{A}. The degree of a polynomial in \mathbf{A}_{1} refers to the total degree in x_{1}, y_{1}. The notion of homogeneity in the polynomial ring \mathbf{A}_{1} must be understood as the homogeneity with respect to the variables x_{1}, y_{1} (and the corresponding degree).

2. The ideal $\mathscr{M}(f)$

Let k be a field of characteristic zero and $f \in \mathbf{A}$ be an irreducible polynomial. In particular, one of its partial derivatives is nonzero. We fix such a partial derivative and denote it by $\partial(f)$. Let $\mathscr{C}=\operatorname{Spec}(\mathbf{A} /\langle f\rangle)$. In this section, we state properties of the ideal

$$
\mathscr{M}^{\partial}(f):=\left(\langle f, \Delta(f)\rangle: \partial(f)^{\infty}\right),
$$

which will be useful for the proof of our main statements.
2.1. The degree function on \mathbf{A}_{1} induces an increasing filtration $\left(\mathscr{M}_{\leq i}^{\partial}(f)\right)_{i \in \mathbf{N}}$ with

$$
\begin{equation*}
\mathscr{M}_{\leq i}^{\partial}(f)=\left\{P \in \mathscr{M}^{\partial}(f), \operatorname{deg}(P) \leq i\right\} \tag{2.1}
\end{equation*}
$$

of the ideal $\mathscr{M}^{\partial}(f)$ which is exhaustive. We set

$$
\mathscr{M}_{i}^{\partial}(f):=\mathscr{M}_{\leq i}^{\partial}(f) / \mathscr{M}_{\leq i-1}^{\partial}(f)
$$

for every positive integer i. In particular, we obviously have $\mathscr{M}_{0}^{\partial}(f)=$ $\langle f\rangle \mathbf{A}$. For every polynomial $P \in \mathbf{A}_{1}$, whose homogeneous decomposition is $P=\sum_{i \geq 0} P_{i}$ with $\operatorname{deg}\left(P_{i}\right)=i$, we observe that $P \in \mathscr{M}^{\partial}(f)$ if and only if $P_{i} \in \mathscr{M}^{\partial}(f)$ (hence, in $\mathscr{M}_{i}^{\partial}(f)$), for every integer $i \in \mathbf{N}$, by the very definition of $\mathscr{M}^{\partial}(f)$ and the fact that $\partial(f), f, \Delta(f)$ are homogeneous respectively of degree 0,0 and 1 . Thus, the ideal $\mathscr{M}^{\partial}(f)$ is homogeneous.
2.2. By the relation (which directly follows from the expression of $\Delta(f)$)

$$
\begin{equation*}
\partial_{x_{0}}(f) x_{1} \equiv-\partial_{y_{0}}(f) y_{1} \quad \bmod (\langle\Delta(f)\rangle) \tag{2.2}
\end{equation*}
$$

we easily obtain, for every homogeneous polynomial $P \in \mathbf{A}_{1}$, with $\operatorname{deg}(P)=$ $d \geq 1$, the following formulas

$$
\begin{align*}
& \left(\partial_{x_{0}}(f)\right)^{d} P \equiv y_{1}^{d} P\left(-\partial_{y_{0}}(f), \partial_{x_{0}}(f)\right) \quad \bmod (\langle\Delta(f)\rangle) \\
& \left(\partial_{y_{0}}(f)\right)^{d} P \equiv\left(-x_{1}\right)^{d} P\left(-\partial_{y_{0}}(f), \partial_{x_{0}}(f)\right) \quad \bmod (\langle\Delta(f)\rangle) . \tag{2.3}
\end{align*}
$$

