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ON THE CURVATURE OF EINSTEIN–HERMITIAN
SURFACES

MUSTAFA KALAFAT AND CANER KOCA

Abstract. We give a mathematical exposition of the Page met-
ric, and introduce an efficient coordinate system for it. We care-
fully examine the submanifolds of the underlying smooth mani-
fold, and show that the Page metric does not have positive holo-
morphic bisectional curvature. We exhibit a holomorphic subsur-
face with flat normal bundle. We also give another proof of the

fact that a compact complex surface together with an Einstein–
Hermitian metric of positive orthogonal bisectional curvature is

biholomorphically isometric to the complex projective plane with

its Fubini–Study metric up to rescaling. This result relaxes the

Kähler condition in Berger’s theorem, and the positivity condi-
tion on sectional curvature in a theorem proved by the second
author.

1. Introduction

Let (M,J) be a complex manifold. A Riemannian metric g on M is
called Hermitian if the complex structure J : TM → TM is an orthogonal
transformation at every point on M with respect to the metric g, that is,
g(X,Y ) = g(JX,JY ) for tangent vectors X,Y ∈ TpM for all p ∈M . In this
case, the triple (M,g,J) is called a Hermitian manifold. For Hermitian met-
rics we have further notions of curvature related to complex structure: The
holomorphic bisectional curvature in the direction of a pair of unit tangent
vectors X,Y ∈ TpM is defined as

H(X,Y ) := Rm(X,JX,Y,JY ).

If one applies the algebraic Bianchi identity, and J -invariance in the Kähler
case, it is easy to see that this is the sum of sectional curvatures of the planes
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spanned by X , Y and X , JY . We call this as the summation identity in the
Kähler case which gives some visual insight. Bisectional curvature is actually
not an invariant of the plane spanned by the vectors X , Y . Rather, it is
an invariant of the holomorphic planes spanned by them. As a special case, if
one takes the two vectors identical, then the result coincides with the sectional
curvature of the holomorphic plane spanned. This is called the holomorphic
(sectional) curvature in that direction vector. Although it can be considered
as a map on the sphere S2n−1(TpM)→ R at each point, just in the case of
bisectional curvature, this map is an invariant of the holomorphic plane, and
therefore can be considered as a map on the complex Grassmannian of one
lower real dimension since it is constant on the Hopf circle fibers. Positivity
of the sectional curvature implies that of bisectional curvature, which implies
positivity of holomorphic curvature. However, the converses are not necessarily
true in general.

In this paper, we work on some explicit 4-manifolds to understand various
notions of curvature. We also prove a uniformization theorem for positive
bisectional curvature. First, let us review some well-known theorems in special
cases.

Theorem 1.1 (Frankel conjecture, Siu-Yau Thm [22]). Every compact
Kähler manifold of positive bisectional holomorphic curvature is biholomor-
phic to the complex projective space.

This theorem does not, however, specify the metric in question. Neverthe-
less, if we in addition assume that the metric is Einstein, then the metric is
unique, too:

Theorem 1.2 ([2], [11]). An n-dimensional compact connected Kähler
manifold with an Einstein (or constant scalar curvature) metric of positive
holomorphic bisectional curvature is globally isometric to CPn with the Fubini–
Study metric (up to rescaling).

Our aim here is to relax the Kähler condition on the metric in Theorem 1.2
to merely being Hermitian in dimension 4. In this case the summation identity
is no longer valid. Our main theorem is the following.

Theorem 1.3. If (M,g,J) is a compact complex surface together with an
Einstein–Hermitian metric of positive holomorphic bisectional curvature, then
it is biholomorphically isometric to (CP2, gFS), the complex projective plane
with its Fubini–Study metric up to rescaling.

