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ON LOGARITHMIC DIFFERENTIAL OPERATORS
AND EQUATIONS IN THE PLANE

JULIEN SEBAG

Abstract. Let k be a field of characteristic zero. Let f ∈ k[x0, y0]
be an irreducible polynomial. In this article, we study the space

of polynomial partial differential equations of order one in the

plane, which admit f as a solution. We provide algebraic charac-
terizations of the associated graded k[x0, y0]-module (by degree)

of this space. In particular, we show that it defines the general

component of the tangent space of the curve {f = 0} and connect

it to the V -filtration of the logarithmic differential operators of
the plane along {f = 0}.

1. Introduction

Let k be a field of characteristic zero and f ∈A := k[x0, y0] be an irreducible
polynomial.

1.1. Let E be a polynomial partial differential equation of order one such
that ∑

i,j≥0

ai,j(x0, y0)∂x0(f)
i∂y0(f)

j = a(x0, y0)f.

We call such a datum a logarithmic polynomial PDE along {f = 0}. To such a
differential equation, we attach the polynomial Sb(E) ∈A1 := k[x0, y0, x1, y1]

defined by Sb(E) =
∑

i,j≥0 ai,jx
i
1y

j
1, and call it the symbol of E. In particular,

we have Sb(E)(∂x0(f), ∂y0(f)) ∈ 〈f〉A. The degree of E is that of its symbol
Sb(E); it is said to be homogeneous if its symbol is homogeneous (as a poly-
nomial in x1, y1 with coefficients in A). We justify this terminology by the
analogy with the one variable case where every object which is homogeneous
of degree one corresponds to an ordinary differential equation of the form
f ′(x)/f(x) = a with a ∈ k(x). The set of the logarithmic polynomial PDE
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can be identified, via symbols, with an ideal of A1 (the inverse image of the
ideal 〈f〉A by the morphism of k-algebras A1 →A defined by x1 �→ ∂x0(f),
y1 �→ ∂y0(f)) that we denote by Ek(f). For every integer i ∈ N, we denote

by E
(i)
k (f) the A-module generated by the elements of Ek(f) homogeneous

of degree i. It is a finite A-module. We consider the associated homogeneous
ideal in the ring A1

Êk(f) =
⊕
i≥0

E
(i)
k (f).

In particular, every element of Êk(f) is a combination with coefficients in A of
the symbols of homogeneous elements of Ek(f), but in general this inclusion

is strict. The aim of this article is to study the ideal Êk(f) and to show that
this object appears in various contexts of algebra or geometry.

1.2. We introduce the polynomial Δ(f) ∈A1 by the following formula

Δ(f) := ∂x0(f)x1 + ∂y0(f)y1.

Recall that, for every polynomial h ∈A, the ideal (〈f,Δ(f)〉 : h∞) of the ring
A1 is formed by the polynomials P ∈ A1 such that there exists an integer
N ∈N satisfying hNP ∈ 〈f,Δ(f)〉. Let τ : A1 →A1 be the A-automorphism
defined by

(1.1)

{
τ(x1) = y1,

τ(y1) =−x1.

We show the following main technical statement, which is the first algebraic

characterization of Êk(f):

Proposition 1.1. Let k be a field of characteristic zero. Let C be an inte-
gral affine curve of the affine plane A2

k defined by the datum of the irreducible
polynomial f ∈A. Let us denote by ∂(f) a nonzero partial derivative of f .

Then we have τ(Êk(f)) = (〈f,Δ(f)〉 : ∂(f)∞) (see formula (1.1)).

1.3. One usually attaches to the integral affine plane curve C = Spec(A/〈f〉)
its tangent space π : TC/k := Spec(Sym(Ω1

O(C )/k))→ C . Recall that, one has

an irreducible decomposition of TC/k given by

(TC/k)red = π−1
(
Reg(C )

)
∪
( ⋃

x∈Sing(C )

π−1(x)

)
.