We can deduce from relations (2.3) that a homogeneous polynomial $P \in \mathbf{A}_{1}$, with $\operatorname{deg}(P)=d \geq 1$, belongs to the ideal $\mathscr{M}^{\partial}(f)$ if and only if the polynomial f divides $P\left(-\partial_{y_{0}}(f), \partial_{x_{0}}(f)\right)$ in the ring \mathbf{A}. In particular we observe that the
ideal $\mathscr{M}^{\partial}(f)$ does not depend on the choice of the nonzero partial derivative $\partial(f)$. From now on, we simply denote it by

$$
\mathscr{M}(f):=\mathscr{M}^{\partial}(f):=\left(\langle f, \Delta(f)\rangle: \partial(f)^{\infty}\right)
$$

Remark 2.1. By Section 1.3, we know that the ideal $\langle f, \Delta(f)\rangle$ is not prime in general, but the ideal $\mathscr{M}(f)$ is always prime. Indeed, let $P, Q \in \mathbf{A}_{1}$ such that $P Q \in \mathscr{M}(f)$. Then, by Section 2.2, we conclude that

$$
P\left(-\partial_{y_{0}}(f), \partial_{x_{0}}(f)\right) Q\left(-\partial_{y_{0}}(f), \partial_{x_{0}}(f)\right) \in\langle f\rangle
$$

Since the polynomial f is irreducible, we conclude that the polynomial $P\left(-\partial_{y_{0}}(f), \partial_{x_{0}}(f)\right)$ or the polynomial $Q\left(-\partial_{y_{0}}(f), \partial_{x_{0}}(f)\right)$ belongs to the ideal $\langle f\rangle$, which concludes the proof of our claim. This property and the fact that the ideal $\mathscr{M}(f)$ does not depend on the choice of $\partial(f)$ can also be deduced from classical results of differential algebra (e.g., see [2, IV/17/Proposition 10] and $[2$, IV/9/Lemma 2], [7, §12, page 30]).
2.3. The next lemma explains theorem 1.3 in the special case where $d=1$.

Lemma 2.2. Let k be a field of characteristic zero and $f \in \mathbf{A}$ be an irreducible polynomial. Let $P=a x_{1}+b y_{1} \in \mathbf{A}_{1}$ be a homogeneous polynomial of degree 1. Then the following assertions are equivalent:
(1) There exists a polynomial $\alpha \in \mathbf{A} \backslash\langle f\rangle$ such that the Kähler differential form $\omega=a d x_{0}+b d y_{0} \in \Omega_{\mathbf{A} / k}^{1}$ satisfies $\alpha \omega \in f \Omega_{\mathbf{A} / k}^{1}+\mathbf{A} d f$.
(2) The k-derivation $D=b \partial_{x_{0}}-a \partial_{y_{0}} \in \operatorname{Der}_{k}(\mathbf{A})$ satisfies $D(f) \in\langle f\rangle$.
(3) The polynomial P belongs to $\mathscr{M}_{1}(f)$.
(4) The polynomial P is the symbol of a logarithmic polynomial partial differential equation E which belongs to $\hat{\mathscr{E}}_{k}^{(1)}(f)$.
Let $\mathscr{C}=\operatorname{Spec}(\mathbf{A} /\langle f\rangle)$. These equivalences provide an isomorphism of \mathbf{A} modules

$$
\operatorname{Tors}\left(\Omega_{\mathcal{O}(\mathscr{C}) / k}^{1}\right) \cong \mathscr{M}_{1}(f) /\left\langle f x_{1}, f y_{1}, \Delta(f)\right\rangle
$$

where we denote by $\operatorname{Tors}\left(\Omega_{\mathcal{O}(\mathscr{C}) / k}^{1}\right)$ the torsion submodule of the module $\Omega_{\mathcal{O}(\mathscr{C}) / k}^{1}$ of the Kähler differential forms of the $\operatorname{ring} \mathcal{O}(\mathscr{C})$.

See [1], [10] for related topics.
Proof. Equivalence $(1) \Leftrightarrow(2)$ can be proved by a direct argument of linear algebra. Equivalence $(3) \Leftrightarrow(4)$ is a direct consequence of the criterion established in Section 2.2. The equivalence $(2) \Leftrightarrow(4)$ is obvious by the very definition of $\hat{\mathscr{E}}_{k}^{(1)}(f)$.