We note that an analogous result with the positivity assumption on the
sectional curvature is proved in [16] by the second author. However, in the
Hermitian case, positivity of sectional and bisectional curvatures are not re-
lated in general due to invalidity of the summation identity. Consequently the
techniques in that paper cannot be directly applied here.
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Einstein–Hermitian metrics on compact complex surfaces are classified by
LeBrun:

Theorem 1.4 ([18]). If (M,g,J) is a compact complex surface together
with an Einstein–Hermitian metric, then only one of the following holds.

(1) g is Kähler–Einstein(KE).
(2) M is biholomorphic to CP2�CP2 and g is the Page metric (up to rescal-

ing).
(3) M is biholomorphic to CP2�2CP2 and g is the Chen–LeBrun–Weber met-

ric (up to rescaling).

In other words, an Einstein–Hermitian metric is either Kähler–Einstein to
start with, or is one of the two exceptional models. These exceptional Einstein
metrics are non-Kähler, but they are conformally Kähler. By Theorem 1.2 we
only need to consider the non-Kähler case. We start with the Page metric
case. We give an introduction to this metric, and show that it does not have
positive curvature everywhere. One of the key facts in the proof of this result
is Frankel’s theorem [10] which states that totally geodesic submanifolds of
complementary dimensions on positively curved manifolds necessarily inter-
sect. Since the Page metric has an explicit form, we are also able to give a
computational proof of the failure of positivity. Secondly we introduce Euler
coordinates, and use Dragomir–Grimaldi’s theorem [6] to get the analogous re-
sult on bisectional curvature. These coordinates are especially useful for Page
metric and its submanifolds. We hope that they will be useful for others who
are interested in local computations in 4-dimensional geometry. For another
application of these coordinates see [14].

On the other hand, the Chen–LeBrun–Weber metric does not have such
an explicit formula. Therefore, this explicit analysis is not an available option
at this time. We need to prove a more general result to handle this case.
Using curvature estimates and Weitzenböck formula techniques we prove the
following result.

Theorem 4.4. Let M be a compact Einstein–Hermitian 4-manifold of pos-
itive holomorphic bisectional curvature. Then the Betti number b2− vanishes.

As a consequence we have the following.

Corollary 1.5. There is no Einstein–Hermitian metric of positive holo-
morphic bisectional curvature on any blow up of CP2.

Since the underlying smooth 4-manifolds of the exceptional cases CP2�CP2

and CP2�2CP2 have non-zero b2−, we deduce the following corollary.

Corollary 1.6. The Page and Chen–LeBrun–Weber metrics are not of
positive holomorphic bisectional curvature.
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This eliminates the later two possibilities in LeBrun’s Classification The-
orem 1.4. In the remaining Kähler-Einstein case, we apply the Berger–
Goldberg–Kobayashi Theorem 1.2, and the proof of our Theorem 1.3 follows.

We note that the authors proved a more general result in a different article
[13] in the conformally Kähler case, which uses slightly different Weitzenböck
techniques. Besides that, the discussion on Page metric and Euler coordinate
computations are the main and completely new material here. We give a better
understanding of this important metric to the reader in this paper.

In Section 2, we give a careful topological analysis of the Page metric and
show that it does not have positive sectional curvature everywhere. In Sec-
tion 3, we provide Euler coordinates and give an alternative proof of the fact
that it the Page metric is not of positive holomorphic bisectional curvature by
exhibiting a subsurface with flat normal bundle. In Section 4, we prove some
estimates and classify Einstein–Hermitian 4-manifolds of positive bisectional
curvature.

2. Page metric

In this section, we give a rigorous mathematical exposition of the Page
metric, and describe its topology in detail. At the end, we prove that it does
not have positive sectional curvature everywhere. This section and its figures
are part of C. Koca’s thesis [15].