We call π−1(Reg(C )) the general component of TC/k by analogy with the
theory of ODE. We obtain the following consequence of Proposition 1.1.

Corollary 1.2. Let k be a field of characteristic zero. Let C be an integral
affine curve of the affine plane A2

k defined by the datum of the irreducible poly-
nomial f ∈A. The general component of TC/k is isomorphic to the (reduced)

closed subscheme V (Êk(f)) of A4
k.
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1.4. Recall that a differential operator D is the datum of a combination
with coefficients in A of the form D =

∑
i,j≥0 ai,j(x0, y0)∂

i
x0
∂j
y0
. The order of

D then is the maximum of the integers i+ j for ai,j �= 0. We call (total) symbol

of D the underlying polynomial Sb(D) :=
∑

i,j≥0 ai,jx
i
1y

j
1. Let D be the ring

of the differential operators on A. We recall that one can endow it with the
V -filtration V C

� along C defined as follows: for every integer s ∈N, one sets

(1.2) V C
s =

{
D ∈ D | ∀� ∈Z D

(
〈f〉�

)
⊂ 〈f〉�−s

}
.

In this formula, one adopts the convention that 〈f〉t =A for every negative

integer t ∈Z. We obtain the following characterization of Êk(f).

Theorem 1.3. Let k be a field of characteristic zero. Let C be an in-
tegral affine curve of the affine plane A2

k defined by the datum of the irre-

ducible polynomial f ∈ A. Let d ∈ N. Let P =
∑d

j=0 aj(x0, y0)x
j
1y

d−j
1 be an

homogeneous polynomial in A1 with (total) degree (in x1, y1) equal to d. Let

DP =
∑d

j=0 aj(x0, y0)∂
j
x0
∂d−j
y0

be the associated differential operator. The fol-
lowing assertions are equivalent:

(1) The polynomial P is the symbol of an homogeneous element of Ek(f) of
degree d, that is, P (∂x0(f), ∂y0(f)) belongs to 〈f〉A.

(2) The differential operator DP belongs to V C
d−1.

(3) The differential operator DP satisfies DP (f
d) ∈ 〈f〉.

1.5. In the end, Theorem 1.3 and Proposition 1.1 improve the understanding
of the scheme structure of the arc scheme L (C ) associated with the (integral)
affine plane curve C . Recall that the k-scheme L (C ) is classically defined by
the following adjunction formula HomSchk(T,L (C ))∼=HomSchk(T ⊗̂kk[[t]],C )
for every affine k-scheme T . (We refer, e.g., to [6], [8] for the details on arc
scheme.) In [10], we proved in particular that L (C ) is reduced if and only if
the curve C is smooth (see also [3], [9]). The following statement provides a
new characterization for a polynomial P ∈A1 to induce a nilpotent function
in O(L (C )) in terms of differential operators.

Corollary 1.4. Keep the notation of Proposition 1.1. Let P ∈O(L (A2
k)).

Let us assume that the polynomial P belongs to A1 with (total) degree d (in
x1, y1). Then P induced a nilpotent element in O(L (C )) if and only if the
differential operator Dτ(P ) associated with τ(P ) is a combination with coeffi-
cients in A of homogeneous differential operators Di of order i (i≤ d) such
that Di(f

i) ∈ 〈f〉.

Let us stress that, in the smooth case, the ideal (〈f,Δ(f)〉 : ∂(f)∞) coin-
cides with 〈f,Δ(f)〉; hence, Corollaries 1.2 and 1.4 are obvious. (See also [5]
for related topics.)
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1.6. Conventions, notation. Let k be a field of characteristic zero. Let
f ∈ A := k[x0, y0] be an irreducible polynomial. Let A1 := k[x0, y0, x1, y1].
A polynomial in A1 will (always) be considered as a polynomial with variables
x1, y1 and coefficients in A. The degree of a polynomial in A1 refers to the
total degree in x1, y1. The notion of homogeneity in the polynomial ring A1

must be understood as the homogeneity with respect to the variables x1, y1
(and the corresponding degree).