Let us construct the isomorphism. We consider the A-linear map $\mathscr{M}_{1}(f) \rightarrow$ $\Omega_{\mathbf{A} / k}^{1}$ which sends $\omega_{1} x_{1}+\omega_{2} y_{1}$ to $\omega_{1} d x_{0}+\omega_{2} d y_{0}$, and compose it by the surjective A-linear map $\Omega_{\mathbf{A} / k}^{1} \rightarrow \Omega_{\mathcal{O}(\mathscr{C}) / k}^{1}$. The obtained A-linear map θ takes its values in $\operatorname{Tors}\left(\Omega_{\mathcal{O}(\mathscr{C}) / k}^{1}\right)$ by $(3) \Rightarrow(1)$. Its kernel coincides with
$\left\langle f x_{1}, f y_{1}, \Delta(f)\right\rangle$ by the very definition of θ. The surjectivity directly follows from (1) $\Rightarrow(3)$.
2.4. Let $\sigma: \mathbf{A} \rightarrow \mathbf{A}$ be a ring automorphism. We construct a ring morphism

$$
\begin{equation*}
T(\sigma):=\sigma_{1}: \mathbf{A}_{1} \rightarrow \mathbf{A}_{1} \tag{2.4}
\end{equation*}
$$

which extends σ, by setting

$$
\left\{\begin{array}{l}
\sigma_{1}\left(x_{1}\right)=x_{1} \partial_{x_{0}} \sigma\left(x_{0}\right)+y_{1} \partial_{y_{0}} \sigma\left(x_{0}\right) \\
\sigma_{1}\left(y_{1}\right)=x_{1} \partial_{x_{0}} \sigma\left(y_{0}\right)+y_{1} \partial_{y_{0}} \sigma\left(y_{0}\right)
\end{array}\right.
$$

(Let us stress indeed that $\sigma\left(x_{0}\right), \sigma\left(y_{0}\right)$ are polynomials in \mathbf{A}; hence, their expressions a priori depend on both variables x_{0} and y_{0}.) It is easy to observe that $\sigma_{1}(\Delta(f))=\Delta(\sigma(f))$; hence, the morphism σ_{1} induces an isomorphism of A-algebras:

$$
\sigma_{1}: \mathbf{A}_{1} /\langle f, \Delta(f)\rangle \rightarrow \mathbf{A}_{1} /\langle\sigma(f), \Delta(\sigma(f))\rangle
$$

whose inverse is, in a similar way, associated with the morphism σ^{-1}, that is, $\left(\sigma_{1}\right)^{-1}=\left(\sigma^{-1}\right)_{1}$.

Lemma 2.3. Keep the notation of Section 2.4. We have $\sigma_{1}(\mathscr{M}(f))=$ $\mathscr{M}(\sigma(f))$.

Proof. We only have to prove that $\sigma_{1}(\mathscr{M}(f)) \subset \mathscr{M}(\sigma(f))$. Indeed, the other inclusion can be deduced from the former inclusion applied to σ_{1}^{-1} and $\sigma(f)$. Let $P \in \mathscr{M}(f)$. We have to prove that $\sigma_{1}(P) \in \mathscr{M}(\sigma(f))$. By assumption, there exists an integer N such that the polynomials $\partial_{x_{0}}(f)^{N} P, \partial_{y_{0}}(f)^{N} P$ belong to the ideal $\langle f, \Delta(f)\rangle$. Then, we check that

$$
\partial_{x_{0}}(\sigma(f))^{2 N} \sigma_{1}(P)=\left(\partial_{x_{0}} \sigma\left(x_{0}\right) \sigma\left(\partial_{x_{0}} f\right)+\partial_{x_{0}} \sigma\left(y_{0}\right) \sigma\left(\partial_{y_{0}} f\right)\right)^{2 N} \sigma_{1}(P),
$$

which equals the polynomial:

$$
\sigma_{1}(P) \sum_{j=0}^{2 N} \mathbf{C}_{2 N}^{j} \partial_{x_{0}}\left(\sigma\left(x_{0}\right)\right)^{j} \sigma_{1}\left(\partial_{x_{0}}(f)^{j}\right) \partial_{x_{0}}\left(\sigma\left(y_{0}\right)\right)^{2 N-j} \sigma_{1}\left(\partial_{y_{0}}(f)^{2 N-j}\right)
$$