The Page metric was discovered by D. Page in 1978 as a limiting met-
ric of Kerr-de Sitter solution (see [19]). It is the unique Einstein–Hermitian
non-Kähler metric on the blow up of complex projective plane. To define it
formally, we first think of the following metric on the product S3 × I where I
is the closed interval [0, π]:

g = V (r)dr2 + f(r)
(
σ2
1 + σ2

2

)
+

C sin2 r

V (r)
σ2
3 ,

where the coefficient functions are given by the following expressions1

V (r) =
1− a2 cos2 r

3− a2 − a2(1 + a2) cos2 r
,

f(r) = 4
1− a2 cos2 r

3 + 6a2 − a4
,

C =
1

(3 + a2)2

and a is the unique positive root of a4 + 4a3 − 6a2 + 12a− 3 = 0. Here, σ1,
σ2, σ3 is the standard left invariant 1-forms on the Lie group SU(2)≈ S3. At

1 In the original paper [19] of Page, there is a typo in the equation (41). The last term

inside the curly brackets has to be divided by 4 and (3− ν2)2 replaced by (3 + ν2)2. This

concerns the constant C. See also [20].
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the endpoints r = 0 and π, we see from the formula that the metric shrinks
to a round metric on S2. Thus, g descends to a metric, denoted by gPage, on
the quotient (S3 × I)�∼ where ∼ identifies the fibers of the Hopf fibration
p : S3 → S2 on the two ends S3×{0} and S3×{π} of the cylinder S3× I . See
Figure 1.

Figure 1. The manifold S3 × I with its two boundary components.

The resulting manifold is indeed the connected sum CP2�CP2. To see this,
recall that in the cell decomposition of CP2, the attaching map from the
boundary of the 4-cell (which is S3) to the 2-skeleton (which is CP1 ≈ S2) is
given by the Hopf map [12]. So, if we cut the cylinder S3× I in two halves and
identify the Hopf fibers of S3 at each end, we get CP2 − {small ball}. Since
the right and left halves have different orientations, we obtain CP2�CP2 in
the quotient. See Figure 2 for assistance.

Next, we will prove that the Page metric is not of positive sectional curva-
ture. We will use the following classical theorem by Frankel.

Theorem 2.1 ([10]). Let M be a smooth n-manifold, and let g be a com-
plete Riemannian metric of positive sectional curvature. If X and Y are
two compact totally geodesic submanifolds of dimensions d1 and d2 such that
d1 + d2 ≥ n, then X and Y intersect.

In our case, the two 2-spheres on each end of the above quotient will play
the role of X and Y . They are compact and the dimensions add up to 4. So it
remains to show that those two submanifolds are totally geodesic with respect
to gPage. Since they are obviously disjoint, this will imply that gPage cannot
have positive sectional curvature. There is a very well-known lemma to detect
totally geodesic submanifolds.

Lemma 2.2. Let (M,g) be a Riemannian manifold. If f is an isometry,
then each connected component of the fix point set Fix(f) of f is a totally
geodesic submanifold of M .
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Figure 2. Boundary identifications to produce the closed
4-manifold CP2�CP2.

So, below we will show that there is an isometry of the Page metric whose
fix point set is precisely the two end spheres. What are the isometries of the
Page metric? Derdziński showed that the Page metric is indeed conformal to
one of Calabi’s extremal Kähler metrics on CP2�CP2 in [5]. On the other hand,
the identity component of the isometry group of extremal Kähler metrics is a
maximal compact subgroup of the identity component of the automorphism
group [4]. In the case of CP2�CP2, this implies that the identity component
of the isometry group of the Page metric is U(2) = (SU(2)× S1)/Z2. By the
formula of the metric, we see that the isometries in the SU(2) component are
precisely given by the left multiplication action of SU(2) on the first factor of
S3 × I . Note that the forms σi, i= 1,2,3 are invariant under the action, but
the action on the 3-spheres S3 ×{r}, r ∈ (0, π) is fixed-point-free! The metric
is invariant under this action as the coefficients of the metric only depend on
the parameter r.

