THE MODULE THEORY OF DIVIDED POWER ALGEBRAS

ROHIT NAGPAL AND ANDREW SNOWDEN

Abstract

We study modules for the divided power algebra \mathbf{D} in a single variable over a commutative Noetherian ring K. Our first result states that \mathbf{D} is a coherent ring. In fact, we show that there is a theory of Gröbner bases for finitely generated ideals, and so computations with finitely presented \mathbf{D}-modules are in principle algorithmic. We go on to determine much about the structure of finitely presented D-modules, such as: existence of certain nice resolutions, computation of the Grothendieck group, results about injective dimension, and how they interact with torsion modules. Our results apply not just to the classical divided power algebra, but to its q-variant as well, and even to a much broader class of algebras we introduce called "generalized divided power algebras." On the other hand, we show that the divided power algebra in two variables over \mathbf{Z}_{p} is not coherent.

Contents

1. Introduction 288
2. π-sequences 293
3. Generalized divided power algebras 299
4. Coherence results 306
5. Special resolutions 317
6. Grothendieck groups 324
7. Injective dimension and duality 333
8. Torsion and finitely presented modules 340
9. Nearly finitely presented modules 344
10. Open problems 351
Acknowledgment 352
References 352
[^0]
1. Introduction

Let \mathbf{D} be the divided power algebra in a variable x over the commutative ring \mathbf{k}. Recall that \mathbf{D} is free as a \mathbf{k}-module with basis $x^{[0]}, x^{[1]}, \ldots$, and multiplication is defined by

$$
x^{[n]} x^{[m]}=\binom{n+m}{n} x^{[n+m]} .
$$

If $\mathbf{Q} \subset \mathbf{k}$, then \mathbf{D} is isomorphic to the polynomial ring $\mathbf{k}[x]$ via $x^{[n]} \mapsto \frac{x^{n}}{n!}$. However, in general \mathbf{D} is quite different from the polynomial ring: for example, if $\mathbf{k}=\mathbf{F}_{p}$, then \mathbf{D} is not even Noetherian.

This paper is an investigation of the theory of D-modules. Even though D is typically non-Noetherian, we show that finitely presented D-modules are well-behaved, and prove a variety of results concerning them. In the remainder of the Introduction, we summarize our results and explain our motivation for studying \mathbf{D}-modules. We also note here that the divided power algebras appeared in the work of Berthelot as a tool for studying crystalline cohomology, see, for example, $[\mathrm{BO}]$.
1.1. Summary of results. Recall that a ring R is coherent if every finitely generated ideal is finitely presented. Equivalently, R is coherent if the kernel of any map of finitely presented modules is again finitely presented; this ensures that the category of finitely presented modules is Abelian. Our first result about \mathbf{D} is the following theorem.

Theorem 1.1. If \mathbf{k} is Noetherian, then \mathbf{D} is coherent.

In fact, our results are more precise, in two ways. First, we give a complete characterization of the rings \mathbf{k} for which \mathbf{D} is graded-coherent (meaning any finitely generated homogeneous ideal is finitely presented): namely, \mathbf{D} is graded-coherent if and only if \mathbf{k} is coherent and for any finitely generated ideal \mathfrak{a} of \mathbf{k}, the torsion submodule of $\mathbf{k} / \mathfrak{a}$ has finite exponent. And second, when \mathbf{k} is Noetherian, we actually prove that \mathbf{D} is Gröbner-coherent. This is a notion we introduce in [NS, Section 4], which basically means that there is a good theory of Gröbner bases for finitely generated ideals in \mathbf{D}. In particular, this means that calculations with finitely presented \mathbf{D}-modules are algorithmic, at least in principle.

We next investigate the structure of finitely presented \mathbf{D}-modules, working under the assumption that \mathbf{k} is Noetherian. We first construct certain nice resolutions. In general, finitely presented \mathbf{D}-modules do not have finite projective dimension. There are two obstructions. First, if M is a k-module with infinite projective dimension then $M \otimes_{\mathbf{k}} \mathbf{D}$ has infinite projective dimension as a \mathbf{D}-module. And second, if $\mathbf{k} / p \mathbf{k}$ is non-zero and $q>1$ is a power of p then

$$
(\mathbf{D} / p \mathbf{D})^{(q)}:=\bigoplus_{q \mid n}(\mathbf{k} / p \mathbf{k}) x^{[n]}
$$

is naturally a \mathbf{D}-module, and does not have finite projective dimension. We therefore introduce a class of modules that includes the above two counterexamples: we say that a \mathbf{D}-module N is special if it has a finite length filtration such that the graded pieces have the form $\left(M \otimes_{\mathbf{k}} \mathbf{D}\right)^{(q)}$, where M is a finitely generated \mathbf{k}-module, q is a power of a prime p, and $p M=0$ if $q \neq 1$. We then prove the following theorem.

Theorem 1.2. Every finitely presented \mathbf{D}-module M admits a finite resolution

$$
0 \rightarrow P_{r} \rightarrow \cdots \rightarrow P_{0} \rightarrow M \rightarrow 0
$$

by special modules. In fact, one can take P_{0}, \ldots, P_{r-1} to be free and P_{r} to be special, and one can bound r in terms of the Krull dimension of \mathbf{k} (if it is finite).

As consequence of this theorem, we obtain a useful spanning set for the Grothendieck group $\mathrm{K}(\mathbf{D})$ of finitely presented \mathbf{D}-modules. With more work, we prove the following theorem.

Theorem 1.3. There is a canonical short exact sequence

$$
0 \rightarrow \mathrm{~K}(\mathbf{k}) \rightarrow \mathrm{K}(\mathbf{D}) \rightarrow \bigoplus_{p} \mathbf{Q}_{p} / \mathbf{Z}_{p} \otimes \mathrm{~K}(\mathbf{k} / p \mathbf{k}) \rightarrow 0
$$

where the direct sum is taken over all prime numbers. This sequence splits if and only if for every prime p the natural map $\mathrm{K}(\mathbf{k} / p \mathbf{k}) \rightarrow \mathrm{K}(\mathbf{k})$ is zero.

We next investigate the injective dimension of \mathbf{D}-modules. We begin by completely characterizing the injective dimension of \mathbf{D} over itself when \mathbf{k} is a field. We next show that if E_{0} is a bounded complex of \mathbf{k}-modules with finitely generated homology and injective amplitude $[a, b]$ then $E=\mathbf{D} \otimes_{\mathbf{k}} E_{0}$ has injective amplitude $[a, b+2]$, and show that $b+2$ can be lowered to $b+1$ or even b in certain cases. Using this, we show that if \mathbf{k} is Noetherian and $\omega_{\mathbf{k}}$ is a dualizing complex for \mathbf{k} then $\omega_{\mathbf{D}}=\omega_{\mathbf{k}} \otimes_{\mathbf{k}} \mathbf{D}$ is one for \mathbf{D}. In particular, if \mathbf{k} admits a dualizing complex then the bounded derived category of finitely presented \mathbf{D}-modules is self-dual.

Next, we study the relationship between torsion modules and finitely presented modules. Here, an element m of a \mathbf{D}-module M is said to be torsion if $x^{[n]} m=0$ for all $n \gg 0$, and M is said to be torsion if all of its elements are. If \mathbf{k} contains a field of characteristic 0 , then $\mathbf{D}=\mathbf{k}[x]$, and finitely presented \mathbf{D}-modules can have torsion, for example, $\mathbf{k}[x] /(x)$. However, this is essentially the only example.

TheOrem 1.4. The following conditions are equivalent:
(a) Every finitely presented \mathbf{D}-module is torsion-free.
(b) Every maximal ideal of \mathbf{k} has positive residue characteristic.

When \mathbf{k} is p-adically complete, we can say much more, at least for graded modules:

Theorem 1.5. Suppose \mathbf{k} is p-adically complete. Let M and T be graded D-modules, with M finitely presented and T torsion. Then $\operatorname{Ext}_{\mathbf{D}}^{i}(T, M)=0$ for all $i \geq 0$.

Here Ext denotes a graded version of Ext, see Section 1.5. The above theorem is false without the completeness hypothesis, see Remark 8.4. It is also false in the non-graded case, as Example 7.5 (with $\mathbf{k}=\mathbf{F}_{p}$) shows.

Finally, motivated by certain applications (see Section 1.3), we study "nearly finitely presented" (nfp) D-modules. A graded D-module M is nfp if there exists a finitely presented \mathbf{D}-module N (called a weak fp-envelope of M) such that $\tau_{\geq n}(M) \cong \tau_{\geq n}(N)$ as \mathbf{D}-modules, where $\tau_{\geq n}$ denotes truncation to degrees $\geq n$ (see Section 9). When \mathbf{k} is complete, nfp modules are very well behaved.

ThEOREM 1.6. Suppose \mathbf{k} is p-adically complete. Then the kernel, cokernel, and image of a map of nfp modules is again nfp, and so the category of nfp modules is Abelian. Furthermore, the weak fp-envelope N of an nfp module M is unique up to canonical isomorphism, and there exists a canonical map $M \rightarrow N$ that is universal among maps from M to finitely presented modules.

As with the previous theorem, this one is false without the completeness assumption, see Proposition 9.19. When \mathbf{k} is not complete, we can at least prove uniqueness of the weak fp-envelope in some cases.

Theorem 1.7. Suppose that every maximal ideal of \mathbf{k} has residue characteristic p, for some fixed prime number p. Then the weak fp-envelope of an nfp module is unique up to isomorphism.

The isomorphism in the above theorem is not canonical, and the weak fpenvelope of M is not functorial in M. The above theorem can fail without the hypothesis on \mathbf{k} : if \mathbf{k} is a number ring with non-trivial class group then weak nfp-envelopes are necessarily non-unique, see Proposition 9.20.
1.2. q-divided power algebras and beyond. Let $q \in \mathbf{k}$. One then defines

$$
[n]_{q}=1+q+\cdots+q^{n-1}=\frac{q^{n}-1}{q-1}
$$

and

$$
[n]_{q}!=[n]_{q}[n-1]_{q} \cdots[1]_{q}, \quad\left[\begin{array}{c}
n \\
m
\end{array}\right]_{q}=\frac{[n]_{q}!}{[n-m]_{q}![m]_{q}!}
$$

The quantity $\left[\begin{array}{l}n \\ m\end{array}\right]_{q}$ is a polynomial in q, and called the q-binomial coefficient (or Gaussian binomial coefficient). One can modify the definition of the divided power algebra by replacing the usual binomial coefficients with their
q-counterparts. The result is called the q-divided power algebra. All of the results in this paper apply to, and are proved for, q-divided power algebras. ${ }^{1}$

In fact, we work even more generally. Let π_{2}, π_{3}, \ldots be a sequence of elements in \mathbf{k} that is "admissible" in the sense that if π_{n} and π_{m} belong to a common maximal ideal then $n \mid m$ or $m \mid n$. We define

$$
a(n)=a\left(n ; \pi_{\bullet}\right)=\prod_{d \mid n, d \neq 1} \pi_{d}
$$

and ${ }^{2}$

$$
C\left(n, m ; \pi_{\bullet}\right)=\frac{a(n) a(n-1) \cdots a(n-m+1)}{a(m) a(m-1) \cdots a(1)}
$$

The above coefficients are called π_{\bullet}-binomial coefficients. One can modify the definition of the divided power algebra by replacing the usual binomial coefficients with their π_{\bullet} counterparts. The resulting algebra is denoted $\mathbf{D}\left(\pi_{\bullet} ; \mathbf{k}\right)$ and called a generalized divided power algebra (GDPA). See Proposition 3.16 for an intrinsic characterization of these algebras and Proposition 2.10 for an enlightening description of admissible sequences when \mathbf{k} is a PID.

As one would expect, the main examples of interest fit into this general setup:
(a) If $\pi_{n}=1$ for all n, then $\mathbf{D}\left(\pi_{\bullet} ; \mathbf{k}\right) \cong \mathbf{k}[x]$.
(b) Define π_{n} to be p if n is a power of a prime p, and 1 if n is not a prime power. Then $\mathbf{D}\left(\pi_{\bullet} ; \mathbf{k}\right)$ is the usual divided power algebra over \mathbf{k}. (In the context of GDPA's, we refer to this as the classical divided power algebra.)
(c) Suppose $\pi_{n}=\Phi_{n}(q)$ where Φ_{n} is the nth cyclotomic polynomial. Then $\mathbf{D}\left(\pi_{\bullet} ; \mathbf{k}\right)$ is the q-divided power algebra.

In fact, by taking $q=0$ or $q=1$, example (c) reverts to (a) or (b). Here is a slightly different example:
(d) Fix $m \geq 0$ and take \mathbf{D} to be the \mathbf{Z}_{p}-submodule of $\mathbf{Q}_{p}[x]$ spanned by $\frac{x^{n}}{\left[n / p^{m}\right]!}$. One can show that \mathbf{D} is a GDPA; in fact, it is isomorphic to $\mathbf{D}\left(\pi_{\bullet} ; \mathbf{Z}_{p}\right)$ where π_{n} is p if n is a power of p that exceeds p^{m}, and 1 otherwise. (The ideal \mathbf{D}_{+}carries a partial divided power structure, in the sense of Berthelot. We thank the referee for this comment.)

All of the results of this paper are proved for arbitrary GDPA's. ${ }^{3}$ Working in this generality actually makes the structure of many arguments more clear and is no more difficult than treating the q-divided power algebra.

[^1]1.3. Motivation. A famous theorem of Nakaoka [Nak] asserts that the cohomology of symmetric groups stabilizes: for any coefficient ring \mathbf{k}, the restriction map
$$
\mathrm{H}^{t}\left(S_{n}, \mathbf{k}\right) \rightarrow \mathrm{H}^{t}\left(S_{n-1}, \mathbf{k}\right)
$$
is an isomorphism for $n>2 t$. Motivated by applications to the cohomology of configuration spaces, the first author [Na] generalized Nakaoka's theorem to allow for non-trivial coefficients, as follows. An FI-module over \mathbf{k} is a sequence $\left(M_{n}\right)_{n \geq 0}$, where M_{n} is a $\mathbf{k}\left[S_{n}\right]$-module, equipped with certain transition maps $M_{n} \rightarrow M_{n+1}$. The main theorem of [Na] states that if \mathbf{k} is a field of characteristic p and M is a finitely generated FI-module over \mathbf{k} then, for fixed t, the dimension of $\mathrm{H}^{t}\left(S_{n}, M_{n}\right)$ is periodic in n with period a power of p.

In the forthcoming paper [NS2], we generalize this periodicity theorem and greatly simplify its proof. For an FI-module M, define

$$
\Gamma^{t}(M)=\bigoplus_{n \geq 0} \mathrm{H}^{t}\left(S_{n}, M_{n}\right)
$$

Then $\Gamma^{t}(M)$ naturally has the structure of a graded \mathbf{D}-module, where \mathbf{D} is the univariate classical divided power algebra over \mathbf{k}. The main theorem of [NS2] states that when \mathbf{k} is Noetherian and M is finitely generated, the \mathbf{D}-module $\Gamma^{t}(M)$ is nearly finitely presented. When \mathbf{k} is a field, this immediately implies the periodicity result of [Na].
1.4. Multivariate divided power algebras. It would be natural to attempt to generalize the results of this paper to divided power algebras in several variables. Unfortunately, the basic coherence property fails in multiple variables (see Section 4.6), so it is not clear to us what one could hope to say. (We note, however, that coherence still holds when \mathbf{k} is a field. Indeed, if \mathbf{k} has characteristic 0 then the r-variable divided power algebra is isomorphic to the r-variable polynomial ring. If \mathbf{k} has characteristic p, then the r-variable divided power algebra is isomorphic to

$$
\mathbf{k}\left[x_{i, j}\right]_{i \in \mathbf{N}, 1 \leq j \leq r} /\left(x_{i, j}^{p}\right),
$$

is thus coherent; in fact, it is isomorphic, as an ungraded \mathbf{k}-algebra, to the single variable divided power algebra.)
1.5. Notation and terminology. By a graded ring or module, we will always mean one graded by the integers. Our rings are almost always concentrated in non-negative degrees. Suppose V is a graded module. For integers q and k, we let $V^{(q ; k)}$ be the direct sum of the graded pieces V_{n} with $n \equiv k$ $(\bmod q)$, and we omit the k when $k=0$. If R is a graded ring, then $R^{(q)}$ is again a graded ring, and each $R^{(q ; k)}$ is an $R^{(q)}$-module. By the regrade of $V^{(q)}$ we mean the module that is $V_{q n}$ in degree n. We write $V_{<n}$ for the sum of the V_{k} with $0 \leq k<n$.

Let A be a graded ring. We write $\underline{\operatorname{Mod}}_{A}$ for the category of graded A modules and Mod_{A} for the category of non-graded modules. Let M and N be graded A-modules. We write $\underline{\operatorname{Hom}}_{A}(M, N)_{n}$ for the set of all modules maps $M[n] \rightarrow N$ where the grading is respected, and we put

$$
\underline{\operatorname{Hom}}_{A}(M, N)=\bigoplus \underline{\operatorname{Hom}}_{A}(M, N)_{n}
$$

This is a graded A-module. We write $\operatorname{Hom}_{A}(M, N)$ for the set of all module maps $M \rightarrow N$, ignoring the grading. There is a natural map $\operatorname{Hom}_{A}(M, N) \rightarrow$ $\operatorname{Hom}_{A}(M, N)$ which is an isomorphism if M is finitely generated. We write Ext for the derived functor of Hom.
1.6. Outline. In Section 2, we introduce and study π-sequences, and in Section 3 we use them to define GDPA's. In Section 4, we prove coherence results for GDPA's, including a much more general version of Theorem 1.1. In Sections 5, 6, 7, 8 and 9, we study finitely presented and nearly finitely presented D-modules. Finally, Section 10 lists some open problems.