It belongs to $\langle\sigma(f), \Delta(\sigma(f))\rangle$ since, for every integer $j \in\{0, \ldots, 2 N\}$, the integer j or the integer $2 N-j$ is bigger than N.

3. The proof of our main statements

3.1. Let us prove that $\tau\left(\hat{\mathscr{E}}_{k}(f)\right)=\mathscr{M}(f)$ which is the statement of proposition 1.1. For simplicity we assume that $\partial(f)=\partial_{x_{0}}(f)$. Let $P \in \hat{\mathscr{E}}_{k}(f)$. Then, by Section 2.1, we may assume that P is homogeneous of degree d. By formula (2.3), we deduce that $\partial_{x_{0}}(f)^{d} \tau(P) \equiv y_{1}^{d} P\left(\partial_{x_{0}}(f), \partial_{y_{0}}(f)\right)(\bmod \langle\Delta(f)\rangle)$. Now, by assumption, we know that $P\left(\partial_{x_{0}}(f), \partial_{y_{0}}(f)\right) \equiv 0(\bmod \langle f\rangle)$. So, we conclude that

$$
\partial_{x_{0}}(f)^{d} \tau(P) \in\langle f, \Delta(f)\rangle
$$

which proves that $\tau(P) \in \mathscr{M}(f)$ (in fact, that $\left.\tau\left(\mathscr{E}_{k}^{(d)}(f)\right) \subset \mathscr{M}_{d}(f)\right)$. Conversely, let $P \in \mathscr{M}_{d}(f)$. Then, there exists an integer $N \geq d$ such that $\partial_{x_{0}}(f)^{N} P\left(-\partial_{y_{0}}(f), \partial_{x_{0}}(f)\right) \in\langle f\rangle$, since $\Delta(f)\left(-\partial_{y_{0}}(f), \partial_{x_{0}}(f)\right)=0$. Since the polynomial f is assumed to be irreducible, we have $P\left(-\partial_{y_{0}}(f), \partial_{x_{0}}(f)\right) \in\langle f\rangle$. Let us set $Q:=P\left(-y_{1}, x_{1}\right)$. Then, we have $P=\tau(Q)$ and $Q \in \mathscr{E}_{k}^{(d)}(f)$; hence, $\tau\left(\mathscr{E}_{k}^{(d)}(f)\right) \supset \mathscr{M}_{d}(f)$. We have proved the assertion.
3.2. Let us prove Corollary 1.2. Let $\pi: T_{\mathscr{C} / k} \rightarrow \mathscr{C}$ be the canonical morphism. By classical arguments, one knows that $\overline{\pi^{-1}(\operatorname{Reg}(\mathscr{C}))}$ is an irreducible component of $T_{\mathscr{C} / k}$. We also know by Section 2.2 that the closed subscheme of $T_{\mathscr{C} / k}$ corresponding to $V(\mathscr{M}(f))$ is irreducible. For every field extension K of k, a K-point in $T_{\mathscr{C} / k}(K)$ is called a 1-jet of \mathscr{C} and corresponds to a morphism of k-schemes in $\mathscr{C}\left(K[t] /\left\langle t^{2}\right\rangle\right)$, that is, to a pair $\left(\gamma_{1}(t), \gamma_{2}(t)\right) \in\left(K[t] /\left\langle t^{2}\right\rangle\right)^{2}$ which satisfies the equation $f\left(\gamma_{1}(t), \gamma_{2}(t)\right) \equiv 0\left(\bmod \left\langle t^{2}\right\rangle\right)$. Furthermore, the datum of every k-scheme morphism in $\mathscr{C}\left(K[t] /\left\langle t^{2}\right\rangle\right)$ is by construction that of a morphism of k-algebras $\mathcal{O}(\mathscr{C}) \rightarrow K[t] /\left\langle t^{2}\right\rangle$, which can also be seen, in an equivalent way, to be that of a morphism of k-algebras $\mathbf{A}_{1} /\langle f, \Delta(f)\rangle \rightarrow K$. With the latter description and the very definition of the ideal $\mathscr{M}(f)$, we easily observe that $\overline{\pi^{-1}(\operatorname{Reg}(\mathscr{C}))} \subset V(\mathscr{M}(f))$, which implies that $\overline{\pi^{-1}(\operatorname{Reg}(\mathscr{C}))}=$ $V(\mathscr{M}(f))$.