Now, let us see what happens at the endpoints r = 0 and r = π: It is well
known that the action of U ∈ SU(2) on the 2-sphere S2 (after the quotient)
is given by the conjugation A �→ UAU−1, where we regard the 2 × 2 com-
plex matrix A = xσ1 + yσ2 + zσ3 with x2 + y2 + z2 = 1 as a point of S2.
It is now straightforward to see that the action of −I ∈ SU(2) is trivial on
S2 (since (−I)A(−I)−1 =A); thus, it fixes every point on S2. Therefore, we
conclude that the fixed point set of the isometry given by the “antipodal
map” −I ∈ SU(2) consists of the two 2-spheres at each end of the quotient
((S3 × I)�∼)≈CP2�CP2. Note that, indeed, there is an S1-family of isome-
tries generated by rotation in direction of σ3 having the exact same fixed
point set. So we showed that there are two disjoint compact totally geodesic
submanifolds of CP2�CP2. Therefore, Frankel’s theorem implies the following.
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Theorem 2.3. The sectional curvature of the Page metric is not every-
where positive.

Finally, we note that we can actually show the failure of positivity directly
by brute-force using tensor calculus: Introduce a new coordinate function x :=
cos(r), so that the metric becomes

g = U2(x)dx2 + g2(x)
(
σ2
1 + σ2

2

)
+

D2

W (x)
σ2
3 ,

where the coefficient functions are given as

U(x) =

√
1− a2x2

(3− a2 − a2(1 + a2)x2)(1− x2)
,

g(x) = 2

√
1− a2x2

3 + 6a2 − a4
,

D =
1

3+ a2

and choose the following vierbein: {e0, e1, e2, e3} := {U dx, gσ1, gσ2,DU−1σ3}.
Then by a standard tensor calculus, we see that the sectional curvature of the
plane generated by e0 and e1 is given by

K01 = 2
g′U ′ − g′′U

gU3
.

Using a computer program like Maple, one can easily verify that this function
K01(x) can take both positive and negative values for x ∈ (−1,1).

3. Euler coordinates and flat bundles

In this section, we will introduce an efficient coordinate system and use it to
show that the Page metric is not of positive holomorphic bisectional curvature
by explicitly analyzing the submanifolds of the underlying smooth manifold.
We would like to use the following theorem of Dragomir and Grimaldi. See
the book [7] on locally conformal Kähler (l.c.K.) geometry page 157 for an
exposition.

Theorem 3.1 ([6]). Let S be a complex submanifold of the l.c.K. mani-
fold M . If M has positive holomorphic bisectional curvature everywhere, then
the normal bundle of the given immersion S ⊂M admits no parallel sections.

In order to make use of this theorem, we need to analyze the complex
submanifolds of CP2�CP2. For this purpose we use Euler angles [24] on the
S3 ⊂R4 which e.g. realizes the Hopf fibration in the best.

0≤ θ ≤ π, 0≤ φ≤ 2π, 0≤ ψ ≤ 4π,
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x1 := r cos
θ

2
cos

ψ+ φ

2
,

x2 :=
′′ sin

ψ+ φ

2
,

x3 := r sin
θ

2
cos

ψ− φ

2
,

x0 :=
′′ sin

ψ− φ

2
,

where the Hopf fibration in these coordinates is just a projection [9],

h : S3 −→ S2, h(θ,ψ,φ) = (−φ, θ).

Here the exchange φ←→ θ is needed to relate to the calculus angles on S2.
Changing ψ does not change the element in the image. So, whenever the image
φ, θ is fixed, ψ parametrizes the Hopf circle (fiber).

An orthonormal, invariant coframe {σ1, σ2, σ3} on S3 is given as follows:

σ1 = (x1 dx0 − x0 dx1 + x2 dx3 − x3 dx2)/r
2 = (sinψdθ− sinθ cosψ dφ)/2,

σ2 = (x2 dx0 − x0 dx2 + x3 dx1 − x1 dx3)/r
2 = (− cosψdθ− sinθ sinψdφ)/2,

σ3 = (x3 dx0 − x0 dx3 + x1 dx2 − x2 dx1)/r
2 = (dψ+ cosθ dφ)/2.