2. π-sequences

2.1. Divisible sequences. A divisible sequence is a sequence of positive integers $b_{0}=1, b_{1}, \ldots$, either infinite or finite in length, such that b_{i} properly divides b_{i+1}, whenever b_{i+1} is defined. Every integer $n \geq 0$ can be written uniquely in the form

$$
n=\sum_{i \geq 0} d_{i} b_{i}
$$

where $0 \leq d_{i}<b_{i+1} / b_{i}$ (we assume that $b_{i}=\infty$ if i is the least integer such that b_{i} is not defined). We call this the base b_{\bullet} representation of n. Carries in base b • addition will play a prominent role in this paper. For an integer $k \geq 1$, put

$$
\varepsilon_{k}(n, m)=\left\lfloor\frac{n+m}{k}\right\rfloor-\left\lfloor\frac{n}{k}\right\rfloor-\left\lfloor\frac{m}{k}\right\rfloor .
$$

One easily sees that $\varepsilon_{k}(n, m)$ is either 0 or 1 : in fact, $\varepsilon_{k}(n, m)$ can be interpreted as the carry produced in the one's place when adding n and m in base k. Thus, $\varepsilon_{b_{i}}(n, m)$ is the carry in the i th place when adding n and m in base b_{\bullet}.
2.2. π-sequences. A π-sequence in a ring \mathbf{k} is simply a sequence $\pi_{\bullet}=$ $\left\{\pi_{n}\right\}_{n \geq 2}$ of elements of \mathbf{k}. By convention, we always put $\pi_{1}=0$. Let Π be the ring $\mathbf{Z}\left[\pi_{n}^{\text {univ }}\right]_{n \geq 2}$, where the elements $\pi_{n}^{\text {univ }}$ are indeterminates. Then the π-sequence $\pi_{\bullet}^{\text {univ }}$ in Π is universal: if π_{\bullet} is any π-sequence in a ring \mathbf{k} then there is a unique ring homomorphism $\varphi: \Pi \rightarrow \mathbf{k}$ such that $\pi_{\bullet}=\varphi\left(\pi^{\mathrm{univ}}\right)$.

A π-invariant is a rule c assigning to every π-sequence π_{\bullet} in any ring \mathbf{k} an element $c\left(\pi_{\bullet}\right)$ of \mathbf{k} such that if $\varphi: \mathbf{k} \rightarrow \mathbf{k}^{\prime}$ is a ring homomorphism then $c\left(\varphi\left(\pi_{\bullet}\right)\right)=\varphi\left(c\left(\pi_{\bullet}\right)\right)$. We have $c\left(\pi_{\bullet}^{\text {univ }}\right)=F_{c}\left(\pi_{\bullet}^{\text {univ }}\right)$ for some polynomial $F_{c} \in$
Π, and thus $c\left(\pi_{\bullet}\right)=F_{c}\left(\pi_{\bullet}\right)$ for every π-sequence π_{\bullet} in any ring \mathbf{k}. Conversely, if $F \in \Pi$ then $c\left(\pi_{\bullet}\right)=F\left(\pi_{\bullet}\right)$ defines a π-invariant.

Suppose c and d are π-invariants such that F_{d} divides F_{c} in Π. We then define $\{c / d\}$ to be the π-invariant associated to F_{c} / F_{d}. By abuse of notation, we typically write $\left\{c\left(\pi_{\bullet}\right) / d\left(\pi_{\bullet}\right)\right\}$ for the value of $\{c / d\}$ on π_{\bullet}. If $d\left(\pi_{\bullet}\right) \in \mathbf{k}$ is a non-zero divisor then $\left\{c\left(\pi_{\bullet}\right) / d\left(\pi_{\bullet}\right)\right\}$ is equal to $c\left(\pi_{\bullet}\right) / d\left(\pi_{\bullet}\right)$, where the division is performed in \mathbf{k}. However, if $d\left(\pi_{\bullet}\right)$ is a zero-divisor then one cannot determine $\left\{c\left(\pi_{\bullet}\right) / d\left(\pi_{\bullet}\right)\right\}$ from $c\left(\pi_{\bullet}\right)$ and $d\left(\pi_{\bullet}\right)$.
2.3. Generalized binomial coefficients. For $n \geq 1$ define π-invariants $a(n)$ and $A(n)$ by

$$
a(n)=a\left(n ; \pi_{\bullet}\right)=\prod_{d \mid n, d \neq 1} \pi_{d}
$$

and

$$
A(n)=A\left(n ; \pi_{\bullet}\right)=a(n) a(n-1) \cdots a(2) a(1)
$$

We remark that Möbius inversion gives the identity

$$
\pi_{n}=\left\{\prod_{d \mid n} a(n / d)^{\mu(d)}\right\}
$$

and so π_{n} can be recovered from the $a\left(n ; \pi_{\bullet}\right)$'s provided they are not zerodivisors. For $0 \leq m \leq n$, we define a π-invariant $C(n, m)$ by

$$
C(n, m)=C\left(n, m ; \pi_{\bullet}\right)=\prod_{k \geq 2} \pi_{k}^{\varepsilon_{k}(n-m, m)}
$$

We think of $a(n)$ as the π_{\bullet}-analog of $n, A(n)$ as the analog of $n!$, and $C(n, m)$ as the analog of the binomial coefficient $\binom{n}{m}$. This last point is justified by the following observation.

Proposition 2.1. We have

$$
C(n, m)=\left\{\frac{A(n)}{A(n-m) A(m)}\right\}
$$

Proof. The power of π_{k} in $a(n)$ is 1 if n is a multiple of k, and 0 otherwise. Thus, the power of π_{k} in $A(n)$ is the number of multiples of k between 1 and n, namely $\left\lfloor\frac{n}{k}\right\rfloor$. Therefore, the power of π_{k} in the above fraction is $\varepsilon_{k}(n-m, m)$, and this proves the identity.

The following property of C will be important later.
Proposition 2.2. For $\ell \leq m \leq n$, we have

$$
C(n, m) C(m, \ell)=C(n-\ell, m-\ell) C(n, \ell) .
$$

Proof. Since ε_{k} is a coboundary, it satisfies the cocycle identity

$$
\varepsilon_{k}(n, m)+\varepsilon_{k}(n+m, \ell)=\varepsilon_{k}(n, m+\ell)+\varepsilon_{k}(m, \ell) .
$$

The proposition follows directly from this.
2.4. The h-transform. Let $h \geq 1$ be an integer. We define the h-transform of the π-sequence π_{\bullet} to be the π-sequence $\pi_{\bullet}^{[h]}$ given by

$$
\pi_{n}^{[h]}=\prod_{d \mid h,(h / d, n)=1} \pi_{d n}
$$

We write $a^{[h]}(n)$ in places of $a\left(n ; \pi_{\bullet}^{[h]}\right)$, and similarly for $A^{[h]}, C^{[h]}$, etc. The motivation for this construction is not immediately clear, but Example 2.16 should provide some intuition.

Proposition 2.3. We have $a^{[h]}(n)=\{a(h n) / a(h)\}$.
Proof. It suffices to prove $a^{[h]}(n)=a(h n) / a(h)$ for the universal π sequence. We have

$$
a\left(n ; \pi_{\bullet}^{[h]}\right)=\prod_{d \mid n, d \neq 1} \pi_{d}^{[h]}=\prod_{\substack{d\left|n, d^{\prime}\right| h \\ d \neq 1,\left(h / d^{\prime}, d\right)=1}} \pi_{d d^{\prime}}
$$

Multiplying both sides by $a(h)$, we obtain

$$
a(h) a\left(n ; \pi_{\bullet}^{[h]}\right)=\prod_{\substack{d\left|n, d^{\prime}\right| h \\ d d^{\prime} \neq 1,\left(h / d^{\prime}, d\right)=1}} \pi_{d d^{\prime}}=\prod_{d \mid n h, d \neq 1} \pi_{d}=a(h n),
$$

where in the second step we use the following lemma. This proves the result.

Lemma 2.4. Let n and h be positive integers. Then every divisor of $n h$ can be written uniquely as $d d^{\prime}$, where d divides n, d^{\prime} divides h, and $\left(h / d^{\prime}, d\right)=1$.

Proof. Let m be a divisor of $n h$. Then $d^{\prime}=(m, h)$ is a divisor of h and $d=m /(m, h)$ is a divisor of n such that $d d^{\prime}=m$ and $\left(h / d^{\prime}, d\right)=$ $(h /(m, h), m /(m, h))=1$. To show uniqueness, suppose that $m=d d^{\prime}$ with $\left(h / d^{\prime}, d\right)=1$. Then $d=m / d^{\prime}$, so $\left(h / d^{\prime}, m / d^{\prime}\right)=1$, which shows that $d^{\prime}=$ (h, m), and so $d=m /(h, m)$.

Proposition 2.5. We have $\left(\pi_{\bullet}^{[h]}\right)^{\left[h^{\prime}\right]}=\pi_{\bullet}^{\left[h h^{\prime}\right]}$.
Proof. Again, it suffices to work in the universal case. We have

$$
a\left(n ;\left(\pi_{\bullet}^{[h]}\right)^{\left[h^{\prime}\right]}\right)=\frac{a\left(h^{\prime} n ; \pi_{\bullet}^{[h]}\right)}{a\left(h^{\prime} ; \pi_{\bullet}^{[h]}\right)}=\frac{a\left(h h^{\prime} n ; \pi_{\bullet}\right) / a\left(h ; \pi_{\bullet}\right)}{a\left(h h^{\prime} ; \pi_{\bullet}\right) / a\left(h ; \pi_{\bullet}\right)}=\frac{a\left(h h^{\prime} n ; \pi_{\bullet}\right)}{a\left(h h^{\prime} ; \pi_{\bullet}\right)} .
$$

Thus, the two sequences $\left(\pi_{\bullet}^{[h]}\right)^{\left[h^{\prime}\right]}$ and $\pi_{\bullet}^{\left[h h^{\prime}\right]}$ define the same a 's, and are therefore equal by Möbius inversion (which is allowed here since in the universal case the π_{n} 's are not zero-divisors).
2.5. Admissibility. We say that the π-sequence π_{\bullet} is admissible if the following condition holds: if $\left(\pi_{n}, \pi_{m}\right)$ is not the unit ideal of \mathbf{k} then either $n \mid m$ or $m \mid n$. Equivalently, π_{\bullet} is admissible if whenever π_{n} and π_{m} belong to some maximal ideal \mathfrak{m} either $n \mid m$ or $m \mid n$. Suppose π_{\bullet} is admissible, and let \mathfrak{a} be a proper ideal of \mathbf{k}. Define a sequence $b_{\mathfrak{a}, \bullet}$ inductively as follows. First, $b_{\mathfrak{a}, 0}=1$. Having defined $b_{\mathfrak{a}, i}$, let $b_{\mathfrak{a}, i+1}$ be the smallest integer n greater than $b_{\mathfrak{a}, i}$ such that $\pi_{n} \in \mathfrak{a}$; if no such integer exists, $b_{\mathfrak{a}, i+1}$ is undefined and the sequence has finite length. The sequence $b_{\mathfrak{a}, \bullet}$ is divisible (as defined in Section 2.1).

Proposition 2.6. Let $\mathbf{k} \rightarrow \mathbf{k}^{\prime}$ be a ring homomorphism, let π_{\bullet} be an admissible π-sequence in \mathbf{k}, and let π_{\bullet}^{\prime} be its image in \mathbf{k}^{\prime}. Then π_{\bullet}^{\prime} is also admissible.

Proof. If $\left(\pi_{n}^{\prime}, \pi_{m}^{\prime}\right)$ is not the unit ideal of \mathbf{k}^{\prime}, then certainly $\left(\pi_{n}, \pi_{m}\right)$ is not the unit ideal of \mathbf{k}, and so $n \mid m$ or $m \mid n$.

Proposition 2.7. If π_{\bullet} is admissible so is $\pi_{\bullet}^{[h]}$, for any $h \geq 1$.

Proof. Let \mathfrak{m} be a maximal ideal of \mathbf{k}, and suppose $\pi_{n}^{[h]}$ and $\pi_{m}^{[h]}$ belong to \mathfrak{m}. Then $\pi_{d n} \in \mathfrak{m}$ for some $d \mid h$ with $(h / d, n)=1$, and similarly $\pi_{d^{\prime} m} \in \mathfrak{m}$ for some $d^{\prime} \mid h$ with $\left(h / d^{\prime}, m\right)=1$. Since π_{\bullet}. is admissible, either $d n \mid d^{\prime} m$ or $d^{\prime} m \mid d n$; without loss of generality, assume the former. We claim $n \mid m$, which will complete the proof. It suffices to show $v_{p}(n) \leq v_{p}(m)$ for all primes p, where v_{p} is the p-adic valuation. Thus, let p be given. If $v_{p}(n)=0$ there is nothing to prove, so suppose $v_{p}(n)>0$. The divisibility $d n \mid d^{\prime} m$ translates to the inequality

$$
v_{p}(d)+v_{p}(n) \leq v_{p}\left(d^{\prime}\right)+v_{p}(m) .
$$

If $v_{p}(h)=0$, then $v_{p}\left(d^{\prime}\right)=0$, and so $v_{p}(n) \leq v_{p}(m)$. Now suppose $v_{p}(h)>0$. Then the condition $(h / d, n)=1$ implies $v_{p}(d)=v_{p}(h)$. Thus,

$$
v_{p}(h)+v_{p}(n) \leq v_{p}\left(d^{\prime}\right)+v_{p}(m) \leq v_{p}(h)+v_{p}(m),
$$

and so $v_{p}(n) \leq v_{p}(m)$. This completes the proof.
Proposition 2.8. Suppose π_{\bullet} is admissible and π_{h} belongs to the Jacobson radical of \mathbf{k}. Then:
(a) If π_{n} is a non-unit of \mathbf{k}, then either h divides n or n divides h.
(b) For $n>1$, we have $\pi_{n}^{[h]}=\pi_{h n}$ up to units.

Proof. (a) Since π_{n} is a non-unit, it belongs to some maximal ideal \mathfrak{m}. Since π_{h} belongs to the Jacobson radical, it also belongs to \mathfrak{m}. Thus, $n \mid h$ or $h \mid n$ by admissibility.
(b) We have

$$
\pi_{n}^{[h]}=\prod_{d \mid h,(h / d, n)=1} \pi_{d n}
$$

This has $\pi_{h n}$ as a factor, and we claim that all other factors are units. Suppose $\pi_{d n}$ is a non-unit appearing in the product. Then, by (a), $d n \mid h$ or $h \mid d n$. The condition $(h / d, n)=1$ is equivalent to $(h, n d)=d$. Thus, if $d n \mid h$ then $d=n d$ and $n=1$, which is not the case, while if $h \mid d n$ then $d=h$, as claimed.
2.6. π_{\bullet}-torsion. Let M be a k-module, and let $m \in M$. We say that m is π_{\bullet}-torsion if it is annihilated by $a(n)$ for some $n \geq 1$. Equivalently, m is π_{\bullet} torsion if it is annihilated by a product of the form $\prod_{n \in S} \pi_{n}$, where S is a finite subset of $\mathbf{Z}_{>1}$. We write $T(M)=T\left(M ; \pi_{\bullet}\right)$ for the set of π_{\bullet}-torsion elements. It is a submodule of M. We say that $T(M)$ is bounded if it is annihilated by $a(n)$ for some $n \geq 1$.

Proposition 2.9. If M is Noetherian, then $T(M)$ is bounded.
Proof. Let $M_{n} \subset M$ be the submodule killed by $a(n!)$. Then $T(M)$ is the ascending union of the M_{n}, and so, by noetherianity, $M=M_{n}$ for some n.
2.7. Admissible sequences in a PID. Suppose now that \mathbf{k} is a PID (or just a Bézout domain). A sequence $\{a(n)\}_{n \geq 1}$ in \mathbf{k} is $G C D$-morphic if it satisfies the identity

$$
a(\operatorname{gcd}(n, m))=\operatorname{gcd}(a(n), a(m))
$$

for all $n, m \geq 1$. The following proposition seems to be well known (e.g., see [No] or [DB]), but we include a proof to be self-contained.

Proposition 2.10. Giving a never-zero admissible π-sequence π_{\bullet} is the same as giving a never-zero GCD-morphic sequence $\{a(n)\}_{n \geq 1}$; precisely, $\pi_{\bullet} \mapsto\left\{a\left(n ; \pi_{\bullet}\right)\right\}_{n \geq 1}$ provides a bijection between these two classes of sequences.