REMARK 3.1. If $n: \overline{\mathscr{C}} \rightarrow \mathscr{C}$ is the normalization of \mathscr{C}, the description above also implies that $\mathscr{M}(f) /\langle\Delta(f), f\rangle=\operatorname{Ker}\left(\operatorname{Sym}\left(n^{\sharp}\right)\right)$.
3.3. The proof of Theorem 1.3 is based on the following lemma. We set $\partial_{1}:=\partial_{x_{0}}$ and $\partial_{2}:=\partial_{y_{0}}$.

Lemma 3.2. Let $\alpha \in \mathbf{N}^{2}$. Let $\ell \in \mathbf{N}$ be an integer such that $\ell \geq|\alpha|:=$ $\alpha_{1}+\alpha_{2}$. We denote by $\partial_{i j}^{\alpha}$ the differential operator on \mathbf{A} of order $|\alpha|$ defined to be $\partial_{i}^{\alpha_{1}} \circ \partial_{j}^{\alpha_{2}}$ for every pair $(i, j) \in\{1,2\}$. Then, for every polynomials $g, P \in \mathbf{A}$, there exists a polynomial $q \in \mathbf{A}$ such that the following formula holds

$$
\partial_{i j}^{\alpha}\left(P g^{\ell}\right)=\frac{\ell!}{(\ell-|\alpha|)!} P g^{\ell-|\alpha|} \partial_{i}(g)^{\alpha_{1}} \partial_{j}(g)^{\alpha_{2}}+q g^{\ell-|\alpha|+1}
$$

Let us stress that, by iterating derivations, the monomial $\left(\partial_{i}(g)\right)^{\alpha_{1}}\left(\partial_{j}(g)\right)^{\alpha_{2}}$ appears, in the formula, only one time.

Proof. We prove this assertion by induction on $|\alpha|$. If $|\alpha| \in\{1,2\}$, it is easy to check the formula, with $q=0$ if $|\alpha|=0$ and $q=\partial_{i}(P)$ if $\alpha=(1,0)$ and $q=\partial_{j}(P)$ if $\alpha=(0,1)$. Let $d \geq 1$. Let us assume that the formula holds true for every $\beta \in \mathbf{N}^{2}$ with $|\beta|<d$. Let α^{\prime} with $\left|\alpha^{\prime}\right|=d+1$. Let $\ell \geq d+1$.

- Let us assume that $\alpha^{\prime}=\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}+1\right)$. Let us note that $\alpha_{1}^{\prime}+\alpha_{2}^{\prime}=d$. Thus we have

$$
\begin{aligned}
\partial_{i j}^{\alpha^{\prime}}\left(P g^{\ell}\right) & =\partial_{i}^{\alpha_{1}^{\prime}}\left(\partial_{j}^{\alpha_{2}^{\prime}}\left(g^{\ell} \partial_{j}(P)+\ell P g^{\ell-1} \partial_{j}(g)\right)\right) \\
& =\partial_{i}^{\alpha_{1}^{\prime}} \circ \partial_{j}^{\alpha_{2}^{\prime}}\left(\partial_{j}(P) g^{\ell}\right)+\ell \partial_{i}^{\alpha_{1}^{\prime}} \circ \partial_{j}^{\alpha_{2}^{\prime}}\left(P g^{\ell-1} \partial_{j}(g)\right) .
\end{aligned}
$$

Then, we conclude the proof of this case by applying the induction hypothesis to the differential operator $\partial_{i}^{\alpha_{1}^{\prime}} \circ \partial_{j}^{\alpha_{2}^{\prime}}$ at each term of the former sum.