One can check in a straightforward manner the identities,

dσ1 = 2σ2 ∧ σ3 and σ2
1 + σ2

2 =
(
dθ2 + sin2 θ dφ2

)
/4.

Plugging these into the Page metric’s expression we get the following.

gPage = V dr2 +

{
f

4
sin2 θ+

C sin2 r cos2 θ

4V (r)

}
dφ2 +

C sin2 r

4V (r)
dψ2(1)

+
C sin2 r cosθ

4V (r)
(dψ⊗ dφ+ dφ⊗ dψ) +

f

4
dθ2.

Letting U :=
√
V (r), h :=

√
f , D :=

√
C we have the following Vierbein

that is, orthonormal coframe,{
e0, e1, e2, e3

}
=

{
U dr,

Dh

2
√
C cot2 θ+ V f csc2 r

dψ,(2)

D sin r

2U
√
1 +C−1V f tan2 θ sin−2 r

×
(
dψ+

(
V f tanθ sin θ

C sin2 r
+ cosθ

)
dφ

)
,
h

2
dθ

}
.

Now, we are in a position to analyze some of the subsurfaces easily [21],
[1]. For example keeping r0, θ0 fixed and varying ψ, φ, one obtains tori. See
more on the subsurfaces of the Page space at [14]. We are interested in complex
submanifolds. For this purpose, this time keep φ0, θ0 fixed, vary r, ψ to obtain
complex spheres that is, rational curves as follows. This captures a series of
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nearby Hopf fibers corresponding to r ∈ [0, π] hence a cylinder S1 × I inside
S3 × I which projects to a sphere under Hopf identification of circles at the
two ends. These are complex submanifolds, since they correspond to fibers
coming from Hirzebruch Surface description/fibration. This follows easily by
recalling that the complex line bundle O(1) over CP1 can also be described
as the quotient(

S3 ×C
)
/∝ where (x, z)∝ (λx,λz), λ ∈ S1 ⊂C.

There is an obvious diffeomorphism between

(S3 × [0, π))

∼ ≈ (S3 × [0,∞))

∼ and O(1) =
(
S3 ×C

)
/∝;

and under this map the quotient of the cylinder in the previous paragraph is
mapped to the complex fiber of the complex line bundle O(1) over the point
(φ0, θ0) ∈CP1. Adding the remaining point at infinity shows that the quotient
of the cylinder in (S3 × I)/∼ corresponds to the Hirzebruch fiber of the first
Hirzebruch surface P(O ⊕ O(1)) → CP1. These fibers are obvously complex
rational curves. The Hopf spheres at the two ends of S3 × I correspond to
0,∞-sections of this fibration

CP1 →CP2�CP2 = P
(
O⊕O(1)

)
↓
CP1

Now let’s find the curvature of the normal bundle of these fibers. Finding
nontrivial connection 1-forms of the Page metric with respect to this basis
is not an easy task. We refer the reader to [14] for this type of approach
with a different choice of vierbein. Instead we will compute the Christoffel
symbols and the coefficients of the Riemann curvature tensor to figure out the
curvature 2-form of the normal plane bundle of the spheres that we are working
on. Here the submanifold directions are 0, 1 and normal bundle directions are
2, 3. Since θ = θ0 is constant (together with φ0), using one of the computer
algebra systems the curvature 2-form of the normal bundle NCP1 can be
computed as [8],

R̃2
3 = dω̃2

3 + ω̃2
1 ∧ ω̃1

3

=
1

2
R̃2

3cd e
c ∧ ed

=
D(V f ′ + f(V ′ − 2V cot r)) sin r tanθ

2f3/2V 3/2
√
1 +C−1V f csc2 r tan2 θ

dr ∧ dψ.