Lemma 2.11. Let $\{a(n)\}_{n \geq 1}$ be a never-zero GCD-morphic sequence. Let $r \geq 1$ be minimal such that $a(r)$ is not a unit. Define

$$
b(n)= \begin{cases}a(n) / a(r) & \text { if } r \mid n, \\ a(n) & \text { if } r \nmid n .\end{cases}
$$

Then $\{b(n)\}_{n \geq 1}$ is GCD-morphic.
Proof. We must show $\operatorname{gcd}(b(n), b(m))=b(\operatorname{gcd}(n, m))$. This is immediate if r divides both of n and m, and also if r divides neither n nor m. Thus, assume $r \mid n$ but $r \nmid m$. Then $\operatorname{gcd}(a(r), a(m))=a(\operatorname{gcd}(r, m))=1 \operatorname{since} \operatorname{gcd}(r, m)<r$ and r is minimal such that $a(r)$ is not a unit. Thus, $a(m)$ is coprime to $a(r)$, and so

$$
\begin{aligned}
\operatorname{gcd}(b(n), b(m)) & =\operatorname{gcd}(a(n) / a(r), a(m))=\operatorname{gcd}(a(n), a(m)) \\
& =a(\operatorname{gcd}(n, m))=b(\operatorname{gcd}(n, m))
\end{aligned}
$$

This completes the proof.

Lemma 2.12. Let $\{a(n)\}_{n \geq 1}$ be a never-zero GCD-morphic sequence. Then $a(n)=a\left(n ; \pi_{\bullet}\right)$ for a unique never-zero π-sequence π_{\bullet}.

Proof. By Möbius inversion, $\pi_{n}=\prod_{d \mid n} a(n / d)^{\mu(d)}$ is the unique sequence π_{\bullet}, if it exists: we must show that this product belongs to \mathbf{k}. Let π_{\bullet} be a maximal never-zero sequence such that $\left\{a(n) / a\left(n ; \pi_{\bullet}\right)\right\}_{n \geq 1}$ is a GCD-morphic sequence in \mathbf{k}. Here by "maximal" we mean that if π_{\bullet}^{\prime} is another other sequence with this property and $\pi_{n} \mid \pi_{n}^{\prime}$ for all $n \geq 2$ then $\pi_{n}=\pi_{n}^{\prime}$ up to units. It is easy to see that a maximal sequence exists: start by maximizing π_{2}, then go to π_{3}, and so on. Put $a^{\prime}(n)=a(n) / a\left(n ; \pi_{\bullet}\right)$. We claim that $a^{\prime}(n)$ is a unit for all n. Indeed, suppose not and let r be minimal such that $a^{\prime}(r)$ is not a unit. Define π_{\bullet}^{\prime} by $\pi_{n}^{\prime}=\pi_{n}$ for $n \neq r$ and $\pi_{r}^{\prime}=a(r)$. Then, by the previous lemma, $\left\{a(n) / a\left(n ; \pi_{\bullet}^{\prime}\right)\right\}_{n \geq 1}$ is GCD-morphic. This contradicts the maximality of π_{\bullet}, and thus proves the claim. We thus see that $a(n)=a\left(n ; \pi_{\bullet}\right)$ up to units for all n, and so $\prod_{d \mid n} a(n / d)^{\mu(d)}$ is equal to π_{n} up to units, and thus belongs to \mathbf{k}.

Lemma 2.13. Let π_{\bullet} be a never-zero π-sequence in \mathbf{k} and put $a(n)=$ $a\left(n ; \pi_{\bullet}\right)$. Then π_{\bullet} is admissible if and only if $\{a(n)\}_{n \geq 1}$ is GCD-morphic.

Proof. Let $\ell=\operatorname{gcd}(n, m)$. Working from the definition of $a\left(n ; \pi_{\bullet}\right)$, we find

$$
\operatorname{gcd}(a(n), a(m))=a(\ell) \operatorname{gcd}\left(\prod_{d \mid n, d \nmid \ell} \pi_{d}, \prod_{e \mid m, e \nmid \ell} \pi_{e}\right) .
$$

Suppose π_{\bullet} is admissible. If d and e are indices in the products, then $d \nmid e$ and $e \nmid d$, and so $\left(\pi_{d}, \pi_{e}\right)=1$ by admissibility. It follows that the gcd on the right is 1 , and so $\{a(n)\}$ is GCD-morphic. Conversely, suppose $\{a(n)\}$ is GCDmorphic. Then the gcd on the right side above is 1 , and so $\left(\pi_{d}, \pi_{e}\right)=1$ for all indices d and e in products. Suppose now d and e are given such that $d \nmid e$ and $e \nmid d$. Taking $n=d$ and $m=e$, we find $\left(\pi_{e}, \pi_{d}\right)=1$, and so π_{\bullet} is admissible.
2.8. Examples. We now give some examples to illustrate the definitions in this section.

Example 2.14. Take $\mathbf{k}=\mathbf{Z}$ and define $\pi_{k}=p$ if k is a power of a prime p and $\pi_{k}=1$ otherwise. Then $a(n)=n$ and $A(n)=n!$ and $C(n, m)=\binom{n}{m}$, the usual binomial coefficient. We have $a^{[h]}(n)=a(h n) / a(h)=n$. Thus $A^{[h]}=A$ and $C^{[h]}=C$ as well. It is clear that the sequence π_{\bullet} is admissible.

Example 2.15. Take $\mathbf{k}=\mathbf{Z}$ and define $a(n)=F_{n}$ where F_{n} is the nth Fibonacci number. It is well known that this sequence is GCD-morphic, and so, by Proposition 2.10 , there exists a unique admissible sequence π_{\bullet} such that $a(n)=a\left(n ; \pi_{\bullet}\right)$. More information on the sequence π_{\bullet} can be found at [OEIS, A061446]. The coefficients $C(n, m)$ are the so-called "Fibonomial coefficients."

Example 2.16. Take $\mathbf{k}=\mathbf{Z}[q]$ and define $\pi_{k}=\Phi_{k}(q)$ to be the k th cyclotomic polynomial. This is admissible by the following lemma. We have

$$
a(n)=[n]_{q}=\frac{q^{n}-1}{q-1}
$$

and $A(n)=[n]_{q}$! and $C(n, m)=\left[\begin{array}{l}n \\ m\end{array}\right]_{q}$, the q-binomial coefficient. We have $a^{[h]}(n)=[h n]_{q} /[h]_{q}=[n]_{q^{h}}$ and $A^{[h]}(n)=[n]_{q^{h}}$!. Thus, $C^{[h]}(n, m)=\left[\begin{array}{l}n \\ m\end{array}\right]_{q^{h}}$ is the q^{h}-binomial coefficient.

Lemma 2.17. The π-sequence in $\mathbf{Z}[q]$ given by $\pi_{n}=\Phi_{n}(q)$ is admissible.
Proof. Let \mathfrak{m} be a maximal ideal of $\mathbf{Z}[q]$ containing Φ_{n} and Φ_{m}. Let $\kappa=$ $\mathbf{Z}[q] / \mathfrak{m}$ be the quotient field, which is necessarily finite, say of characteristic p, and let ζ be the image of q in κ. Write $n=p^{s} n_{0}$ and $m=p^{r} m_{0}$ with n_{0} and m_{0} prime to p. Then $\Phi_{n}(q)=\Phi_{n_{0}}(q)^{p^{s}-p^{s-1}}$ modulo p, and similarly for Φ_{m}. We thus see that $\Phi_{n_{0}}(\zeta)=\Phi_{m_{0}}(\zeta)=0$, and so it follows that ζ is both a primitive n_{0} and m_{0} root of unity. We conclude that $n_{0}=m_{0}$, and so $n \mid m$ or $m \mid n$ according to whether $s \leq r$ or $r \leq s$.

3. Generalized divided power algebras

3.1. The algebra associated to divisible sequence. Given a divisible sequence b_{\bullet} and a ring \mathbf{k}, we define a $\operatorname{ring} \mathbf{S}=\mathbf{S}\left(\mathbf{k}, b_{\bullet}\right)$ as follows. First suppose that b_{\bullet} has infinite length. Then $\mathbf{S}=\mathbf{k}\left[y_{0}, y_{1}, \ldots\right] /\left(y_{i}^{b_{i+1} / b_{i}}\right)$. Now suppose $b=$ $\left(b_{0}, \ldots, b_{r}\right)$. Then $\mathbf{S}=\mathbf{k}\left[y_{0}, \ldots, y_{r}\right] /\left(y_{i}^{b_{i+1} / b_{i}}\right)$, where the relations are imposed for $0 \leq i<r$. In particular, y_{r} is not nilpotent. We give y_{i} degree b_{i} which makes \mathbf{S} a graded \mathbf{k}-algebra.

Let $n \geq 0$ be an integer and let $n=\sum n_{i} b_{i}$ be its base b_{\bullet} expansion. We define $x^{[n]} \in \mathbf{S}$ to be the element $\prod y_{i}^{n_{i}}$. It is clearly nonzero of degree n, and the only element of degree n up to scalar multiples. Let $m=\sum m_{i} b_{i}$ be a second integer. Then $x^{[n]} x^{[m]}$ is non-zero if and only if $n_{i}+m_{i}<b_{i+1} / b_{i}$ for all i, that is, there is no base carry when computing $n+m$ in base b_{\bullet}. Assuming there is no carry, $n+m=\sum\left(n_{i}+m_{i}\right) b_{i}$ is the base b_{\bullet} expansion of $n+m$, and so $x^{[n]} x^{[m]}=x^{[n+m]}$.

The following proposition summarizes the above discussion.
Proposition 3.1. As a k-module, we have $\mathbf{S}=\bigoplus_{n \geq 0} \mathbf{k} x^{[n]}$. In this basis, multiplication is given by

$$
x^{[n]} x^{[m]}= \begin{cases}x^{[n+m]} & \text { if there is no base } b_{\bullet} \text { carry in } n+m, \\ 0 & \text { if there is a base } b_{\bullet} \text { carry in } n+m .\end{cases}
$$

3.2. Generalized divided power algebras. Let \mathbf{k} be a ring and let π_{\bullet} be a π-sequence in \mathbf{k}. We define a graded \mathbf{k}-algebra $\mathbf{D}=\mathbf{D}\left(\mathbf{k}, \pi_{\bullet}\right)$ as follows. As a graded \mathbf{k}-module, \mathbf{D} is free with basis $x^{[i]}$ for $i \in \mathbf{N}$, where $x^{[i]}$ has degree i. Multiplication is defined by $x^{[n-m]} x^{[m]}=C(n, m) x^{[n]}$. Proposition 2.2 ensures that multiplication is associative, while commutativity follows from the obvious relation $C(n, m)=C(n, n-m)$. The element $x^{[0]}$ is the unit, and so we write $x^{[0]}=1$. As usual, $\mathbf{D}^{[h]}$ denotes $\mathbf{D}\left(\mathbf{k}, \pi_{\bullet}^{[h]}\right)$.

Definition 3.2. A generalized divided power algebra (GDPA) over \mathbf{k} is a graded \mathbf{k}-algebra isomorphic to $\mathbf{D}\left(\mathbf{k}, \pi_{\bullet}\right)$ for some admissible sequence π_{\bullet}.

Example 3.3. Some examples of GDPA's:
(a) If $\pi_{n}=1$ for each $n>1$, then $\mathbf{D}=\mathbf{k}[x]$.
(b) If π_{\bullet} is as in Example 2.14, then \mathbf{D} is the classical divided power algebra.
(c) If π_{\bullet} is as in Example 2.16, then \mathbf{D} is the q-divided power algebra.

Proposition 3.4. Let \mathbf{k}^{\prime} be a \mathbf{k}-algebra, and let π_{k}^{\prime} be the image of π_{k} in \mathbf{k}^{\prime}. Then $\mathbf{D}^{\prime}=\mathbf{D} \otimes_{\mathbf{k}} \mathbf{k}^{\prime}$ is isomorphic to $\mathbf{D}\left(\mathbf{k}^{\prime}, \pi_{\bullet}^{\prime}\right)$. In particular, the base change of a GDPA is still a GDPA.

Proof. It is clear that \mathbf{D}^{\prime} is isomorphic to $\mathbf{D}\left(\mathbf{k}^{\prime}, \pi_{\bullet}^{\prime}\right)$. If π_{\bullet} is admissible, then so is π_{\bullet}^{\prime}, by Proposition 2.6, and so \mathbf{D}^{\prime} is a GDPA.

We say that two sequences π_{\bullet} and π_{\bullet}^{\prime} in \mathbf{k} are associate if π_{n} is associate to π_{n}^{\prime} for all n (that is, π_{n} is a unit times π_{n}^{\prime}). In this case, one is admissible if and only if the other is.

Proposition 3.5. Suppose π_{\bullet} is an arbitrary π-sequence and π_{\bullet}^{\prime} is an admissible π-sequence. Then $\mathbf{D}=\mathbf{D}\left(\mathbf{k}, \pi_{\bullet}\right)$ is isomorphic to $\mathbf{D}^{\prime}=\mathbf{D}\left(\mathbf{k}, \pi_{\bullet}^{\prime}\right)$ as graded \mathbf{k}-algebras if and only if π_{\bullet} and π_{\bullet}^{\prime} are associate.

Proof. First, suppose that π_{\bullet} and π_{\bullet}^{\prime} are associate, and write $\pi_{n}=\alpha_{n} \pi_{n}^{\prime}$ with α_{n} a unit. For $n \geq 0$, define

$$
\beta_{n}=\prod_{k \geq 2} \alpha_{k}^{\lfloor n / k\rfloor}
$$

which is also a unit. Then $C^{\prime}(n, m)=\beta_{n+m} \beta_{n}^{-1} \beta_{m}^{-1} C(n, m)$, where C is computed with π_{\bullet} and C^{\prime} with π_{\bullet}^{\prime}. Thus, the map $\mathbf{D} \rightarrow \mathbf{D}^{\prime}$ taking $x^{[n]}$ to $\beta_{n} y^{[n]}$ is an isomorphism of graded \mathbf{k}-algebras.

Now suppose that \mathbf{D} and \mathbf{D}^{\prime} are isomorphic. It suffices to check that π_{\bullet} and π_{\bullet}^{\prime} are associate locally, so we assume that \mathbf{k} is local. Let b_{\bullet} be the divisible sequence associated to π_{\bullet}^{\prime}. We note that the isomorphism $\mathbf{D} \cong \mathbf{D}^{\prime}$ implies that $C(n, m)$ and $C^{\prime}(n, m)$ are associate for all n and m. Assume that π_{k} and π_{k}^{\prime} are associate for $k<n$, and let us prove that π_{n} and π_{n}^{\prime} are associate. We consider two cases:

- Case 1: $n \neq b_{i}$ for any i. Write $n=a+b$ with $a, b>1$ such that there is no base b_{\bullet} carry. Then $C^{\prime}(n, a)$ is a unit, and so $C(n, a)$ is a unit. Since π_{n} divides $C(n, a)$, it follows that π_{n} is a unit, and thus associate to π_{n}^{\prime}.
- Case 2: $n=b_{i}$. In the addition $b_{i}=\left(b_{i}-b_{i-1}\right)+b_{i-1}$ there is only a carry into b_{i} 's place. We thus see that

$$
\left\{\frac{C^{\prime}\left(b_{i}, b_{i-1}\right)}{\pi_{b_{i}}^{\prime}}\right\}
$$

is a unit, and so, by the inductive hypothesis, so is

$$
\left\{\frac{C\left(b_{i}, b_{i-1}\right)}{\pi_{b_{i}}}\right\} .
$$

Thus, π_{n}^{\prime} is associate to $C^{\prime}\left(b_{i}, b_{i-1}\right)$, which is associate to $C\left(b_{i}, b_{i-1}\right)$, which is associate to π_{n}.

Corollary 3.6. If $\mathbf{D}\left(\mathbf{k}, \pi_{\bullet}\right)$ is a GDPA then π_{\bullet} is admissible.
Corollary 3.7. Suppose that π_{n} is a unit of \mathbf{k} for all $n \geq 2$. Then the natural map $\mathbf{k}[x] \rightarrow \mathbf{D}$ sending x to $x^{[1]}$ is an isomorphism of graded \mathbf{k}-algebras.

Proof. This follows from proposition above and Example 3.3(a).
Proposition 3.8. The GDPA's over a field \mathbf{k} are exactly the algebras $\mathbf{S}\left(\mathbf{k}, b_{\bullet}\right)$ from Section 3.1.

Proof. Let π_{\bullet} be an admissible π-sequence. By Proposition 3.5, we may as well assume $\pi_{n} \in\{0,1\}$ for all n. By admissibility, there is a divisible sequence $b_{\text {. such that }} \pi_{n}=0$ if and only if $n=b_{i}$ for some i. It now follows directly from the definition that $C(n, m)$ is 0 if there is a base b_{\bullet} carry in computing $(n-$ $m)+m$, and 1 otherwise. Thus, \mathbf{D} is isomorphic to $\mathbf{S}\left(b_{\bullet}, \mathbf{k}\right)$ by Proposition 3.1.

Now suppose b_{\bullet} is a given divisible sequence. Define $\pi_{n}=0$ if $n=b_{i}$ for some i and $\pi_{n}=1$ otherwise. Then $\mathbf{S}\left(b_{\bullet}, \mathbf{k}\right)$ is isomorphic to $\mathbf{D}\left(\pi_{\bullet}, \mathbf{k}\right)$, and so the former is a GDPA.