2. The ideal M (f)

Let k be a field of characteristic zero and f ∈ A be an irreducible poly-
nomial. In particular, one of its partial derivatives is nonzero. We fix such a
partial derivative and denote it by ∂(f). Let C = Spec(A/〈f〉). In this section,
we state properties of the ideal

M ∂(f) :=
(〈
f,Δ(f)

〉
: ∂(f)∞

)
,

which will be useful for the proof of our main statements.

2.1. The degree function onA1 induces an increasing filtration (M ∂
≤i(f))i∈N

with

(2.1) M ∂
≤i(f) =

{
P ∈ M ∂(f),deg(P )≤ i

}
of the ideal M ∂(f) which is exhaustive. We set

M ∂
i (f) :=M ∂

≤i(f)/M
∂
≤i−1(f)

for every positive integer i. In particular, we obviously have M ∂
0 (f) =

〈f〉A. For every polynomial P ∈ A1, whose homogeneous decomposition is
P =

∑
i≥0Pi with deg(Pi) = i, we observe that P ∈ M ∂(f) if and only if

Pi ∈ M ∂(f) (hence, in M ∂
i (f)), for every integer i ∈N, by the very definition

of M ∂(f) and the fact that ∂(f), f , Δ(f) are homogeneous respectively of
degree 0, 0 and 1. Thus, the ideal M ∂(f) is homogeneous.

2.2. By the relation (which directly follows from the expression of Δ(f))

(2.2) ∂x0(f)x1 ≡−∂y0(f)y1 mod
(〈
Δ(f)

〉)
,

we easily obtain, for every homogeneous polynomial P ∈A1, with deg(P ) =
d≥ 1, the following formulas

(2.3)

(
∂x0(f)

)d
P ≡ yd1P

(
−∂y0(f), ∂x0(f)

)
mod

(〈
Δ(f)

〉)
,(

∂y0(f)
)d
P ≡ (−x1)

dP
(
−∂y0(f), ∂x0(f)

)
mod

(〈
Δ(f)

〉)
.

We can deduce from relations (2.3) that a homogeneous polynomial P ∈A1,
with deg(P ) = d≥ 1, belongs to the ideal M ∂(f) if and only if the polynomial
f divides P (−∂y0(f), ∂x0(f)) in the ring A. In particular we observe that the
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ideal M ∂(f) does not depend on the choice of the nonzero partial derivative
∂(f). From now on, we simply denote it by

M (f) :=M ∂(f) :=
(〈
f,Δ(f)

〉
: ∂(f)∞

)
.

Remark 2.1. By Section 1.3, we know that the ideal 〈f,Δ(f)〉 is not prime
in general, but the ideal M (f) is always prime. Indeed, let P,Q ∈A1 such
that PQ ∈ M (f). Then, by Section 2.2, we conclude that

P
(
−∂y0(f), ∂x0(f)

)
Q
(
−∂y0(f), ∂x0(f)

)
∈ 〈f〉.

Since the polynomial f is irreducible, we conclude that the polynomial
P (−∂y0(f), ∂x0(f)) or the polynomial Q(−∂y0(f), ∂x0(f)) belongs to the ideal
〈f〉, which concludes the proof of our claim. This property and the fact that
the ideal M (f) does not depend on the choice of ∂(f) can also be deduced
from classical results of differential algebra (e.g., see [2, IV/17/Proposition 10]
and [2, IV/9/Lemma 2], [7, §12, page 30]).

2.3. The next lemma explains theorem 1.3 in the special case where d= 1.

Lemma 2.2. Let k be a field of characteristic zero and f ∈A be an irre-
ducible polynomial. Let P = ax1 + by1 ∈A1 be a homogeneous polynomial of
degree 1. Then the following assertions are equivalent:

(1) There exists a polynomial α ∈ A \ 〈f〉 such that the Kähler differential
form ω = adx0 + bdy0 ∈Ω1

A/k satisfies αω ∈ fΩ1
A/k +Adf .