Here recall that V and f are functions of r. If we focus on one of the spheres
where θ = 0 and φ = φ0, this curvature 2-form vanishes. So that the nor-
mal bundle of this type of sphere is flat. Then the parallel translation on
this sphere depends only on the homotopy class, which is unique because of
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simple-connectivity. Hence, parallel translation is totally path independent.
Now starting with two linearly independent vectors of the normal bundle at
a point, one extends them by parallel translation to the whole sphere. Since
lengths are preserved during the process, these extensions are nowhere van-
ishing. So we obtain two parallel sections of the normal bundle. Two nowhere
zero sections of a plane bundle trivializes it, so we have a trivial, flat normal
bundle. We are ready to state the main result of this section.

Theorem 3.2. The holomorphic bisectional curvature of the Page metric
on CP2�CP2 is not everywhere positive.

Proof. The spheres above are complex submanifolds and the Page metric
is conformally Kähler so certainly l.c.K. Their normal bundle has nontrivial
parallel sections. Therefore, we can apply Theorem 3.1. �

4. Estimates and the bisectional curvature

We first describe the 2-form interpretation of the planes in the tangent
space which will be very useful. Sectional curvatures at a point p ∈ M can
be thought as a function on the Grassmannian of oriented two planes in the
corresponding tangent space.

sec :G+
2 (TpM)−→R

In dimension 4, we have a nice description of this Grassmannian in terms of
forms

G+
2

(
R4

)
≈
{
(α,β) ∈ Λ2

+ ⊕Λ2
− : |α|= |β|= 1/

√
2
}
≈ S2 × S2.

See [23] as a reference. Starting with a plane π, one can choose a special
orthogonal basis {e1, e2} which corresponds to the form σ = e1 ∧ e2 ∈ Λ2 us-
ing metric duals. One can choose the basis in a unique way if the following
conditions,

e1 ∧ e2 = α+ β for α ∈ Λ2
+, β ∈ Λ2

−, |α|= |β|= 1/
√
2

are imposed. Conversely, starting with a decomposable 2-form ω ∈ Λ2 i.e.
ω = θ ∧ δ for some θ, δ ∈ Λ1. The duals {θ�, δ�} gives an oriented basis for a
plane. In this correspondence, a complex plane correspond to a form in the
form ω

2 + ϕ for an anti-self-dual 2-form ϕ. If a plane σ̃ corresponds to (α,β)

or simply σ = α+ β ∈ Λ2,

sec(σ̃) = Rm(σ,σ) =
〈
R(σ), σ

〉
,

where R : Λ2 → Λ2 is the curvature operator. Recall that for complex planes
σ̃, τ̃ we compute the bisectional curvature by

H(σ̃, τ̃) = Rm(σ, τ).
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Let us recall the decomposition of the curvature operator R : Λ2 → Λ2.
If (M,g) is any oriented 4-manifold, then the decomposition Λ2 = Λ2

+ ⊕ Λ2
−

implies that the curvature operator R can be decomposed as

R=

⎛⎝ W+ + s
12 r̊

r̊ W− + s
12

⎞⎠ ,

where Λ2
± stands for the self-dual and anti-self-dual 2-forms, that is, Λ2

± =
{φ ∈ Λ2 : ∗φ=±φ}, where ∗ is the Hodge-∗ operator determined by the met-
ric g. W± is the self-dual/anti-self-dual Weyl curvature tensor, s is the scalar
curvature and r̊ stands for the trace-free part of the Ricci curvature tensor r.

Now we are ready to state and prove our first estimate lemma. Let (M,J, g)
be a compact Einstein–Hermitian 4-manifold. In this case, according to a
theorem of LeBrun in [17], such a space is either Kähler, or else they are
conformally related to a Kähler metric g̃ with positive scalar curvature s̃
in such a way that g = s̃−2g̃. Moreover, the non-Kähler Einstein–Hermitian
metrics of Theorem 1.4, namely the Page metric and the Chen–LeBrun–Weber
metric, are known to have (constant) positive scalar curvature. From now on,
we will decorate the curvature expressions of the conformally related Kähler
metric g̃ with tilde (e.g., s̃, R̃, W̃ etc.). We will denote the inner product of
tensors with respect to g̃ by 〈, 〉g̃ .