Remark 3.9. In fact, over any ring \mathbf{k} the $\mathbf{S}\left(\mathbf{k}, b_{\bullet}\right)$ are exactly the GDPA's $\mathbf{D}\left(\pi_{\bullet}, \mathbf{k}\right)$ for which π_{n} is either 0 or a unit for all n.
3.3. Further properties of GDPA's. For this section, we fix a GDPA $\mathbf{D}=$ $\mathbf{D}\left(\mathbf{k}, \pi_{\bullet}\right)$ and establish some basic results, mostly concerning what happens when $\pi_{h}=0$ for some h. We denote the \mathbf{k}-subalgebra of \mathbf{D} generated by $x^{[n]}$ with $h \mid n$ by $\mathbf{D}^{(h)}$.

Proposition 3.10. Suppose π_{h} belongs to the Jacobson radical of \mathbf{k}. Then:
(a) For $0 \leq k<h$, the module $\mathbf{D}^{(h ; k)}$ is free over $\mathbf{D}^{(h)}$ and generated by $x^{[k]}$.
(b) The natural map $\mathbf{D}_{<h} \otimes_{\mathbf{k}} \mathbf{D}^{(h)} \rightarrow \mathbf{D}$ is an isomorphism of graded $\mathbf{D}^{(h)}$ modules.
(c) The regrade of $\mathbf{D}^{(h)}$ is isomorphic to $\mathbf{D}^{[h]}$.

Proof. (a) Suppose n is a multiple of $h, 0 \leq k<h$, and m either divides h or is a multiple of h. Then one finds $\varepsilon_{m}(n, k)=0$. Combined with Proposition 2.8(a), this shows that $C(n+k, k)$ is a unit. We thus see that $\mathbf{D}^{(h ; k)}$ is free of rank one over $\mathbf{D}^{(h)}$, generated by $x^{[k]}$.
(b) Follows from (a).
(c) Let $\pi_{n}^{\prime}=\pi_{n h}$, let $C^{\prime}(n, m)=C\left(n, m ; \pi_{\bullet}^{\prime}\right)$, and let S be the set of positive integers that do not divide h or are not divisible by h. Define

$$
u_{n}=\prod_{k \in S} \pi_{k}^{\lfloor h n / k\rfloor}
$$

This is a unit by part (a). We have

$$
C(h(n+m), h m)=\left(\prod_{k \in S} \pi_{k}^{\varepsilon_{k}(h n, h m)}\right)\left(\prod_{k \mid h} \pi_{k}^{\varepsilon_{k}(h n, h m)}\right)\left(\prod_{h \mid k, k>h} \pi_{k}^{\varepsilon_{k}(h n, h m)}\right) .
$$

The first product is equal to $u_{n+m} u_{n}^{-1} u_{m}^{-1}$. The second product is 1 since $\varepsilon_{k}(h n, h m)=0$ when k divides h. The final product is $C^{\prime}(n+m, m)$. Thus, we have $C(h n+h m, h m)=u_{n+m} u_{n}^{-1} u_{m}^{-1} C^{\prime}(n+m, m)$. Let $\mathbf{D}^{\prime}=\mathbf{D}\left(\mathbf{k}, \pi_{\bullet}^{\prime}\right)$ with basis $y^{[k]}$. Then the map $\mathbf{D}^{\prime} \rightarrow \mathbf{D}^{(h)}$ given by $y^{[k]} \mapsto u_{k} x^{[h k]}$ is an isomorphism of \mathbf{k}-algebras, and respects the grading after regrading $\mathbf{D}^{(h)}$. By Proposition $2.8(\mathrm{~b}), \pi_{\bullet}^{\prime}$ and $\pi_{\bullet}^{[h]}$ are associate, and so \mathbf{D}^{\prime} is isomorphic to $\mathbf{D}^{[h]}$ (by Proposition 3.5), which completes the proof.

Proposition 3.11. Suppose π_{h} belongs to the Jacobson radical of \mathbf{k}. Then \mathbf{D} is (graded-, Gröbner-, or [no adjective]) coherent if and only if $\mathbf{D}^{[h]}$ is.

Proof. By Proposition 3.10(c), $\mathbf{D}^{[h]}$ is isomorphic to a regrade of $\mathbf{D}^{(h)}$, and so it is enough to shows that \mathbf{D} is (graded-, Gröbner-, or [no adjective]) coherent if and only if $\mathbf{D}^{(h)}$ is. By Proposition 3.10(a), D is homogeneous and free of rank h as a module over $\mathbf{D}^{(h)}$, and so the result follows from standard (and easily proved) basic facts about coherence.

Proposition 3.12. Suppose π_{h} belongs to the Jacobson radical of \mathbf{k}, let $I \subset \mathbf{D}$ be a homogeneous ideal, and let $0 \leq k<h$. Then there exists an ideal J_{k} of $\mathbf{D}^{(h)}$ such that $I^{(h ; k)} \cong J_{k}[k]$ as $\mathbf{D}^{(h)}$-modules. Furthermore, if I is generated in degrees $\leq d$ then J_{k} is generated in degrees $\leq h\lceil(d-k) / h\rceil$.

Proof. The assertion that J_{k} exists and is an ideal follows directly from Proposition 3.10(a). For the degree bound, we may assume without loss of generality that I is generated in degree d. Let $0 \leq d^{\prime}<h$ be such that $d+d^{\prime} \equiv k$ $(\bmod h)$. It is enough to show that $J_{k}[k]$ is generated in degree $d+d^{\prime}$. To see this, let $N=d+d^{\prime}+x h$ for some $x \in \mathbf{Z}_{+}$. The product $x^{[d]} x^{[N-d]}$ differs from $x^{[d]} x^{\left[d^{\prime}\right]} x^{\left[N-d-d^{\prime}\right]}$ by a factor of $C\left(d^{\prime}+x h, d^{\prime}\right)$. It suffices to show that this factor is a unit. Since π_{h} is in the Jacobson radical of \mathbf{k}, h belongs to $b_{\mathfrak{m}, \bullet}$ for every maximal ideal \mathfrak{m} of \mathbf{k} and there are no carries in the addition $d^{\prime}+x h$ in any base containing h, and so $C\left(d^{\prime}+x h, d^{\prime}\right)$ is a unit.

Proposition 3.13. Suppose that $\pi_{n}=0$. Then $\mathbf{D}_{<n}$ is a subalgebra of \mathbf{D}, and the natural map $\mathbf{D}_{<n} \otimes_{\mathbf{k}} \mathbf{D}^{(n)} \rightarrow \mathbf{D}$ is an isomorphism of graded \mathbf{k} algebras.

Proof. To show that $\mathbf{D}_{<n}$ is a subalgebra, it suffices to show that if $i, j<n$ then $x^{[i]} x^{[j]} \in \mathbf{D}_{<n}$. This is clear if $i+j<n$. If $i+j>n$ then $\varepsilon_{n}(i, j)=1$, and so $C(i+j, i)=0$ since π_{n} appears as a factor of it; thus, in this case, $x^{[i]} x^{[j]}=0$, which does indeed belong to $\mathbf{D}_{<n}$. The map $\mathbf{D}_{<n} \otimes_{\mathbf{k}} \mathbf{D}^{(n)} \rightarrow \mathbf{D}$ is an isomorphism of graded \mathbf{k}-modules by Proposition 3.10(b). In the present situation, it is clearly compatible with multiplication.

Proposition 3.14. Suppose $\pi_{n}=0$ for infinitely many n. If \mathbf{k} is coherent (resp. Noetherian) then \mathbf{D} is coherent (resp. Gröbner-coherent).

Proof. Let $n_{1}<n_{2}<\cdots$ be the indices with $\pi_{n_{i}}=0$; note that $n_{i} \mid$ n_{i+1} by Proposition 2.8(a). It follows from Proposition 3.13 that the map $\mathbf{D}_{<n_{i}} \otimes_{\mathbf{k}} \mathbf{D}_{<n_{i+1}}^{\left(n_{i}\right)} \rightarrow \mathbf{D}_{<n_{i+1}}$ is an isomorphism of rings, and so $\mathbf{D}_{<n_{i+1}}$ is flat (even free) as a $\mathbf{D}_{<n_{i}}$-module. Thus, if \mathbf{k} is coherent then so is $\mathbf{D}_{<n_{i}}$, being finite free over \mathbf{k}. Since \mathbf{D} is the union of the $\mathbf{D}_{<n_{i}}$, it too is coherent ([So, Proposition 20]).

Now suppose \mathbf{k} is Noetherian. Then each $\mathbf{D}_{n_{i}}$ is a Noetherian module, and thus Gröbner-coherent. As with coherence, Gröbner-coherence passes to the limit [NS, Proposition 5.3].

Proposition 3.15. Suppose π_{\bullet} be an admissible sequence with $\pi_{n}=0$ for infinitely many n, and let $\mathbf{D}=\mathbf{D}\left(\mathbf{k}, \pi_{\bullet}\right)$ be a $G D P A$. If M is finitely presented (graded) D-module, then there exists an h such that $\pi_{h}=0$ and $M \cong \mathbf{D}^{(h)} \otimes_{\mathbf{k}}$ N as $\mathbf{D}^{(h)}$-modules for some (graded) $\mathbf{D}_{<h}$-module N. In particular, if \mathbf{k} is a field then M is free as a $\mathbf{D}^{(h)}$-module.

Proof. Let $F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0$ be a presentation of M with F_{0}, F_{1} free of finite rank over D. Suppose that, in a suitable basis, the matrix entries of the map $f: F_{1} \rightarrow F_{0}$ (as in the presentation above) only involve variables $x^{[0]}, x^{[1]}, \ldots, x^{[t]}$. Pick an $h>t$ such that $\pi_{h}=0$. By Proposition 3.13, $\mathbf{D}_{<h}$ is a subalgebra of \mathbf{D} and $\mathbf{D}=\mathbf{D}_{<h} \otimes_{\mathbf{k}} \mathbf{D}^{(h)}$ as graded k-algebras. Let \bar{F}_{i} be a free $\mathbf{D}_{<h}$-module with the same basis as F_{i}, and define $\bar{f}: \bar{F}_{1} \rightarrow \bar{F}_{0}$ using the same matrix that defines f. Then f is obtained from \bar{f} by applying the exact functor $-\otimes_{\mathbf{k}} \mathbf{D}^{(h)}$. Thus $M=\operatorname{coker}(f)=\operatorname{coker}(\bar{f}) \otimes_{\mathbf{k}} \mathbf{D}^{(h)}$ as required.
3.4. Characterization of GDPAs. We defined GDPA's by explicit construction. However, they can also be characterized intrinsically:

Proposition 3.16. Let \mathbf{D} be a graded \mathbf{k}-algebra. Then \mathbf{D} is a GDPA if and only if (1) each graded piece of \mathbf{D} is free of rank 1 over \mathbf{k}; and (2) for every maximal ideal \mathfrak{m} of \mathbf{k}, the quotient $\mathbf{D} / \mathfrak{m} \mathbf{D}$ is isomorphic to $\mathbf{S}\left(\mathbf{k} / \mathfrak{m}, b_{\bullet}\right)$ for some divisible sequence b_{\bullet}.

If \mathbf{D} is a GDPA, then (1) holds by definition, while (2) follows from Propositions 3.4 and 3.8. It thus suffices to prove the converse. Let $x^{[n]}$ be a basis of $\mathbf{D}^{[n]}$, and define $c(n, m) \in \mathbf{k}$ by $x^{[n-m]} x^{[m]}=c(n, m) x^{[n+m]}$. We choose $x^{[0]}=1$, so that $c(n, 0)=1$ for all n. It suffices to prove the following statement:
(*) Given elements $\pi_{n} \in \mathbf{k}$ for $2 \leq n<N$ such that $C(n, m)=c(n, m)$ for all $0 \leq m \leq n<N$, there exists an element $\pi_{N} \in \mathbf{k}$ such that $C(N, m)=$ $c(N, m)$ for all $0 \leq m \leq N$.
Indeed, if this were true then we could construct a π-sequence π_{\bullet} for which $C(n, m)=c(n, m)$ for all $n \geq m \geq 0$, and so $\mathbf{D}\left(\mathbf{k}, \pi_{\bullet}\right)$ would be isomorphic to \mathbf{D}. Furthermore, condition (2) would imply (by Corollary 3.6) that π_{\bullet} is admissible in each quotient $\mathbf{k} / \mathfrak{m}$, and therefore admissible.

Lemma 3.17. The condition (*) holds when \mathbf{k} is local.

Proof. Let \mathfrak{m} be the unique maximal ideal of \mathbf{k} and let b_{\bullet} be a divisible sequence such that $\mathbf{D} / \mathfrak{m} \mathbf{D} \cong \mathbf{S}\left(\mathbf{k} / \mathfrak{m}, b_{\bullet}\right)$. Note that if there is no base b carry in the addition $(n-m)+m$ then $c(n, m)$ is nonzero modulo \mathfrak{m}, and thus a unit of \mathbf{k}. Let N and π_{n} be given as in $(*)$. Note that if $n<N$ is not of the form b_{i} then π_{n} is a unit. Indeed, we can write $n=(n-m)+m$ for some $0<m<n$ with no carry, and so $C(n, m)=c(n, m)$ is a unit. As $C(n, m)$ is a multiple of π_{n}, it follows that π_{n} is a unit.

First, suppose that N is not of the form b_{i}, and let i be maximal such that b_{i} divides N. Note that the i th base b digit of N is nonzero, and all digits in lower places are 0 . Clearly then, there are no carries in the addition $b_{i}+\left(N-b_{i}\right)$. It follows that $C\left(N, b_{i}\right)$ has no factor of the form $\pi_{b_{j}}$, and so $\left\{C\left(N, b_{i}\right) / \pi_{N}\right\}$ is a unit of \mathbf{k}. We define π_{N} by

$$
\pi_{N}=\left\{C\left(N, b_{i}\right) / \pi_{N}\right\}^{-1} \cdot c\left(N, b_{i}\right)
$$

Thus, by construction, $C\left(N, b_{i}\right)=c\left(N, b_{i}\right)$. We now show that $C(N, m)=$ $c(N, m)$ for all $0 \leq m \leq N$. If $m=0$ or $m=N$ the equality is clear, so assume $0<m<N$. Put $n=N-m$. By assumption, the i th base b digit of N is nonzero. Suppose that the i th base b digit of n or m is nonzero, say n. Then we can write $n=b_{i}+n^{\prime}$ without carry. We then have

$$
x^{[n]} x^{[m]}=c\left(n, b_{i}\right)^{-1} x^{\left[b_{i}\right]} x^{\left[n^{\prime}\right]} x^{[m]}=c\left(n, b_{i}\right)^{-1} c\left(N-b_{i}, m\right) c\left(N, b_{i}\right) x^{[N]}
$$

and so

$$
c(N, m)=c\left(n, b_{i}\right)^{-1} c\left(N-b_{i}, m\right) c\left(N, b_{i}\right) .
$$

We get a similar identity for C. Since we know the c 's and C 's on the right agree, this gives $c(N, m)=C(N, m)$. Now suppose that the i th base b digits of n and m are each zero. There must then be a carry that produces a nonzero i th digit in $n+m$. Write $n=n_{1}+n_{2}$ and $m=m_{1}+m_{2}$ where $b_{i} \mid n_{1}, m_{1}$
and $n_{2}, m_{2}<b_{1}$, and write $n_{2}+m_{2}=b_{i}+\ell$; all of these decompositions are without carry. We then have
$x^{[n]} x^{[m]}=c\left(n, n_{1}\right)^{-1} c\left(m, m_{1}\right)^{-1} c\left(n_{1}+m_{1}, n_{1}\right) c\left(n_{2}+m_{2}, n_{2}\right) x^{\left[n_{1}+m_{1}\right]} x^{\left[n_{2}+m_{2}\right]}$ and

$$
x^{\left[n_{2}+m_{2}\right]}=c\left(n_{2}+m_{2}, b_{i}\right)^{-1} x^{[\ell]} x^{\left[b_{i}\right]}, \quad x^{\left[n_{1}+n_{2}\right]} x^{[\ell]}=C\left(N-b_{i}, \ell\right) x^{\left[N-b_{i}\right]},
$$

and so

$$
\begin{aligned}
c(N, m)= & c\left(n, n_{1}\right)^{-1} c\left(m, m_{1}\right)^{-1} c\left(n_{1}+m_{1}, n_{1}\right) c\left(n_{2}+m_{2}, n_{2}\right) \\
& \times c\left(n_{2}+m_{2}, b_{i}\right)^{-1} c\left(N-b_{i}, \ell\right) C\left(N, b_{i}\right)
\end{aligned}
$$

Again, there is a similar identity for C, which yields $C(N, m)=c(N, m)$.
Now suppose $N=b_{i}$ with $i \geq 1$. In the sum $b_{i-1}+\left(b_{i}-b_{i-1}\right)$ there is exactly one carry, in the i th place. Thus, $\left\{C\left(N, b_{i}\right) / \pi_{N}\right\}$ has no factor of $\pi_{b_{j}}$ with $j<i$, and is therefore a unit. We define

$$
\pi_{N}=\left\{C\left(N, b_{i}\right) / \pi_{N}\right\}^{-1} \cdot c\left(N, b_{i}\right)
$$

Once again, $C\left(N, b_{i}\right)=c\left(N, b_{i}\right)$ by construction. We now show that $C(N, m)=$ $c(N, m)$ for $0 \leq m \leq N$. Again, we assume $m \neq 0, N$, and put $n=N-m$. Since n and m are less than b_{i} and they sum to b_{i}, the $(i-1)$ st digit of n or m (say n) must be nonzero. We can therefore write $n=b_{i-1}+n^{\prime}$, with no carry. We have
$x^{[n]} x^{[m]}=c\left(n, b_{i-1}\right)^{-1} x^{\left[b_{i-1}\right]} x^{\left[n^{\prime}\right]} x^{[m]}=c\left(n, b_{i-1}\right)^{-1} c\left(N-b_{i-1}, m\right) c\left(N, b_{i}\right) x^{[N]}$. We have a similar identity for C, which shows $C(N, m)=c(N, m)$, and completes the proof.