(2) The k-derivation D = b∂x0 − a∂y0 ∈Derk(A) satisfies D(f) ∈ 〈f〉.
(3) The polynomial P belongs to M1(f).
(4) The polynomial P is the symbol of a logarithmic polynomial partial dif-

ferential equation E which belongs to Ê
(1)
k (f).

Let C = Spec(A/〈f〉). These equivalences provide an isomorphism of A-
modules

Tors
(
Ω1

O(C )/k

)∼= M1(f)/
〈
fx1, fy1,Δ(f)

〉
,

where we denote by Tors(Ω1
O(C )/k) the torsion submodule of the module

Ω1
O(C )/k of the Kähler differential forms of the ring O(C ).

See [1], [10] for related topics.

Proof. Equivalence (1)⇔ (2) can be proved by a direct argument of lin-
ear algebra. Equivalence (3) ⇔ (4) is a direct consequence of the criterion
established in Section 2.2. The equivalence (2)⇔ (4) is obvious by the very

definition of Ê
(1)
k (f).

Let us construct the isomorphism. We consider the A-linear map M1(f)→
Ω1

A/k which sends ω1x1 + ω2y1 to ω1dx0 + ω2dy0, and compose it by the

surjective A-linear map Ω1
A/k → Ω1

O(C )/k. The obtained A-linear map θ

takes its values in Tors(Ω1
O(C )/k) by (3) ⇒ (1). Its kernel coincides with
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〈fx1, fy1,Δ(f)〉 by the very definition of θ. The surjectivity directly follows
from (1)⇒ (3). �

2.4. Let σ : A→A be a ring automorphism. We construct a ring morphism

(2.4) T (σ) := σ1 : A1 →A1,

which extends σ, by setting{
σ1(x1) = x1∂x0σ(x0) + y1∂y0σ(x0),

σ1(y1) = x1∂x0σ(y0) + y1∂y0σ(y0).

(Let us stress indeed that σ(x0), σ(y0) are polynomials in A; hence, their
expressions a priori depend on both variables x0 and y0.) It is easy to observe
that σ1(Δ(f)) =Δ(σ(f)); hence, the morphism σ1 induces an isomorphism of
A-algebras:

σ1 : A1/
〈
f,Δ(f)

〉
→A1/

〈
σ(f),Δ

(
σ(f)

)〉
whose inverse is, in a similar way, associated with the morphism σ−1, that is,
(σ1)

−1 = (σ−1)1.

Lemma 2.3. Keep the notation of Section 2.4. We have σ1(M (f)) =
M (σ(f)).

Proof. We only have to prove that σ1(M (f))⊂ M (σ(f)). Indeed, the other
inclusion can be deduced from the former inclusion applied to σ−1

1 and σ(f).
Let P ∈ M (f). We have to prove that σ1(P ) ∈ M (σ(f)). By assumption,
there exists an integer N such that the polynomials ∂x0(f)

NP , ∂y0(f)
NP

belong to the ideal 〈f,Δ(f)〉. Then, we check that

∂x0

(
σ(f)

)2N
σ1(P ) =

(
∂x0σ(x0)σ(∂x0f) + ∂x0σ(y0)σ(∂y0f)

)2N
σ1(P ),

which equals the polynomial:

σ1(P )

2N∑
j=0

Cj
2N∂x0

(
σ(x0)

)j
σ1

(
∂x0(f)

j
)
∂x0

(
σ(y0)

)2N−j
σ1

(
∂y0(f)

2N−j
)
.