Lemma 4.1 (First Estimate). Let (M,J, g) be an Einstein–Hermitian met-
ric which is not Kähler. Let g̃ be the conformally related Kähler metric such
that g = s̃−2g̃. If g has positive holomorphic bisectional curvature and λ is an
eigenvalue of the operator W̃− : Λ2

− →Λ2
−, then we have

λ <
s̃

6
.

Proof. Take two arbitrary unit tangent vector X , Y in TpM at an arbi-

trary point p, and let ϕ,ψ ∈ Λ2
+ be the anti-self-dual 2-forms of length 1/

√
2

corresponding to the complex lines {X,JX} and {Y,JY }, as described above.
Keeping in mind that r̊ = 0 since g is Einstein and Λ2

+ and Λ2
− are orthogonal

with respect to g, we see by the decomposition of R that

H(X,Y ) =

〈
R
(
ω

2
+ϕ

)
,
ω

2
+ψ

〉
=

〈(
W+ +

s

12

)
ω

2
+

(
W− +

s

12

)
ϕ,

ω

2
+ ψ

〉
=

1

4
〈W+ω,ω〉+

s

48
〈ω,ω〉+ 〈W−ϕ,ψ〉+

s

12
〈ϕ,ψ〉

=
1

4
〈W+ω,ω〉+

s

12

{
1

2
+ 〈ϕ,ψ〉

}
+ 〈W−ϕ,ψ〉.
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Now, since g = s̃−2g̃, we see that

〈W+ω,ω〉= (W+)ij
kl
ωklω

ij = s̃2(W̃−)ij
kl
s̃−2ω̃kls̃

2ω̃ij = s̃2〈W̃+ω̃, ω̃〉g̃.
It is well known [5] that for Kähler metrics the Kähler form is an eigenvector

of the self-dual Weyl operator, more explicitly W̃+ω̃ = s̃
6 ω̃. Thus, we see that

〈W̃+ω̃, ω̃〉g̃ = s̃
6 〈ω̃, ω̃〉g̃ =

s̃
3 and hence

H(X,Y ) =
s̃3

12
+

s

12

{
1

2
+ 〈ϕ,ψ〉

}
+ 〈W−ϕ,ψ〉.

Now, since the operator W̃− : Λ2
− → Λ2

− is symmetric, it is diagonalizable.

Let λ be an eigenvalue, ϕ ∈ Ẽλ ⊂ Λ2
− be a corresponding eigenvector with

|ϕ|= 1/
√
2 (norm taken with respect to g). Choosing ψ :=−ϕ in the above

equation yields,

H(X,Y ) =
s̃3

12
+

s

12

{
1

2
− |ϕ|2

}
−
〈
s̃2W̃ϕ,ϕ

〉
=

s̃3

12
+ s̃2〈−λϕ,ϕ〉= s̃3

12
− λs̃2|ϕ|2

=
s̃2

2

{
s̃

6
− λ

}
> 0,

and hence s̃
6 − λ > 0, as required. �

Lemma 4.2 (Second estimate). Let (M,J, g) be an Einstein–Hermitian
metric which is not Kähler. If g has positive holomorphic bisectional cur-
vature, then for all ϕ ∈ Λ2

− with |ϕ|= 1/
√
2, we have

s̃

12
− 〈W̃−ϕ,ϕ〉> 0.

Proof. Inserting ψ =−ϕ into the first equation of the previous proof yields,

H(ϕ,−ϕ) =
s̃3

12
+

s

12

{
1

2
− |ϕ|2

}
− 〈W−ϕ,ϕ〉=

s̃3

12
−
〈
s̃2W−ϕ,ϕ

〉
= s̃2

{
s̃

12
− 〈W̃−ϕ,ϕ〉

}
> 0. �

The following Weitzenböck formula will be used in the proof of the main
result which involves the Weyl curvature.