Lemma 3.18. Let \mathbf{k} be a commutative ring and let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be elements of \mathbf{k}. Suppose that for each maximal ideal \mathfrak{m} of \mathbf{k} there exists an element $a_{\mathfrak{m}} \in \mathbf{k}_{\mathfrak{m}}$ such that $a_{\mathfrak{m}} x_{i}=y_{i}$ holds in \mathbf{k}_{m} for all i. Then there exists an element $a \in \mathbf{k}$ such that $a x_{i}=y_{i}$ holds in \mathbf{k} for all i.

Proof. Write $a_{\mathfrak{m}}=s_{\mathfrak{m}}^{-1} b_{\mathfrak{m}}$ with $b_{\mathfrak{m}} \in \mathbf{k}$ and $s_{\mathfrak{m}} \in \mathbf{k} \backslash \mathfrak{m}$. Choosing $b_{\mathfrak{m}}$ and $s_{\mathfrak{m}}$ appropriately, we can assume that $b_{\mathfrak{m}} x_{i}=s_{\mathfrak{m}} y_{i}$ holds in \mathbf{k} for all i. (Here it is important that there are only finitely many x_{i} and y_{i}.) The $s_{\mathfrak{m}}$ generate the unit ideal of \mathbf{k}, and therefore finitely many of them do. Let Σ be a finite set of maximal ideals such that the $s_{\mathfrak{m}}$ with $\mathfrak{m} \in \Sigma$ generate the unit ideal, and choose an expression $\sum_{\mathfrak{m} \in \Sigma} c_{\mathfrak{m}} s_{\mathfrak{m}}=1$ with $c_{\mathfrak{m}} \in \mathbf{k}$. Then putting $a=\sum_{\mathfrak{m} \in \Sigma} c_{\mathfrak{m}} b_{\mathfrak{m}}$, we find $a x_{i}=y_{i}$ for all i.

Lemma 3.19. The condition (*) holds in general.
Proof. Suppose N as in (*) is given. We must find π_{N} such that $C(N, m)=$ $c(N, m)$ for all $0<m<N$ (the $m=0, N$ cases being automatic). That is, we must find π_{N} that simultaneously solves the equations

$$
\pi_{N} \cdot\left\{C(N, m) / \pi_{N}\right\}=c(N, m)
$$

for $0<m<N$. We can find a solution after localizing at each maximal ideal by Lemma 3.17. We can therefore find a solution by Lemma 3.18.
3.5. A Tor computation. In this section, we prove the following result.

Proposition 3.20. Let \mathbf{D} be a GDPA over \mathbf{k}. Then

$$
\operatorname{Tor}_{1}^{\mathbf{D}}(\mathbf{k}, \mathbf{k})=\bigoplus_{n \geq 1} \mathbf{k} /\left(\pi_{n}\right)[n]
$$

We note that this proposition gives another way to see that the π_{n} are intrinsic to \mathbf{D}, up to units. We recall that $\pi_{1}=0$ by convention.

Lemma 3.21. Let π_{\bullet} be an admissible sequence in \mathbf{k}, and let $n \geq 1$. Then the ideal \mathfrak{a} generated by the element $C(n, i)$ for $1 \leq i \leq n-1$ is the principal ideal $\left(\pi_{n}\right)$.

Proof. It suffices to prove this when \mathbf{k} is local. Assume this, and let $b_{\bullet}=$ $b_{\mathfrak{m}, \bullet}$ be the associated divisible sequence. If $n \neq b_{i}$ for some i, then there is an decomposition $n=i+j$ that involves no base b • carries. Thus $C(n, i)$ is a unit, and so \mathfrak{a} is the unit ideal, and so $\mathfrak{a}=\left(\pi_{n}\right)$ since π_{n} is a unit. Now suppose $n=b_{r}$. Then in every decomposition $n=i+j$ with $1 \leq i, j \leq n-1$, there is a carry in the r th digit, and so π_{n} divides $C(n, i)$ for all such i. Let $m=b_{r-1}$. Then in the decomposition $n=(n-m)+m$, there is only a carry in the r th place, and so $C(n, m)=\pi_{n}$ up to units. It follows that $\mathfrak{a}=\left(\pi_{n}\right)$, completing the proof.

Proof of Proposition 3.20. Let I be the ideal generated by the $x^{[n]}$ with $n \geq 1$, so that $\mathbf{k}=\mathbf{D} / I$. Then $\operatorname{Tor}_{1}^{\mathbf{D}}(\mathbf{k}, \mathbf{k})=I / I^{2}$. The degree n piece of I^{2} is spanned, as a k-module, by all products of the form $x^{[i]} x^{[j]}$ with $i+j=n$ and $i, j \geq 1$; it is thus equal to $\mathfrak{a} x^{[n]}$ where \mathfrak{a} is the ideal generated by the $C(n, i)$ with $1 \leq i \leq n-1$. By the lemma, $\mathfrak{a}=\left(\pi_{n}\right)$, and so the degree n piece of I / I^{2} is $\mathbf{k} /\left(\pi_{n}\right)$.

4. Coherence results

4.1. Overview. In Section 4, we prove two main results. The first, in Section 4.2, states that GDPA's over Noetherian rings are coherent. The second, in Section 4.5 gives more precise results about graded-coherence of GDPA's over non-Noetherian rings. The second result depends on work in Section 4.3 and Section 4.4 where we establish bounds on the degrees of relations for ideals in a GDPA. These bounds could be useful even when \mathbf{k} is Noetherian, although they are not needed to prove any coherence results in that case. Finally, in Section 4.6 we show that coherence fails for multivariate divided power algebras.
4.2. Gröbner-coherence. We recall some definitions from [NS, Section 4]. A graded module is Gröbner-coherent if it is graded-coherent and every finitely generated inhomogeneous submodule admits a finite Gröbner-basis; this implies coherent, but is stronger (see [NS, Proposition 4.4]). A graded ring is Gröbner-coherent if it is so as a module over itself; this implies that all finitely presented modules are Gröbner-coherent. The following is our main theorem on coherence of GDPA's.

Theorem 4.1. A GDPA over a Noetherian ring \mathbf{k} is Gröbner-coherent.

Corollary 4.2. If \mathbf{k} is Noetherian, then the classical divided power algebra over \mathbf{k}, as well as its q-analogs, are Gröbner-coherent (and thus coherent as well).

REmARK 4.3. In fact, we can conclude Gröbner-coherence for a larger class of coefficient rings using some of the basic properties of Gröbner-coherence. Two examples:
(a) Suppose that \mathbf{k} is a direct limit of Noetherian rings \mathbf{k}_{i} with flat transition maps, and let \mathbf{D} be a GDPA such that the π_{n} belong to the initial ring \mathbf{k}_{0}. Then \mathbf{D} is Gröbner-coherent. Indeed, if $\mathbf{D}_{i}=\mathbf{D}\left(\pi_{\bullet} ; \mathbf{k}_{i}\right)$ then \mathbf{D}_{i} is Gröbner-coherent by the theorem, and \mathbf{D} is the direct limit of the \mathbf{D}_{i} (and the transition maps are still flat), and thus Gröbner-coherent by [NS, Proposition 5.3]. For example, if \mathbf{k} is a polynomial ring in infinitely many variables over a Noetherian ring then the classical divided power algebra over \mathbf{k} is Gröbner-coherent.
(b) Suppose that \mathbf{k} is locally Noetherian (meaning $\mathbf{k}_{\mathfrak{m}}$ is Noetherian for all maximal ideals \mathfrak{m}) and \mathbf{D} is a GDPA over \mathbf{k} that is graded-coherent. Then \mathbf{D} is Gröbner-coherent. Indeed, $\mathbf{D}_{\mathfrak{m}}$ is Gröbner-coherent by the theorem, and so \mathbf{D} is Gröbner-coherent by [NS, Proposition 5.1]. For example, if \mathbf{k} is a Boolean ring then the classical divided power algebra over \mathbf{k} is Gröbnercoherent. (The graded coherence of \mathbf{D} follows easily from Corollary 4.14 in this case.)

The heart of the proof is contained in the following lemma.
Lemma 4.4. Let \mathbf{k} be a domain and let $\mathbf{D}=\mathbf{D}\left(\mathbf{k}, \pi_{\bullet}\right)$ be a GDPA. Suppose that $\pi_{n} \neq 0$ for all $n \geq 2$ and that $\mathbf{D} / \mathfrak{a} \mathbf{D}$ is Gröbner-coherent for all non-zero principal ideals \mathfrak{a} of \mathbf{k}. Then \mathbf{D} is Gröbner-coherent.

Proof. Let $I=\left(x_{1}, \ldots, x_{n}\right)$ be a finitely generated ideal of \mathbf{D}, and let $\mathbf{K}=$ $\operatorname{Frac}(\mathbf{k})$. Since $\mathbf{D} \otimes_{\mathbf{k}} \mathbf{K} \cong \mathbf{K}[x]$ (Corollary 3.7), the ideal $I \otimes_{\mathbf{k}} \mathbf{K}$ is principal; let $z \in I$ be a generator. Write $x_{i}=\frac{z y_{i}}{a}$ with $y_{i} \in \mathbf{D}$ and $a \in \mathbf{k}$. Since the x_{i} generate the ideal (z) over \mathbf{K}, we have an expression $z=\sum_{i=1}^{n} \frac{w_{i} x_{i}}{b}$ with $w_{i} \in \mathbf{D}$ and $b \in \mathbf{k}$. Expressing the x_{i} in terms of the y_{i}, we see that the ideal $J=\left(y_{1}, \ldots, y_{n}\right)$ contains the nonzero element $c=a b$ of \mathbf{k}. Note that multiplication by $\frac{z}{a}$ defines an isomorphism $J \rightarrow I$ of \mathbf{D}-modules.

Let \bar{J} be the image of J in $\overline{\mathbf{D}}=\mathbf{D} / c \mathbf{D}$. Since $\overline{\mathbf{D}}$ is coherent by assumption and \bar{J} is finitely generated, we see that \bar{J} is finitely presented as a $\overline{\mathbf{D}}$-module, and thus as a \mathbf{D}-module as well. The exact sequence

$$
0 \rightarrow c \mathbf{D} \rightarrow J \rightarrow \bar{J} \rightarrow 0
$$

shows that J is finitely presented. Since I is isomorphic to J as a D-module, it too is finitely presented. We have thus shown that every finitely generated ideal of \mathbf{D} is finitely presented, and so \mathbf{D} is coherent.

We now do a bit more work to show that \mathbf{D} is Gröbner-coherent. We have shown that \mathbf{D} is graded-coherent, so it remains to show that the initial ideal $\operatorname{in}(I)$ is finitely generated whenever I is a finitely generated ideal of \mathbf{D}. Maintain the previous notation. One easily sees that we have a short exact sequence

$$
0 \rightarrow c \mathbf{D} \rightarrow \operatorname{in}(J) \rightarrow \operatorname{in}(\bar{J}) \rightarrow 0
$$

Since $\overline{\mathbf{D}}$ is Gröbner-coherent, it follows that $\operatorname{in}(\bar{J})$ is finitely generated, and so $\operatorname{in}(J)$ is as well. From the equality of ideals $(a) I=(z) J$, we obtain $a \operatorname{in}(I)=$ $\operatorname{in}(z) \operatorname{in}(J)$. Since in $(z) \operatorname{in}(J)$ is clearly finitely generated, it follows that $a \operatorname{in}(I)$ is finitely generated. But $a \operatorname{in}(I)$ is isomorphic to $\operatorname{in}(I)$ via multiplication by a, and so in (I) is finitely generated.

Proof of Theorem 4.1. Let \mathbf{k} be a Noetherian ring and let $\mathbf{D}=\mathbf{D}\left(\mathbf{k}, \pi_{\bullet}\right)$ be a GDPA. We will show \mathbf{D} is Gröbner-coherent. By Noetherian induction, we can assume that $\mathbf{D} / \mathfrak{a} \mathbf{D}$ is Gröbner-coherent for all nonzero ideals \mathfrak{a} of \mathbf{k}.

First, suppose that \mathbf{k} is not a domain, and let $x y=0$ with $x \neq 0$ and $y \neq 0$. We have a short exact sequence

$$
0 \rightarrow x \mathbf{D} \rightarrow \mathbf{D} \rightarrow \mathbf{D} / x \mathbf{D} \rightarrow 0
$$

The rightmost ring is Gröbner-coherent by hypothesis, and thus Gröbnercoherent as a module over \mathbf{D}. The leftmost term is a finitely presented as a \mathbf{D}-module, being isomorphic to $\mathbf{D} \otimes_{\mathbf{k}}(x)$, and thus finitely presented as a $\mathbf{D} / y \mathbf{D}$-module. It follows that $x \mathbf{D}$ is Gröbner-coherent as a $\mathbf{D} / y \mathbf{D}$-module, and thus as a \mathbf{D}-module as well. Thus, \mathbf{D} is an extension of Gröbner-coherent modules, and thus Gröbner-coherent.

Now suppose that \mathbf{k} is a domain. If $\pi_{n}=0$ for infinitely many n, then \mathbf{D} is Gröbner-coherent by Proposition 3.14. Thus, we assume that only finitely many π_{n} are 0 . Let h be maximal so that $\pi_{h}=0$. By Proposition 3.11, it suffices to prove that $\mathbf{D}^{[h]}$ is Gröbner-coherent. Note that $\pi_{n}^{[h]} \neq 0$ for all $n \geq 2$ (this follows directly from the definition of the h-transform). If \mathfrak{a} is a nonzero ideal of \mathbf{k} then $\mathbf{D} / \mathfrak{a} \mathbf{D}$ is Gröbner-coherent by assumption, and so $(\mathbf{D} / \mathfrak{a} \mathbf{D})^{[h]}$ is Gröbner-coherent by Proposition 3.11. Thus, $\mathbf{D}^{[h]}$ is Gröbner-coherent by the lemma, which completes the proof.
4.3. General bounds on Tor. Let R be a graded algebra supported in nonnegative degrees and put $\mathbf{k}=R_{0}$. We regard \mathbf{k} as an R-module by letting positive degree elements act by 0 . For a non-zero graded object M, let maxdeg (M) denote the maximum integer n such that M_{n} is nonzero, or ∞ if no maximum exists. For a graded R-module M, put $t_{i}(M ; R)=\operatorname{maxdeg}\left(\operatorname{Tor}_{i}^{R}(M, \mathbf{k})\right)$.

Proposition 4.5. Suppose $M=V \otimes_{\mathbf{k}} R$ for some graded \mathbf{k}-module V. Then $\operatorname{Tor}_{i}^{R}(M, \mathbf{k})=0$ for $i>0$.

Proof. Let $F_{\bullet} \rightarrow V$ be a free resolution of V as a k-module. Then $R \otimes_{\mathbf{k}} F_{\bullet}$ is a free resolution of M as an R-module. We can thus compute $\operatorname{Tor}_{i}^{R}(M, \mathbf{k})$ by tensoring this complex with \mathbf{k}. But this just recovers the complex F_{\bullet}, which is exact in positive degrees.

Proposition 4.6. Let M be an R-module and let

$$
0 \rightarrow K \rightarrow F \rightarrow M \rightarrow 0
$$

be an exact sequence with $\operatorname{Tor}_{1}^{R}(F, \mathbf{k})=0$. Then

$$
t_{1}(M ; R) \leq t_{0}(K ; R) \leq \max \left(t_{1}(M ; R), t_{0}(F ; R)\right) .
$$

Proof. The long exact exact sequence in Tor gives an exact sequence

$$
0 \rightarrow \operatorname{Tor}_{1}^{R}(M, \mathbf{k}) \rightarrow \operatorname{Tor}_{0}^{R}(K, \mathbf{k}) \rightarrow \operatorname{Tor}_{0}^{R}(F, \mathbf{k})
$$

(since $\operatorname{Tor}_{1}^{R}(F, \mathbf{k})=0$), from which the stated inequalities are clear.
Proposition 4.7. Suppose that $S \subset R$ is a graded subring with $S_{0}=\mathbf{k}$ such that R is finite projective over S. Let M be an R-module. Then

$$
t_{1}(M ; S) \leq \max \left(t_{0}(M ; R), t_{1}(M ; R)\right)+t_{0}(R ; S)
$$

and

$$
t_{1}(M ; R) \leq \max \left(t_{0}(M ; R)+t_{0}(R ; S), t_{1}(M ; S)\right)
$$

Proof. Let

$$
0 \rightarrow K \rightarrow F \rightarrow M \rightarrow 0
$$

be an exact sequence of R-modules such that F is projective and $t_{0}(F ; R)=$ $t_{0}(M ; R)$. Then F is also projective as an S-module. Thus,

$$
\begin{aligned}
t_{1}(M ; S) & \leq t_{0}(K ; S) \leq t_{0}(K ; R)+t_{0}(R ; S) \\
& \leq \max \left(t_{0}(M ; R), t_{1}(M ; R)\right)+t_{0}(R ; S) .
\end{aligned}
$$

The outer two inequalities come from Proposition 4.6, while the middle one is clear. Similarly,

$$
t_{1}(M ; R) \leq t_{0}(K ; R) \leq t_{0}(K ; S) \leq \max \left(t_{1}(M ; S), t_{0}(F ; S)\right)
$$

The stated inequality follows from this and the identity $t_{0}(F ; S)=t_{0}(F ; R)+$ $t_{0}(R ; S)$.