It belongs to 〈σ(f),Δ(σ(f))〉 since, for every integer j ∈ {0, . . . ,2N}, the in-
teger j or the integer 2N − j is bigger than N . �

3. The proof of our main statements

3.1. Let us prove that τ(Êk(f)) = M (f) which is the statement of proposi-

tion 1.1. For simplicity we assume that ∂(f) = ∂x0(f). Let P ∈ Êk(f). Then,
by Section 2.1, we may assume that P is homogeneous of degree d. By for-
mula (2.3), we deduce that ∂x0(f)

dτ(P )≡ yd1P (∂x0(f), ∂y0(f)) (mod 〈Δ(f)〉).
Now, by assumption, we know that P (∂x0(f), ∂y0(f))≡ 0 (mod 〈f〉). So, we
conclude that

∂x0(f)
dτ(P ) ∈

〈
f,Δ(f)

〉
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which proves that τ(P ) ∈ M (f) (in fact, that τ(E
(d)
k (f)) ⊂ Md(f)). Con-

versely, let P ∈ Md(f). Then, there exists an integer N ≥ d such that
∂x0(f)

NP (−∂y0(f), ∂x0(f)) ∈ 〈f〉, since Δ(f)(−∂y0(f), ∂x0(f)) = 0. Since the
polynomial f is assumed to be irreducible, we have P (−∂y0(f), ∂x0(f)) ∈ 〈f〉.
Let us set Q := P (−y1, x1). Then, we have P = τ(Q) and Q ∈ E

(d)
k (f); hence,

τ(E
(d)
k (f))⊃Md(f). We have proved the assertion.

3.2. Let us prove Corollary 1.2. Let π : TC/k → C be the canonical mor-

phism. By classical arguments, one knows that π−1(Reg(C )) is an irreducible
component of TC/k. We also know by Section 2.2 that the closed subscheme of
TC/k corresponding to V (M (f)) is irreducible. For every field extension K of
k, a K-point in TC/k(K) is called a 1-jet of C and corresponds to a morphism

of k-schemes in C (K[t]/〈t2〉), that is, to a pair (γ1(t), γ2(t)) ∈ (K[t]/〈t2〉)2
which satisfies the equation f(γ1(t), γ2(t)) ≡ 0 (mod 〈t2〉). Furthermore, the
datum of every k-scheme morphism in C (K[t]/〈t2〉) is by construction that
of a morphism of k-algebras O(C )→K[t]/〈t2〉, which can also be seen, in an
equivalent way, to be that of a morphism of k-algebras A1/〈f,Δ(f)〉 → K.
With the latter description and the very definition of the ideal M (f), we eas-

ily observe that π−1(Reg(C ))⊂ V (M (f)), which implies that π−1(Reg(C )) =
V (M (f)).

Remark 3.1. If n : C̄ → C is the normalization of C , the description above
also implies that M (f)/〈Δ(f), f〉=Ker(Sym(n�)).

3.3. The proof of Theorem 1.3 is based on the following lemma. We set
∂1 := ∂x0 and ∂2 := ∂y0 .

Lemma 3.2. Let α ∈ N2. Let � ∈ N be an integer such that � ≥ |α| :=
α1+α2. We denote by ∂α

ij the differential operator on A of order |α| defined to
be ∂α1

i ◦∂α2
j for every pair (i, j) ∈ {1,2}. Then, for every polynomials g,P ∈A,

there exists a polynomial q ∈A such that the following formula holds

∂α
ij

(
Pg�

)
=

�!

(�− |α|)!Pg�−|α|∂i(g)
α1∂j(g)

α2 + qg�−|α|+1.

Let us stress that, by iterating derivations, the monomial (∂i(g))
α1(∂j(g))

α2

appears, in the formula, only one time.

Proof. We prove this assertion by induction on |α|. If |α| ∈ {1,2}, it is easy
to check the formula, with q = 0 if |α| = 0 and q = ∂i(P ) if α = (1,0) and
q = ∂j(P ) if α= (0,1). Let d≥ 1. Let us assume that the formula holds true
for every β ∈N2 with |β|< d. Let α′ with |α′|= d+ 1. Let �≥ d+ 1.