Theorem 4.3 (Weitzenböck formula [3]). On a Riemannian manifold, the
Hodge/modern Laplacian can be expressed in terms of the connection/rough
Laplacian as (

d+ d∗
)2

=∇∗∇− 2W +
s

3
,

where ∇ is the Riemannian connection and W is the Weyl curvature tensor.
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Theorem 4.4. Let M be a compact, Einstein–Hermitian 4-manifold of pos-
itive holomorphic bisectional curvature. Then the Betti number b2− vanishes.

Here b2− stands for the number of negative eigenvalues of the cup product
in H2(M) as usual. By Hodge theory, this number is equal to the dimension
of anti-self-dual harmonic 2-forms on the Riemannian manifold (M,g).

Proof. These spaces are either Kähler, or else conformally Kähler by [17].
In the first case, according to the resolution [22] of Frankel’s conjecture by
Siu and Yau, the space has to be complex projective plane. By Theorem 1.2,
the metric has to be the Fubini–Study metric. In the latter case, we can write
g = s̃−2g̃ for g the Einstein, and g̃ the Kähler metric.

Assume, for a contradiction, there is a nonzero anti-self-dual 2-form ϕ ∈
Γ(Λ2

−) which is harmonic with respect to the Kähler metric g̃. Since we are
on a compact manifold, we can rescale this form by a constant to have length
strictly less than 1/

√
2 everywhere. We write Weitzenböck Formula for the

Kähler metric g̃:

0 =Δg̃ϕ= ∇̃∗∇̃ϕ− 2W̃ϕ+
s̃

3
ϕ.

Now we take the L2-inner product (with respect to g̃) of both sides with ϕ:

0 =

∫
M

〈∇̃ϕ, ∇̃ϕ〉g̃ − 2〈W̃ϕ,ϕ〉g̃ +
s̃

3
〈ϕ,ϕ〉g̃ dμg̃

=

∫
M

|∇̃ϕ|2g̃ + s̃−4

{
s̃

6
− 2〈W̃−ϕ,ϕ〉g

}
dμg̃.

At the points where ϕ = 0, the term in the curly bracket is just the scalar
curvature term, hence strictly positive. Let p be a point where ϕ|p �= 0. Take
an open set around p on which ϕ is nowhere zero. Now working on this open
set, let ϕ̃ := ϕ/|ϕ|

√
2 so that |ϕ̃|= 1/

√
2. Since the conformally related ϕ̃ is

also anti-self-dual and of constant norm, the second estimate s̃
12 > 〈W̃−ϕ̃, ϕ̃〉

is applicable for ϕ̃:{
s̃

6
− 2〈W̃−ϕ,ϕ〉g

}
p

=
s̃

6
− 2

〈
W̃−

√
2|ϕ|ϕ̃,

√
2|ϕ|ϕ̃

〉
g

=
s̃

6
− 4|ϕ|2〈W̃−ϕ̃, ϕ̃〉g

>
s̃

6
− 4 · 1

2
· s̃

12
= 0

at the point p. Since the term in parenthesis is strictly positive everywhere
we get ∇ϕ = 0, s̃−4 = 0, a contradiction. So that no such ϕ exists implying
b2− = 0. �

Remark 4.5. Theorem 4.4 is actually true under the weaker assumption
that orthogonal bisectional curvatures are positive; that is, H(X,Y )> 0 when-
ever X is perpendicular to Y and JY . Indeed, in the non-Kähler case, when
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establishing the inequalities in the proof of Lemma 4.1 and Lemma 4.2, we
only considered the case when ϕ=−ψ, which corresponds to taking two or-
thogonal complex lines span{X,JX} and span{Y,JY }. On the other hand,
in the Kähler–Einstein case, we notice that Theorem 1.2 remains true if we
weaken the assumption to positivity of orthogonal bisectional curvatures. See
the proof of Theorem 5 in [11], page 232, where the authors prove that the
Einstein constant is a positive constant multiple of any of the orthogonal bi-
sectional curvatures H(X,JX), H(X,Y ) or H(X,JY ). We thank F. Belgun
for this remark.
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