Proposition 4.8. Let M be a finitely presented graded R-module. Then $\operatorname{Tor}_{i}^{R}(M, \mathbf{k})_{d}=0$ for $i \gg d$.

Proof. Suppose M is generated in degrees $\leq m$, and n is the minimal integer such that $M_{n} \neq 0$. Let $V_{0}=\bigoplus_{i=n}^{m} M_{i}$. We then have a natural surjection $R \otimes_{\mathbf{k}} V_{0} \rightarrow M$. Moreover, this map is an isomorphism in degree n, and so the kernel is supported in degrees $>n$. Applying the same reasoning to the kernel and proceeding inductively, we obtain a resolution $R \otimes_{\mathbf{k}} V_{\bullet} \rightarrow M$ where the degree d piece of V_{i} vanishes for $i \gg d$. By Proposition 4.5 the modules $R \otimes_{\mathbf{k}} V_{\bullet}$ are acyclic for the functor $-\otimes_{R} \mathbf{k}$, and so $\operatorname{Tor}_{\bullet}^{R}(M, \mathbf{k})$ is computed by the complex V_{\bullet}, which proves the result.
4.4. Bounding relations. The following theorem is our main result on bounding the presentation of ideals in a GDPA. The proof occupies the entire section.

Theorem 4.9. Let \mathbf{D} be a GDPA over a ring \mathbf{k}, and let $I \subset \mathbf{D}$ be a homogeneous ideal of \mathbf{D} generated in degrees $\leq d$. Write $I_{n}=\mathfrak{a}_{n} x^{[n]}$ where \mathfrak{a}_{n} is an ideal of \mathbf{k}. Suppose that N is such that $T^{[h]}\left(\mathbf{k} /\left(\mathfrak{a}_{i}+T(\mathbf{k})\right)\right)$ is killed by $a^{[h]}(N)$ for all $1 \leq h \leq 2 d$ and all $0 \leq i \leq 3 d$. Then $t_{1}(I / T(I) ; \mathbf{D}) \leq(2 N+3) d$.

Lemma 4.10. It suffices to prove the theorem when \mathbf{k} is local.
Proof. Suppose the result holds when \mathbf{k} is local, and let us prove it in general. Let \mathfrak{m} be a maximal ideal of \mathbf{k}, and indicate by a prime localization at \mathfrak{m}. Since T commutes with localization, $T^{[h]}\left(\mathbf{k}^{\prime} /\left(\mathfrak{a}_{i}^{\prime}+T\left(\mathbf{k}^{\prime}\right)\right)\right)$ is killed by $a^{[h]}(N)$ for all $1 \leq h \leq 2 d$ and $0 \leq i \leq 3 d$. Thus $t_{1}\left(I^{\prime} / T\left(I^{\prime}\right) ; \mathbf{D}^{\prime}\right) \leq N+3 d$ by the local case of the theorem. That is, $\operatorname{Tor}_{1}^{\mathbf{D}^{\prime}}\left(I^{\prime} / T\left(I^{\prime}\right), \mathbf{k}^{\prime}\right)_{n}=0$ for $n>$ $N+3 d$. But Tor commutes with localization, so we find that the \mathbf{k}-module $\operatorname{Tor}_{1}^{\mathbf{D}}(I / T(I), \mathbf{k})_{n}$ localizes to 0 at all maximal ideals \mathfrak{m}. It is therefore 0 , and so $t_{1}(I / T(I) ; \mathbf{D}) \leq N+3 d$, as was to be shown.

For the rest of the section, we assume that \mathbf{k} is local. We let \mathfrak{m} be the unique maximal ideal of \mathbf{k}, and we let $b_{\bullet}=b_{\mathfrak{m}, \bullet}$ when we have an admissible sequence π_{\bullet}. For an element ρ of \mathbf{k} and a \mathbf{k}-module M, we let $T_{\rho}(M)$ be the submodule consisting of elements annihilated by $a(n) \rho$ for some $n \geq 1$.

Lemma 4.11. Let I be a homogeneous ideal of \mathbf{D} generated in degrees \leq d, where $d<b_{1}$. Fix an element ρ of \mathbf{k}. Suppose that $T\left(\mathbf{k} /\left(\mathfrak{a}_{i}+T_{\rho}(\mathbf{k})\right)\right)$ is killed by $a(N)$, for all $0 \leq i \leq d$. Let t be maximal subject to $b_{t} \mid N$. Then $\operatorname{Tor}_{1}^{\mathrm{D}}\left(I / T_{\rho}(I), \mathbf{k}\right)_{n}=0$ unless $n=b_{r}+\ell$ for some $1 \leq r \leq t$, and $0 \leq \ell<d$.

Proof. Let $F_{0}=\bigoplus_{i=0}^{d} \mathbf{D}[i]$, let e_{0}, \ldots, e_{d} be its standard basis, and let $\Phi_{0}: F_{0} \rightarrow \mathbf{D}$ be the map defined by $\Phi_{0}\left(e_{i}\right)=x^{[i]}$. Let $F=\bigoplus_{i=0}^{d} \mathbf{D}[i] \otimes_{\mathbf{k}} \mathfrak{a}_{i}$, thought of as a \mathbf{D}-submodule of F_{0}, let $\Phi: F \rightarrow I$ be the restriction of Φ_{0} to F, and let $K=\Phi^{-1}\left(T_{1}^{\rho}(I)\right)$. We have a short exact sequence

$$
0 \rightarrow K \rightarrow F \rightarrow I / T_{1}^{\rho}(I) \rightarrow 0
$$

and so $\operatorname{Tor}_{1}^{\mathbf{D}}\left(I / T_{1}^{\rho}(I), \mathbf{k}\right)$ is identified with $\left(K \cap \mathbf{D}_{+} F\right) / \mathbf{D}_{+} K$. Let $R=$ $\sum_{i=0}^{d} \gamma_{i} x^{[n-i]} e_{i}$ be an element of $K \cap \mathbf{D}_{+} F$ of degree n, and let \bar{R} be the corresponding element of Tor ${ }_{1}$. Write $n=m+\ell$, where m is a multiple of b_{1} and $0 \leq \ell<b_{1}$. We must show that $\bar{R}=0$ unless $m=b_{r}+\ell$ for some $1 \leq r \leq t$ and $0 \leq \ell<d$. We proceed in six steps.

Step 1: excluding $m=0$. Suppose $m=0$, i.e., $n<b_{1}$. Since $R \in \mathbf{D}_{+} F$, we can write $R=x^{[k]} R^{\prime}$ for some $R^{\prime} \in F$ and some $0<k \leq n$. Write $\Phi(R)=\varepsilon x^{[n]}$ with $\varepsilon \in T_{1}^{\rho}(\mathbf{k})$ and $\Phi\left(R^{\prime}\right)=\delta x^{[n-k]}$. Then $\varepsilon=C(n, k) \delta$. Since $C(n, k)$ is a unit (as $n<b_{1}$), it follows that $\delta \in T_{1}^{\rho}(\mathbf{k})$. Thus $R^{\prime} \in K$, and so $R \in \mathbf{D}_{+} K$, and so $\bar{R}=0$. In what follows, we assume $m>0$.

Step 2: bounding ℓ. Now suppose $\ell \geq d$. Then $C(n-i, \ell-i)$ is a unit for all $0 \leq i \leq d$, and so

$$
R^{\prime}=\sum_{i=0}^{d} \frac{\gamma_{i} x^{[\ell-i]}}{C(n-i, \ell-i)} e_{i}
$$

is a well-defined element of F. Note that $R=x^{[m]} R^{\prime}$. If $\Phi(R)=\varepsilon x^{[n]}$ and $\Phi\left(R^{\prime}\right)=\delta x^{[\ell]}$ then $\varepsilon=C(n, \ell) \delta$. Since $C(n, \ell)$ is a unit and $\varepsilon \in T_{1}^{\rho}(\mathbf{k})$, it follows that $\delta \in T_{1}^{\rho}(\mathbf{k})$, and so $R^{\prime} \in K$. Thus $R \in \mathbf{D}_{+} K$, and so $\bar{R}=0$. In what follows, we assume $\ell<d$.

Step 3: reduction to two-term relations. We now show that it suffices to consider elements R of a simple form. This step is not strictly necessary, but will simplify notation in what follows. Put

$$
\alpha=\sum_{i=0}^{\ell} \frac{C(n, n-i)}{C(n, n-\ell)} \gamma_{i}, \quad \beta=\sum_{i=\ell+1}^{d} \frac{C(n, n-i)}{C(n, n-d)} \gamma_{i} .
$$

Note that $C(n, n-\ell)$ is a unit, and, in the second sum, both $C(n, n-i)$ and $C(n, n-d)$ are the same product of π 's, up to units, and so the expressions make sense. Note also that $\mathfrak{a}_{0} \subset \mathfrak{a}_{1} \subset \cdots \subset \mathfrak{a}_{d}$, and so $\alpha \in \mathfrak{a}_{\ell}$ and $\beta \in \mathfrak{a}_{d}$. We can thus consider the element

$$
R^{\prime}=\alpha x^{[m]} e_{\ell}+\beta x^{[n-d]} e_{d}
$$

of F. It is clear that $\Phi\left(R^{\prime}\right)=\Phi(R)$, and so $R^{\prime} \in K$. We claim $R=R^{\prime}$ modulo $\mathbf{D}_{+} K$. To see this, put

$$
R_{1}=\sum_{i=0}^{\ell} \frac{\gamma_{i} x^{[\ell-i]}}{C(n-i, \ell-i)} e_{i}-\alpha e_{\ell}
$$

and

$$
R_{2}=\sum_{i=\ell+1}^{d} \frac{\gamma_{i} x^{[n-i-1]}}{C(n-i, 1)} e_{i}-\frac{\beta x^{[n-d-1]}}{C(n-d, 1)} e_{d} .
$$

All the C 's in these expressions are units, and so R_{1} and R_{2} are well-defined elements of F. We have

$$
x^{[m]} R_{1}=\sum_{i=0}^{\ell} \gamma_{i} x^{[n-i]} e_{i}-\alpha x^{[m]} e_{\ell}, \quad x^{[1]} R_{2}=\sum_{i=\ell+1}^{d} \gamma_{i} x^{[n-i]} e_{i}-\beta x^{[n-d]} e_{d}
$$

and so

$$
R-R^{\prime}=x^{[m]} R_{1}+x^{[1]} R_{2} .
$$

From the definitions of α and β, it is clear that $\Phi\left(x^{[m]} R_{1}\right)$ and $\Phi\left(x^{[1]} R_{2}\right)$ vanish. Writing $\Phi\left(R_{1}\right)=\varepsilon x^{[\ell]}$ and $\Phi\left(R_{2}\right)=\delta x^{[n-1]}$, we find $C(n, \ell) \varepsilon=0$ and $C(n, 1) \delta=0$. Thus, $\varepsilon=0$ and δ is at least torsion, and so R_{1} and R_{2} belong to K. Thus $R-R^{\prime} \in \mathbf{D}_{+} K$, as claimed. In what follows, we assume $R=$ $\alpha x^{[m]} e_{\ell}+\beta x^{[n-d]} e_{d}$.

Step 4: reduction to $m=b_{r}$. Suppose m is not of the form b_{r}. Then we can write $m=m_{1}+m_{2}$ where m_{1} and m_{2} are positive multiples of $q=b_{1}$ such that there is no carry when computing either $m_{1}+m_{2}$ or $m_{1}+\left(m_{2}-q\right)$. Put

$$
R^{\prime}=\frac{\alpha x^{\left[m_{2}\right]}}{C\left(m, m_{1}\right)} e_{\ell}+\frac{\beta x^{\left[m_{2}+\ell-d\right]}}{C\left(n-d, m_{1}\right)} e_{d}
$$

Both the C 's here are units: for the second one, observe that

$$
n-d=m_{1}+\left(m_{2}+\ell-d\right)=m_{1}+\left(\left(m_{2}-q\right)+(q+\ell-d)\right)
$$

Since $q+\ell-d<q$ and m_{1} and $m_{2}-q$ are multiples of q, there are no carries. Thus, R^{\prime} is an element of F, and $R=x^{\left[m_{1}\right]} R^{\prime}$. Writing $\Phi(R)=\varepsilon x^{[n]}$ and $\Phi\left(R^{\prime}\right)=\delta x^{\left[m_{2}+\ell\right]}$, we see that $C\left(n, m_{1}\right) \delta=\varepsilon$. Since $C\left(n, m_{1}\right)$ is a unit, this shows that δ is torsion. Thus, $R^{\prime} \in K$ and $R \in \mathbf{D}_{+} K$ and $\bar{R}=0$. In what follows, we assume $m=b_{r}$ for some $r \geq 1$.

Step 5: bounding r. Suppose now that $r>t$ and $r>1$. Put $\Phi(R)=\varepsilon x^{[n]}$, where $\varepsilon \in T_{1}^{\rho}(\mathbf{k})$. We have

$$
\varepsilon=C(n, \ell) \alpha+C(n, d) \beta
$$

Note that $C(n, \ell)$ is a unit and $C(n, d)$ is equal to $\pi_{b_{1}} \cdots \pi_{b_{r}}$ up to units. We thus see that the image of β in $\mathbf{k} /\left(\mathfrak{a}_{\ell}+T_{1}^{\rho}(\mathbf{k})\right)$ is killed by $\pi_{b_{1}} \cdots \pi_{b_{r}}$. It is therefore killed by $\pi_{b_{1}} \cdots \pi_{b_{r-1}}$, by our assumption: note that $a(N)=$ $\pi_{b_{1}} \cdots \pi_{b_{t}}$, up to units. Let $m^{\prime}=b_{r-1}$ and $n^{\prime}=m^{\prime}+\ell$, so that $C\left(n^{\prime}, d\right)$ is $\pi_{n_{1}} \cdots \pi_{b_{r-1}}$, up to units. The above discussion shows that we can write

$$
\varepsilon^{\prime}=C\left(n^{\prime}, \ell\right) \alpha^{\prime}+C\left(n^{\prime}, d\right) \beta
$$

for some $\alpha^{\prime} \in \mathfrak{a}_{\ell}$ and $\varepsilon^{\prime} \in T_{1}^{\rho}(\mathbf{k})$. Now consider

$$
R^{\prime}=\alpha^{\prime} x^{\left[m^{\prime}\right]} e_{\ell}+\beta x^{\left[n^{\prime}-d\right]} e_{d}
$$

Clearly $\Phi\left(R^{\prime}\right)=\varepsilon^{\prime}$, and so $R^{\prime} \in K$. We have

$$
x^{\left[m-m^{\prime}\right]} R^{\prime}=\alpha^{\prime} C\left(m, m^{\prime}\right) x^{[m]} e_{\ell}+\beta C\left(n-d, n^{\prime}-d\right) x^{[n-d]} e_{d}
$$

We thus find

$$
C\left(n-d, n^{\prime}-d\right) R-x^{\left[m-m^{\prime}\right]} R^{\prime}=\delta x^{[m]} e_{\ell}
$$

for some $\delta \in \mathbf{k}$. Since both R and R^{\prime} belong to K, so does $\delta x^{[m]} e_{\ell}$. As $\Phi\left(\delta x^{[m]} e_{\ell}\right)=C(n, \ell) \delta x^{[n]}$, we see that $C(n, \ell) \delta$ belongs to $T_{1}^{\rho}(\mathbf{k})$. But $C(n, \ell)$ is a unit, and so δ itself belongs to $T_{1}^{\rho}(\mathbf{k})$. Thus, $\delta x^{[m]} e_{\ell} \in \mathbf{D}_{+} K$. This shows that

$$
C\left(n-d, n^{\prime}-d\right) R-x^{\left[m-m^{\prime}\right]} R^{\prime} \in \mathbf{D}_{+} K
$$

Of course, $x^{\left[m-m^{\prime}\right]} R^{\prime} \in \mathbf{D}_{+} K$ as well, and $C\left(n-d, n^{\prime}-d\right)$ is a unit, so we find $R \in \mathbf{D}_{+} K$ and $\bar{R}=0$.