- Let us assume that $\alpha^{\prime}=\left(\alpha_{1}^{\prime}+1, \alpha_{2}^{\prime}\right)$. Let us note that $\alpha_{1}^{\prime}+\alpha_{2}^{\prime}=d$. Thus, by the induction hypothesis, we have

$$
\begin{aligned}
\partial_{i j}^{\alpha^{\prime}}\left(P g^{\ell}\right) & =\partial_{i}\left(\partial_{i}^{\alpha_{1}^{\prime}} \circ \partial_{j}^{\alpha_{2}^{\prime}}\left(g^{\ell} P\right)\right) \\
& =\partial_{i}\left(\frac{\ell!}{(\ell-d)!} P g^{\ell-d}\left(\partial_{i}(g)\right)^{\alpha_{1}^{\prime}}\left(\partial_{j}(g)\right)^{\alpha_{2}^{\prime}}+q g^{\ell-d+1}\right)
\end{aligned}
$$

By differentiating the last expression, we also obtain a formula of the required type.

Theorem 1.3 is a direct consequence of the following statement:
Corollary 3.3. Let k be a field of characteristic zero. Let $f \in \mathbf{A}$ be an irreducible polynomial with $\mathscr{C}:=\operatorname{Spec}(\mathbf{A} /\langle f\rangle)$. Let $D=\sum_{j=0}^{d} a_{j}\left(x_{0}, y_{0}\right) \partial_{x_{0}}^{j} \partial_{y_{0}}^{d-j} \in$ \mathscr{D} be a differential operator with order $d:=\operatorname{ord}(D) \in \mathbf{N}$. Then the following assertions are equivalent:
(1) For every integer $\ell \geq d$, the differential operator D satisfies $D\left(\left\langle f^{\ell}\right\rangle\right) \subset$ $\left\langle f^{\ell-d+1}\right\rangle$.
(2) The polynomial f divides the polynomial $D\left(f^{d}\right)$ in the the ring \mathbf{A}.
(3) The polynomial $\operatorname{Sb}(D)\left(\partial_{x_{0}}(f), \partial_{y_{0}}(f)\right)$ belongs to the ideal $\langle f\rangle$ of the ring \mathbf{A}.

Proof. (1) \Rightarrow (2) We prove this implication by applying (1) to $\ell=d$. (2) \Leftrightarrow (3) From Lemma 3.2 applied to $\ell=|\alpha|=d, g=f$ and $P=1$, it follows that the polynomial $\mathrm{Sb}(D)\left(\partial_{x_{0}}(f), \partial_{y_{0}}(f)\right)$ belongs to the ideal $\langle f\rangle$ if and only f divides the polynomial $D\left(f^{d}\right)$. (3) \Rightarrow (1) This implication follows from Lemma 3.2 applied to $|\alpha|=d$ and $g=f$.

4. Example

4.1. Let us compute a system of generators of the ideal $\mathscr{M}\left(x_{0}^{2 m+1}-y_{0}^{2}\right)$. For this aim, we introduce the following polynomials of \mathbf{A}_{1} :

$$
\left\{\begin{array}{l}
\delta_{1}:=x_{0} y_{1}-\frac{2 m+1}{2} y_{0} x_{1} \in \mathbf{A}_{1}, \tag{4.1}\\
\delta_{2}:=y_{1}^{2}-\left(\frac{2 m+1}{2}\right)^{2} x_{0}^{2 m-1} x_{1}^{2} \in \mathbf{A}_{1}
\end{array}\right.
$$