222 J. SEBAG

◦ Let us assume that α′ = (α′
1, α

′
2 +1). Let us note that α′

1 +α′
2 = d. Thus

we have

∂α′

ij

(
Pg�

)
= ∂

α′
1

i

(
∂
α′

2
j

(
g�∂j(P ) + �Pg�−1∂j(g)

))
= ∂

α′
1

i ◦ ∂α′
2

j

(
∂j(P )g�

)
+ �∂

α′
1

i ◦ ∂α′
2

j

(
Pg�−1∂j(g)

)
.

Then, we conclude the proof of this case by applying the induction hypothesis

to the differential operator ∂
α′

1
i ◦ ∂α′

2
j at each term of the former sum.

◦ Let us assume that α′ = (α′
1+1, α′

2). Let us note that α
′
1+α′

2 = d. Thus,
by the induction hypothesis, we have

∂α′

ij

(
Pg�

)
= ∂i

(
∂
α′

1
i ◦ ∂α′

2
j

(
g�P

))
= ∂i

(
�!

(�− d)!
Pg�−d

(
∂i(g)

)α′
1
(
∂j(g)

)α′
2 + qg�−d+1

)
.

By differentiating the last expression, we also obtain a formula of the required
type. �

Theorem 1.3 is a direct consequence of the following statement:

Corollary 3.3. Let k be a field of characteristic zero. Let f ∈A be an irre-

ducible polynomial with C := Spec(A/〈f〉). Let D =
∑d

j=0 aj(x0, y0)∂
j
x0
∂d−j
y0

∈
D be a differential operator with order d := ord(D) ∈N. Then the following
assertions are equivalent:

(1) For every integer � ≥ d, the differential operator D satisfies D(〈f �〉) ⊂
〈f �−d+1〉.

(2) The polynomial f divides the polynomial D(fd) in the the ring A.
(3) The polynomial Sb(D)(∂x0(f), ∂y0(f)) belongs to the ideal 〈f〉 of the

ring A.

Proof. (1)⇒ (2) We prove this implication by applying (1) to �= d. (2)⇔
(3) From Lemma 3.2 applied to �= |α|= d, g = f and P = 1, it follows that the
polynomial Sb(D)(∂x0(f), ∂y0(f)) belongs to the ideal 〈f〉 if and only f divides
the polynomial D(fd). (3) ⇒ (1) This implication follows from Lemma 3.2
applied to |α|= d and g = f . �

4. Example

4.1. Let us compute a system of generators of the ideal M (x2m+1
0 − y20).

For this aim, we introduce the following polynomials of A1:

(4.1)

{
δ1 := x0y1 − 2m+1

2 y0x1 ∈A1,

δ2 := y21 − ( 2m+1
2 )2x2m−1

0 x2
1 ∈A1.

By the Buchberger algorithm, a direct computational argument implies the
following fact: for every positive integer m ∈N∗, the family {f,Δ(f)/2, δ1, δ2}
is the reduced Groebner basis of the ideal M (x2m+1

0 − y20).
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4.2. A polynomial f ∈ k[x0, y0] of multiplicity n≥ 2 is said cuspidal if there
exist a ring automorphism σ : A→A and a positive integer m, prime to n
with m>n, such that σ(f) = xm

0 − yn0 .

Example 4.1. Let us assume that the field k is algebraically closed of char-
acteristic zero. By [4], one knows that every irreducible quasi-homogeneous
polynomial f ∈A of multiplicity n≥ 2 is cuspidal.

We assume from now on that n = 2. From Section 4.1, we deduce the
following statement:

Proposition 4.2. Let k be a field of characteristic zero. Let C be an
integral affine plane curve defined by a cuspidal (irreducible) polynomial f
of multiplicity two. Then, there exists a system of coordinates (x, y) in A
such that every homogeneous differential operator D on A which satisfies
D(ford(D))⊂ 〈f〉 is a combination with coefficients in D of the following dif-
ferential operators: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
f(x, y),

3x2∂x − 2y∂y,

2x∂x + 3y∂y,

4∂2
x − 9x∂2

y .
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