Step 6: the $r=1$ case. Finally, suppose that $r>t$ and $r=1$. Note then that $t \leq 0$, and so $\mathbf{k} /\left(\mathfrak{a}_{\ell}+\mathbf{k}_{\text {tors }}\right)$ has no torsion. From $\Phi(R)=0$ we see that $\varepsilon=C(n, \ell) \alpha+C(n, d) \beta$ belongs to $\mathbf{k}_{\text {tors }}$. Thus, the image of β in $\mathbf{k} /\left(\mathfrak{a}_{\ell}+\mathbf{k}_{\text {tors }}\right)$ is killed by $C(n, d)$, and is therefore torsion, and therefore vanishes. We can therefore write $\alpha^{\prime}+\beta=\varepsilon^{\prime}$ for some $\alpha^{\prime} \in \mathfrak{a}_{\ell}$ and $\varepsilon^{\prime} \in \mathbf{k}_{\mathrm{tors}}$. Consider

$$
R^{\prime}=\frac{C(n, d) \alpha^{\prime} x^{[m-1]}}{C(m, 1)} e_{\ell}+\frac{\beta x^{[n-d-1]}}{C(n-d, 1)} e_{d}
$$

Note that $C(n, d)$ and $C(m, 1)$ are same product of π 's, up to units, and $C(n-d, 1)$ is a unit. We have

$$
x^{[1]} R^{\prime}=\alpha^{\prime} C(n, d) x^{[m]} e_{\ell}+\beta x^{[n-d]} e_{d}=R+\varepsilon^{\prime \prime} x^{[m]} e_{\ell}
$$

where $\varepsilon^{\prime \prime}=C(n, d) \varepsilon^{\prime}-\varepsilon$. Write $\Phi(R)=\delta x^{[n]}$ with $\delta \in \mathbf{k}_{\text {tors }}$ and $\Phi\left(R^{\prime}\right)=$ $\delta^{\prime} x^{[n-1]}$. We claim that $\delta^{\prime} \in K$. First, suppose $\ell>0$. Then the above equation shows $C(n, 1) \delta^{\prime}=\delta+\varepsilon^{\prime \prime} C(n, \ell)$. Since $\ell>0$ we have that $C(n, 1)$ is a unit, and so δ^{\prime} is torsion. Now suppose $\ell=0$. Then computing $\widetilde{\Phi}\left(R^{\prime}\right)$ directly from the definition of R^{\prime}, we find

$$
\delta^{\prime}=\frac{C(n, d)}{C(n, 1)} \alpha^{\prime}+\frac{C(n-1, d)}{C(n-d, 1)} \beta
$$

(note $n=m$ since $\ell=0$). All the C 's above are units, and the two fractions are equal since $C(n, d) C(n-d, 1)=C(n, 1) C(n-1, d)$; thus δ^{\prime} is a unit times $\alpha^{\prime}+\beta=\varepsilon^{\prime}$, and is thus torsion. We have thus shown that δ^{\prime} is torsion in all cases, and so $R^{\prime} \in K$. Since $\varepsilon^{\prime \prime} x^{[m]} e_{\ell} \in \mathbf{D}_{+} K$, this shows $R \in \mathbf{D}_{+} K$.

Lemma 4.12. Let $h=b_{s}$ for $s \geq 0$ and let I be a homogeneous ideal of $\mathbf{D}^{(h)}$ generated in degrees $\leq d$, where $d<b_{s+1}$. Suppose $T^{[h]}\left(\mathbf{k} /\left(\mathfrak{a}_{i}+T(\mathbf{k})\right)\right)$ is killed by $a^{[h]}(N)$, for all $0 \leq i \leq d$. Let t be maximal subject to $b_{t} \mid N$. Then $\operatorname{Tor}_{1}^{\mathbf{D}^{(h)}}(I / T(I), \mathbf{k})_{n}=0$ unless $n=b_{r}+\ell$ for some $s<r \leq t$ and $0 \leq \ell \leq d$. In particular, $t_{1}\left(I / T(I) ; \mathbf{D}^{(h)}\right) \leq N h+d$.

Proof. The regrade of $\mathbf{D}^{(h)}$ is isomorphic to $\mathbf{D}^{[h]}$. The regrade of I is an ideal of $\mathbf{D}^{[h]}$ generated in degrees $\leq d / h<b_{1}^{[h]}$. Let $\rho=\pi_{b_{1}} \cdots \pi_{b_{s}}$. Then
$T_{\rho}\left(-; \pi_{\bullet}^{[h]}\right)=T\left(-; \pi_{\bullet}\right)$. With these identifications, the result follows from the Lemma 4.11.

Proof of Theorem 4.9. Let s be maximal subject to $b_{s} \leq d$. First, suppose that $d+b_{s} \leq b_{s+1}$. Put $h=b_{s}$. We have an isomorphism of $\mathbf{D}^{(h)}$-modules $I=\bigoplus_{k=0}^{h-1} J_{k}[k]$, where J_{k} is an ideal of $\mathbf{D}^{(h)}$. Put $d_{k}=h\lceil(d-k) / h\rceil$. Then by Proposition 3.12, the ideal J_{k} is generated in degrees $\leq d_{k}$ and satisfies $J_{k, i}=\mathfrak{a}_{k+i} x^{[i]}$ (for i a multiple of h). Note that $d_{k} \leq d+h-1$, so $d_{k} \leq$ $2 d$ and $d_{k}<b_{s+1}$. The module $T^{[h]}\left(\mathbf{k} /\left(\mathfrak{a}_{i}+T(\mathbf{k})\right)\right)$ is killed by $a^{[h]}(N)$ for $i=k, \ldots, k+d_{k}$, as $k+d_{k} \leq 3 d$, and so $t_{1}\left(J_{k} / T\left(J_{k}\right) ; \mathbf{D}^{(h)}\right) \leq N h+d_{k}$ by Lemma 4.12. Thus $t_{1}\left(J_{k}[k] / T\left(J_{k}[k]\right) ; \mathbf{D}^{(h)}\right) \leq N h+d_{k}+k \leq N h+3 d$, and so $t_{1}\left(I / T(I) ; \mathbf{D}^{(h)}\right) \leq N h+3 d \leq(N+3) d$. Thus $t_{1}(I / T(I) ; \mathbf{D}) \leq(N+3) d$ by Proposition 4.7.

Now suppose that $d+b_{s}>b_{s+1}$; note that this implies $b_{s+1}<2 d$. Put $h=b_{s+1}$. As $\mathbf{D}^{(h)}$-modules, we have $I=\bigoplus_{k=0}^{h-1} J_{k}[k]$, where once again J_{k} is an ideal of $\mathbf{D}^{(h)}$. If $0 \leq k \leq d$ then J_{k} is generated in degrees 0 and h, while if $d<k \leq h-1$ then J_{k} is generated in degree 0 . We have $t_{1}\left(J_{k} ; \mathbf{D}^{(h)}\right)=0$ for $k>d$. Now suppose $0 \leq k \leq d$. The module $T^{[h]}\left(\mathbf{k} /\left(\mathfrak{a}_{i}+T(\mathbf{k})\right)\right)$ is killed by $a^{[h]}(N)$ for $i=k$ and $i=k+h$, as $k+h \leq 3 d$. Thus $t_{1}\left(J_{k} / T\left(J_{k}\right) ; \mathbf{D}^{(h)}\right) \leq$ $N h+h$ by Lemma 4.12. The same reasoning as in the previous paragraph gives $t_{1}(I / T(I) ; \mathbf{D}) \leq N h+h+d \leq h(N+1)+d \leq(2 N+3) d$.
4.5. Graded-coherence. Let π_{\bullet} be a π-sequence in \mathbf{k}. We define a π ideal to be an ideal of \mathbf{k} generated by some of the π_{n} 's. We will consider the following three conditions:
(A1) The ring \mathbf{k} is coherent.
(A2) For any finitely generated ideal \mathfrak{a} of \mathbf{k} and any $h \geq 1$, the torsion $T^{[h]}(\mathbf{k} / \mathfrak{a})$ is bounded, that is, annihilated by $a^{[h]}(n)$ for some n (depending on h and \mathfrak{a}).
(A3) Given any strictly ascending chain of finitely generated $\pi^{[h]}$-ideals $\mathfrak{a}_{1} \subset$ $\mathfrak{a}_{2} \subset \cdots$ there is some i for which the quotient $\mathbf{D}^{[h]} / \mathfrak{a}_{i} \mathbf{D}^{[h]}$ is gradedcoherent.

Note that (A3) is vacuously true if there are no strictly ascending chains of $\pi^{[h]}$-ideals. This is the case, for instance, if the π_{n} 's belong to the image of a ring homomorphism $\mathbf{k}_{0} \rightarrow \mathbf{k}$ with \mathbf{k}_{0} Noetherian. Our main result on gradedcoherence of GDPAs is the following theorem.

THEOREM 4.13. Let $\mathbf{D}=\mathbf{D}\left(\mathbf{k}, \pi_{\bullet}\right)$ be a generalized divided power algebra. Then $\mathbf{D}^{[h]}$ is graded-coherent for all $h \geq 1$ if and only if conditions (A1), (A2), and (A3) hold.

Corollary 4.14. Let \mathbf{D} be the classical divided power algebra over \mathbf{k}. Then \mathbf{D} is graded-coherent if and only if \mathbf{k} is coherent and for all finitely generated ideals \mathfrak{a} of \mathbf{k} the module $(\mathbf{k} / \mathfrak{a})_{\text {tors }}$ is annihilated by some nonzero integer.

Remark 4.15. To conclude that \mathbf{D} is graded-coherent, it is enough to know that (A3) holds for $h=1$. One still needs (A2) for all $h \geq 1$, however.

The rest of this section is devoted to the proof of the theorem. We fix $\mathbf{D}=\mathbf{D}\left(\mathbf{k}, \pi_{\bullet}\right)$.

Lemma 4.16. Suppose (A1) and (A2) hold. Then for any finitely generated ideal \mathfrak{a} of \mathbf{k} and any $h \geq 1$ the \mathbf{k}-module $T^{[h]}(\mathbf{k} / \mathfrak{a})$ is finitely presented.

Proof. By (A2), $T^{[h]}(\mathbf{k} / \mathfrak{a})$ is equal to the kernel of the multiplication-by$a(n) \operatorname{map} \mathbf{k} / \mathfrak{a} \rightarrow \mathbf{k} / \mathfrak{a}$ for some n. Since $\mathbf{k} / \mathfrak{a}$ is finitely presented and \mathbf{k} is coherent, this kernel is again finitely presented.

Lemma 4.17. Suppose (A1) and (A2) hold. Let I be a finitely generated ideal of \mathbf{D}. Then $I / T(I)$ is finitely presented.

Proof. By (A2) and Theorem 4.9, $t_{1}(I / T(I) ; \mathbf{D})<\infty$. By (A1), $\operatorname{Tor}_{1}^{\mathbf{D}}(I / T(I), \mathbf{k})_{n}$ is finitely presented as a \mathbf{k}-module for each n. Combining these two statements, we see that $\operatorname{Tor}_{\mathbf{D}}^{1}(I / T(I), \mathbf{k})$ is finitely presented as a k-module, and this implies that $I / T_{1}(I)$ is finitely presented as a \mathbf{D} module.

Lemma 4.18. Suppose that conditions (A1) and (A2) hold. Suppose also that for any $n \geq 2$ the quotient $\mathbf{D} /\left(\pi_{n}\right)$ is graded-coherent. Then \mathbf{D} is gradedcoherent.

Proof. Let I be a finitely generated ideal of \mathbf{D}. Then $I / T(I)$ is finitely presented by Lemma 4.17. It follows that $T(I)$ is finitely generated, and to prove the proposition it is enough to show that it is finitely presented.

Suppose $T(\mathbf{k})$ is killed by $a(N)$, and let $\mathbf{D}^{\prime}=\mathbf{D} /(a(N))$. The following lemma shows that \mathbf{D}^{\prime} is graded-coherent. The natural map $\mathbf{D} \otimes_{\mathbf{k}} T(\mathbf{k}) \rightarrow T(\mathbf{D})$ is an isomorphism. By Lemma 4.16, $T(\mathbf{k})$ is finitely presented as a \mathbf{k}-module, and so $T(\mathbf{D})$ is finitely presented as a \mathbf{D}-module. Since $a(N)$ kills $T(\mathbf{D})$, it follows that $T(\mathbf{D})$ is finitely presented as a \mathbf{D}^{\prime}-module. As $T(I)$ is a finitely generated \mathbf{D}^{\prime}-submodule of $T(\mathbf{D})$, it is therefore finitely presented as a \mathbf{D}^{\prime} module, and therefore as a \mathbf{D}-module.

Lemma 4.19. Let \mathbf{k} be a coherent ring, let R be a graded \mathbf{k}-algebra that is flat over \mathbf{k}, and let x and y be elements of \mathbf{k} such that $R /(x)$ and $R /(y)$ are graded-coherent. Then $R /(x y)$ is graded-coherent.

Proof. Consider the 4 -term exact sequence

$$
0 \rightarrow I \rightarrow \mathbf{k} /(x) \xrightarrow{y} \mathbf{k} /(x y) \rightarrow \mathbf{k} /(y) \rightarrow 0 .
$$

Since \mathbf{k} is coherent the ideal I is finitely generated. Tensoring up with R, we find

$$
0 \rightarrow I \otimes_{\mathbf{k}} R \rightarrow R /(x) \xrightarrow{y} R /(x y) \rightarrow R /(y) \rightarrow 0 .
$$

This shows that $R /(x y)$ maps onto the graded-coherent ring $R /(y)$ with finitely presented kernel (the left two terms gives a presentation for the kernel), and is thus graded-coherent.

Lemma 4.20. Suppose that conditions (A1) and (A2) hold. Suppose also that there is a positive integer h such that π_{h} belongs to the Jacobson radical of \mathbf{k} and the quotient $\mathbf{D} /\left(\pi_{n}\right)$ is graded-coherent for all proper multiples n of h. Then \mathbf{D} is graded-coherent.

Proof. It suffices to show that $\mathbf{D}^{(h)}$ is graded-coherent. Of course, it is the same to show that its regrade is coherent, and this is isomorphic to $\mathbf{D}^{[h]}$. Conditions (A2) still holds for $\pi_{\bullet}^{[h]}$, since $T^{\left[h^{\prime}\right]}\left(-, \pi_{\bullet}^{[h]}\right)=T^{\left[h h^{\prime}\right]}\left(-, \pi_{\bullet}\right)$ by Proposition 2.5. Since $\mathbf{D} /\left(\pi_{h n}\right)$ is graded-coherent for $n>1$, it follows that $\mathbf{D}^{(h)} /\left(\pi_{h n}\right)$ is graded-coherent (by Proposition 3.11) for $n>1$. Since $\pi_{n}^{[h]}$ is associate to $\pi_{h n}$ by Proposition 2.8(b), it follows that $\mathbf{D}^{[h]} /\left(\pi_{n}^{[h]}\right)$ is graded-coherent for $n>1$ as well. Thus $\mathbf{D}^{[h]}$ is graded-coherent by Lemma 4.18.

Lemma 4.21. Suppose (A1), (A2), and (A3) hold. Then $\mathbf{D}^{[h]}$ is gradedcoherent for all $h \geq 1$.

Proof. It suffices to treat the $h=1$ case. Let Σ be the set of π-ideals \mathfrak{a} for which $\mathbf{D} / \mathfrak{a}$ is not graded-coherent. It suffices to show that Σ is empty, for then $\mathbf{D} / \mathfrak{a}$ is graded-coherent for every π-ideal \mathfrak{a}, including $\mathfrak{a}=(0)$. Thus suppose for the sake of contradiction that Σ is non-empty. Let \mathfrak{a} be a maximal element of Σ, which exists by $(\mathrm{A} 3)$, and put $\mathbf{D}^{\prime}=\mathbf{D} / \mathfrak{a} \mathbf{D}$. Now, \mathfrak{a} contains only finitely many of the π_{n} 's, for otherwise \mathbf{D}^{\prime} would be coherent by Proposition 3.14. Let h be the largest integer such that $\pi_{h} \in \mathfrak{a}$. (Note that $\pi_{1}=0$ is in \mathfrak{a}, so this makes sense.) If n is a proper multiple of h, then π_{n} does not belong to \mathfrak{a}, and so $\mathfrak{a}+\left(\pi_{n}\right)$ is not in Σ, and so $\mathbf{D}^{\prime} / \pi_{n} \mathbf{D}^{\prime}$ is graded-coherent. Thus, \mathbf{D}^{\prime} is graded-coherent by Lemma 4.20, a contradiction. We thus see that Σ is empty, which completes the proof.

Lemma 4.22. Suppose \mathbf{D} is graded-coherent. Then for any finitely generated ideal \mathfrak{a} of \mathbf{k} the torsion $T(\mathbf{k} / \mathfrak{a})$ is bounded.