By the Buchberger algorithm, a direct computational argument implies the following fact: for every positive integer $m \in \mathbf{N}^{*}$, the family $\left\{f, \Delta(f) / 2, \delta_{1}, \delta_{2}\right\}$ is the reduced Groebner basis of the ideal $\mathscr{M}\left(x_{0}^{2 m+1}-y_{0}^{2}\right)$.
4.2. A polynomial $f \in k\left[x_{0}, y_{0}\right]$ of multiplicity $n \geq 2$ is said cuspidal if there exist a ring automorphism $\sigma: \mathbf{A} \rightarrow \mathbf{A}$ and a positive integer m, prime to n with $m>n$, such that $\sigma(f)=x_{0}^{m}-y_{0}^{n}$.

Example 4.1. Let us assume that the field k is algebraically closed of characteristic zero. By [4], one knows that every irreducible quasi-homogeneous polynomial $f \in \mathbf{A}$ of multiplicity $n \geq 2$ is cuspidal.

We assume from now on that $n=2$. From Section 4.1, we deduce the following statement:

Proposition 4.2. Let k be a field of characteristic zero. Let \mathscr{C} be an integral affine plane curve defined by a cuspidal (irreducible) polynomial f of multiplicity two. Then, there exists a system of coordinates (x, y) in \mathbf{A} such that every homogeneous differential operator D on \mathbf{A} which satisfies $D\left(f^{\operatorname{ord}(D)}\right) \subset\langle f\rangle$ is a combination with coefficients in \mathscr{D} of the following differential operators:

$$
\left\{\begin{array}{l}
f(x, y) \\
3 x^{2} \partial_{x}-2 y \partial_{y} \\
2 x \partial_{x}+3 y \partial_{y} \\
4 \partial_{x}^{2}-9 x \partial_{y}^{2}
\end{array}\right.
$$

Acknowledgments. We would like to thank the referee for her/his comments which improve the presentation of this work and Mercedes Haiech for her precise reading.

References

[1] D. Bourqui and J. Sebag, On torsion Kähler differential forms, J. Pure Appl. Algebra 222 (2018), no. 8, 2229-2243. MR 3771855
[2] E. R. Kolchin, Differential algebra and algebraic groups, Pure and Applied Mathematics, vol. 54, Academic Press, New York-London, 1973. MR 0568864
[3] K. Kpognon and J. Sebag, Nilpotency in arc scheme of plane curves, Comm. Algebra 45 (2017), no. 5, 2195-2221. MR 3582855
[4] L. Meireles Câmara, On the classification of quasi-homogeneous curves; available at https://arxiv.org/pdf/1009.1664.pdf.
[5] M. Mustaţă, Jet schemes of locally complete intersection canonical singularities, Invent. Math. 145 (2001), no. 3, 397-424. With an appendix by David Eisenbud and Edward Frenkel. MR 1856396
[6] J. Nicaise and J. Sebag, Greenberg approximation and the geometry of arc spaces, Comm. Algebra 38 (2010), no. 11, 4077-4096. MR 2764852
[7] J. F. Ritt, Differential algebra, American Mathematical Society Colloquium Publications, vol. XXXIII, American Mathematical Society, New York, 1950. MR 0035763
[8] J. Sebag, Intégration motivique sur les schémas formels, Bull. Soc. Math. France 132 (2004), no. 1, 1-54. MR 2075915
[9] J. Sebag, Arcs schemes, derivations and Lipman's theorem, J. Algebra 347 (2011), 173-183. MR 2846404
[10] J. Sebag, A remark on Berger's conjecture, Kolchin's theorem, and arc schemes, Arch. Math. (Basel) 108 (2017), no. 2, 145-150. MR 3605060

Julien Sebag, Université de Rennes, CNRS, Institut de recherche mathématique de Rennes, UMR 6625 du CNRS, Campus de Beaulieu, F-35000 Rennes, France

E-mail address: julien.sebag@univ-rennes1.fr