Proof. Let \mathfrak{a} be given, and let I be the ideal of \mathbf{D} generated by $\mathfrak{a} x^{[0]}$ and $x^{[1]}$. Use notation as in the first paragraph of the proof of Lemma 4.11. Since \mathbf{D} is graded-coherent, K is finitely generated. Suppose it is generated in degrees $\leq d$. Let $\bar{\beta} \in \mathbf{k} / \mathfrak{a}$ be killed by $a(n)$. Let $\beta \in \mathbf{k}$ be a lift of $\bar{\beta}$, and let $\alpha=-a(n) \beta$, so that $\alpha \in \mathfrak{a}$. Let $R=\alpha x^{[n]} e_{0}+\beta x^{[n-1]} e_{1}$. Then $\Phi(R)=0$, so $R \in K$. Since K is generated in degrees $\leq d$, we can write $R=\sum_{i=1}^{d} x^{[n-i]} R_{i}$, where R_{i} is a degree i element of K. (Note that $K_{0}=0$.) Write $R_{i}=\alpha_{i} x{ }^{[i]} e_{0}+\beta_{i} x^{[i-1]} e_{1}$ with $\alpha_{i} \in \mathfrak{a}$. Since $\Phi\left(R_{i}\right)=0$, we find $\alpha_{i}+a(i) \beta_{i}=0$, so, writing $\bar{\beta}_{i}$ for the image of β_{i} in $\mathbf{k} / \mathfrak{a}$, we find $a(i) \bar{\beta}_{i}=0$. From the expression relating R and the R_{i}, we find $\beta=\sum_{i=1}^{d} C(n-1, i-1) \beta_{i}$. Thus if D is a common multiple
of $1, \ldots, d$ (e.g., $D=d!$) then $a(D) \bar{\beta}=0$. Therefore, $T(\mathbf{k} / \mathfrak{a})$ is killed by $a(D)$, which completes the proof.

Proof of Theorem 4.13. If (A1), (A2), and (A3) hold then $\mathbf{D}^{[h]}$ is gradedcoherent for all $h \geq 1$ by Lemma 4.21. Conversely, if $\mathbf{D}^{[h]}$ is graded-coherent then (A1) necessarily holds, as does (A3), since any quotient of $\mathbf{D}^{[h]}$ by a finitely generated homogeneous ideal is graded-coherent, and (A2) holds at h by Lemma 4.22. Thus, if $\mathbf{D}^{[h]}$ is graded-coherent for all $h \geq 1$ then (A2) holds as well.
4.6. Divided power algebras in multiple variables. Let \mathbf{k} be the classical divided power algebra over $\mathbf{Z}_{(p)}$ in a single variable y, regarded as a non-graded ring, and let \mathbf{D} be the classical divided power algebra over \mathbf{k} in a single variable x. Note that as an non-graded ring, \mathbf{D} is just the classical divided power algebra over \mathbf{k} in x and y. Let \mathfrak{a} be the principal ideal of \mathbf{k} generated by $y^{[1]}$. Then the image of $y^{\left[p^{r}\right]}$ in $\mathbf{k} / \mathfrak{a}$ is annihilated by p^{r} but no smaller power of p. Thus condition (A2) fails, and so \mathbf{D} is not graded-coherent, and therefore not coherent either.

Here is an explicit example demonstrating the failure of coherence. Consider the ideal I of \mathbf{D} generated by $y^{[1]}$ and $x^{[1]}$. Then

$$
\left(y^{\left[p^{r}-1\right]} x^{\left[p^{r}\right]}\right) y^{[1]}-\left(y^{\left[p^{r}\right]} x^{\left[p^{r}-1\right]}\right) x^{[1]}=0
$$

is a linear relation of between the generators, and does not come from lower degree relations. Thus I is not finitely presented. Note that if we remember the grading on \mathbf{k} and regard \mathbf{D} as bigraded then I is bihomogeneous. This shows that \mathbf{D} is not even graded-coherent with respect to its bigrading.

5. Special resolutions

5.1. Statement of results. Let \mathbf{D} be a GDPA over \mathbf{k}. Let M be a \mathbf{D} module. We say that M is principal special if it is isomorphic to a module of the form $(\mathbf{D} / \mathfrak{a} \mathbf{D})^{(h)}$ for some integer $h \geq 1$ and ideal \mathfrak{a} of \mathbf{k} containing π_{h}. We say that M is special if it admits a finite length filtration where the graded pieces are principal special. A special resolution of a \mathbf{D}-module M is a resolution $S_{\bullet} \rightarrow M$ where each S_{i} is special. The special dimension of M, denoted $\operatorname{sd}(M ; \mathbf{D})$ or just $\operatorname{sd}(M)$, is the minimum integer n for which there exists a special resolution $S \bullet \rightarrow M$ with $S_{i}=0$ for all $i>n$, or ∞ if no such resolution exists. Note that $\operatorname{sd}(M)=0$ if and only if M is special.

Theorem 5.1. Suppose \mathbf{k} is Noetherian and M is a finitely presented \mathbf{D} module. Then $\operatorname{sd}(M)<\infty$, that is, M admits a finite length special resolution. Moreover, if \mathbf{k} has finite Krull dimension d then $\operatorname{sd}(M) \leq d+1$.

The proof will take the entire section. The basic idea is as follows. First, suppose \mathbf{k} is a field. If infinitely many π_{n} 's vanish then every finitely presented module is special. If not (e.g., if $\mathbf{D}=\mathbf{k}[x]$) this need not be the case, but at
least every submodule of a finitely generated free module is special. Now suppose \mathbf{k} is a domain with fraction field \mathbf{K}, let M be a finitely presented D-module, and choose short exact sequence

$$
0 \rightarrow N \rightarrow F \rightarrow M \rightarrow 0
$$

with F finite free. Then, as stated above, $N \otimes_{\mathbf{k}} \mathbf{K}$ is special as a $\mathbf{D}_{\mathbf{K}}$-module. We show that there is a special \mathbf{D}-module N^{\prime} such that $N \otimes_{\mathbf{k}} \mathbf{K} \cong N^{\prime} \otimes_{\mathbf{k}} \mathbf{K}$. Scaling this isomorphism appropriately, we can assume $N^{\prime} \subset N$ and that the quotient is a torsion \mathbf{k}-module. The result now follows from Noetherian induction and the fact that in a short exact sequence the special dimension of one term can be controlled by the that of the other two.

The notions of special module and special resolution can easily be adapted to the case of graded modules. The above theorem remains true in the graded case, and the proof we give applies without change. In fact, everything still goes through if the coefficient ring \mathbf{k} is equipped with a grading, though in this case some minor adjustments in our proof must be made (specifically when using the fraction field of \mathbf{k}).
5.2. Preliminary results. We begin by proving some basic facts about special resolutions and special dimension.

Lemma 5.2. Suppose that $f: M \rightarrow N$ is a surjection of principal special D-modules. Then $\operatorname{ker}(f)$ is special.

Proof. Suppose $M=(\mathbf{D} / \mathfrak{a} \mathbf{D})^{(r)}$ and $N=(\mathbf{D} / \mathfrak{b} \mathbf{D})^{(s)}$. We proceed by a number of reductions. First, since f is surjective, every element of N is annihilated by \mathfrak{a}. But the annihilator of $1 \in N$ is exactly \mathfrak{b}, and so $\mathfrak{a} \subset \mathfrak{b}$. Replacing \mathbf{k} by $\mathbf{k} / \mathfrak{a}$, we may as well assume $\mathfrak{a}=0$. The map f obviously factors as $M \rightarrow M / \mathfrak{b} M \xrightarrow{\bar{f}} N$ for some \bar{f}. We have a short exact sequence

$$
0 \rightarrow \mathfrak{b} M \rightarrow \operatorname{ker}(f) \rightarrow \operatorname{ker}(\bar{f}) \rightarrow 0
$$

The module $\mathfrak{b} M$ is special (filter \mathfrak{b} so that the graded pieces are cyclic \mathbf{k} modules), and so it suffices to show that $\operatorname{ker}(\bar{f})$ is special. Thus, we may as well replace M with $M / \mathfrak{b} M$. Furthermore, replacing \mathbf{k} with $\mathbf{k} / \mathfrak{b}$, we may assume $\mathfrak{b}=0$.

We have thus reduced to the case $M=\mathbf{D}^{(r)}$ and $N=\mathbf{D}^{(s)}$. We claim $s \geq r$. Indeed, suppose $s<r$. Then $x^{[s]}$ annihilates M, and therefore annihilates N. But this is not the case, since $x^{[s]} \cdot 1 \neq 0$ in N. Now, since $\pi_{r}=\pi_{s}=0$, we must have $r \mid s$ or $s \mid r$, and so, by the inequality $s \geq r$, we have $r \mid s$. We may as well regrade and replace $\mathbf{D}^{(r)}$ with \mathbf{D}. In other words, we may assume $M=\mathbf{D}$ and $N=\mathbf{D}^{(s)}$.

Now, $N=\mathbf{D} / I$, where I is the ideal $\left(x^{[1]}, \ldots, x^{[s-1]}\right)$. Thus, f factors as $M \rightarrow M / I \xrightarrow{\bar{f}} N$ for some \bar{f}. Since M / I is equal to N, we may as well regard \bar{f} as an endomorphism of N. Since it is surjective and N is finitely generated,
it is necessarily an isomorphism [Stacks, Tag 05G8]. Thus, $\operatorname{ker}(f)=I$. One easily sees that I has a finite length filtration with successive quotients $\mathbf{D}^{(s)}$, and is therefore special.

Lemma 5.3. Let M be a special \mathbf{D}-module. Then there exists a finite free D-module F and a surjection $f: F \rightarrow M$ such that $\operatorname{ker}(f)$ is special.

Proof. Let

$$
0 \rightarrow M^{\prime \prime} \rightarrow M \rightarrow M^{\prime} \rightarrow 0
$$

be a short exact sequence where M^{\prime} is principal special and $M^{\prime \prime}$ is special and built out of fewer principal specials than M (e.g., $M^{\prime \prime}$ is the last piece in the filtration that M is required to have). By induction, we can find a short exact sequence

$$
0 \rightarrow K^{\prime \prime} \rightarrow F^{\prime \prime} \rightarrow M^{\prime \prime} \rightarrow 0
$$

with $F^{\prime \prime}$ finite free and $K^{\prime \prime}$ special. Let

$$
0 \rightarrow K^{\prime} \rightarrow F^{\prime} \rightarrow M^{\prime} \rightarrow 0
$$

be a short exact sequence with F^{\prime} finite free. Then K^{\prime} is special by the previous lemma. Lift $F^{\prime} \rightarrow M^{\prime}$ to a map $F^{\prime} \rightarrow M$. The map $F^{\prime} \oplus F^{\prime \prime} \rightarrow M$ is then surjective. If K denotes its kernel, then we have a short exact sequence

$$
0 \rightarrow K^{\prime \prime} \rightarrow K \rightarrow K^{\prime} \rightarrow 0
$$

and so K is special.
Lemma 5.4. Let M be a \mathbf{D}-module with $0<\operatorname{sd}(M)<\infty$. Then we can find a surjection $f: F \rightarrow M$ with F finite free such that $\operatorname{sd}(\operatorname{ker}(f))=\operatorname{sd}(M)-1$.

Proof. Let

$$
0 \rightarrow P_{r} \rightarrow \cdots \rightarrow P_{0} \rightarrow M \rightarrow 0
$$

be a resolution with P_{i} special for all i. Let

$$
0 \rightarrow Q \rightarrow F \rightarrow P_{0} \rightarrow 0
$$

be a short exact sequence with F finite free and Q special; this exists by the previous lemma. Consider the short exact sequence

$$
0 \rightarrow K \rightarrow F \rightarrow M \rightarrow 0
$$

Let Q^{\prime} be the kernel of the surjection $F \oplus P_{1} \rightarrow P_{0}$. We have a short exact sequence

$$
0 \rightarrow Q \rightarrow Q^{\prime} \rightarrow P_{1} \rightarrow 0
$$

which shows that Q^{\prime} is special. The projection map $F \oplus P_{1} \rightarrow F$ induces a surjection $Q^{\prime} \rightarrow K$, and one easily verifies that

$$
0 \rightarrow P_{r} \rightarrow \cdots \rightarrow P_{2} \rightarrow Q^{\prime} \rightarrow K \rightarrow 0
$$

is a resolution of K. Thus $\operatorname{sd}(K) \leq \operatorname{sd}(M)-1$. From the obvious inequality $\operatorname{sd}(M) \leq 1+\operatorname{sd}(K)$, we conclude $\operatorname{sd}(K)=\operatorname{sd}(M)-1$.

Proposition 5.5. Let M be a D-module with $\operatorname{sd}(M) \leq r<\infty$. Then there is a resolution

$$
0 \rightarrow P \rightarrow F_{r-1} \rightarrow \cdots \rightarrow F_{0} \rightarrow M \rightarrow 0
$$

where F_{i} is finite free and P is special.
Lemma 5.6. Let D be a ring, let $Q_{\bullet} \rightarrow M$ and $P_{\bullet} \rightarrow N$ be resolutions of the same length r such that Q_{0}, \ldots, Q_{r-1} are free. Then any map $f: M \rightarrow N$ can be lifted to a map of resolutions $Q_{\bullet} \rightarrow P_{\bullet}$, that is, we can fill in the following diagram:

Proof. When Q_{r} is also free, this is a standard result about free resolutions. The proof of that result applies here as well: the point is that one never needs to lift maps from Q_{r}.

Proposition 5.7. Suppose that

$$
0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow 0
$$

is a short exact sequence of \mathbf{D}-modules. Then
(a) $\operatorname{sd}\left(M_{1}\right) \leq \max \left(\operatorname{sd}\left(M_{2}\right), \operatorname{sd}\left(M_{3}\right), 1\right)$,
(b) $\operatorname{sd}\left(M_{2}\right) \leq \max \left(\operatorname{sd}\left(M_{1}\right), \operatorname{sd}\left(M_{3}\right)\right)$,
(c) $\operatorname{sd}\left(M_{3}\right) \leq \max \left(\operatorname{sd}\left(M_{1}\right), \operatorname{sd}\left(M_{2}\right)\right)+1$.

In particular, if two of the modules admit finite length special resolutions then so does the third.

Proof. (a) Let $r=\max \left(\operatorname{sd}\left(M_{2}\right), \operatorname{sd}\left(M_{3}\right), 1\right)$. First suppose $r \geq 2$. Let $P_{\bullet} \rightarrow$ M_{2} and $Q_{\bullet} \rightarrow M_{3}$ be special resolutions of length r such that P_{0}, \ldots, P_{r-1} and Q_{0}, \ldots, Q_{r-1} are free. Lift the $M_{2} \rightarrow M_{3}$ to a map of resolutions $P_{\bullet} \rightarrow Q_{\bullet}$. Then we have a resolution

$$
0 \rightarrow P_{r} \rightarrow P_{r-1} \oplus Q_{r} \rightarrow \cdots \rightarrow P_{1} \oplus Q_{2} \rightarrow \operatorname{ker}\left(P_{0} \oplus Q_{1} \rightarrow Q_{0}\right) \rightarrow M_{1} \rightarrow 0
$$

Since $P_{0} \oplus Q_{1} \rightarrow Q_{0}$ is a surjection of free modules, its kernel is free, and so the above is a special resolution of M_{1} of length at most r.

Now suppose $r=1$. Let

$$
0 \rightarrow Q_{1} \rightarrow Q_{0} \rightarrow M_{3} \rightarrow 0
$$

be a special resolution with Q_{0} free. Let

$$
0 \rightarrow F_{1} \rightarrow F_{0} \rightarrow M_{2} \rightarrow 0
$$

be a special resolution with F_{0} free. Lift $Q_{0} \rightarrow M_{3}$ to a map $Q_{0} \rightarrow M_{2}$ and lift $F_{0} \rightarrow M_{2} \rightarrow M_{3}$ to a map $F_{0} \rightarrow Q_{0}$. Let $P_{0}=F_{0} \oplus Q_{0}$, and let P_{1} be the kernel of the natural surjection $P_{0} \rightarrow M_{2}$. We have a short exact sequence

$$
0 \rightarrow F_{1} \rightarrow P_{1} \rightarrow Q_{0} \rightarrow 0
$$

and so P_{1} is special. The square

commutes, and all maps are surjective. Thus, $P_{0} \rightarrow Q_{0}$ maps P_{1} into Q_{1}. We thus have a resolution

$$
0 \rightarrow P_{1} \rightarrow \operatorname{ker}\left(P_{0} \oplus Q_{1} \rightarrow Q_{0}\right) \rightarrow M_{1} \rightarrow 0
$$

Since $P_{0} \rightarrow Q_{0}$ is surjective, its kernel is free, and we have a short exact sequence

$$
0 \rightarrow \operatorname{ker}\left(P_{0} \rightarrow Q_{0}\right) \rightarrow \operatorname{ker}\left(P_{0} \oplus Q_{1} \rightarrow Q_{0}\right) \rightarrow Q_{1} \rightarrow 0
$$

and so $\operatorname{ker}\left(P_{0} \oplus Q_{1} \rightarrow Q_{0}\right)$ is special. Thus, $\operatorname{sd}\left(M_{1}\right) \leq 1$.
(b) Let $r=\max \left(\operatorname{sd}\left(M_{1}\right), \operatorname{sd}\left(M_{3}\right)\right)$. If $r=0$, then M_{2} is clearly special, so assume $r \geq 1$. Let $P_{\bullet} \rightarrow M_{1}$ and $Q_{\bullet} \rightarrow M_{3}$ be special resolutions of length r such that Q_{0}, \ldots, Q_{r-1} are free. Following the proof of the "horseshoe lemma," we can build a partial resolution

$$
0 \rightarrow K \rightarrow P_{r-1} \oplus Q_{r-1} \rightarrow \cdots \rightarrow P_{0} \oplus Q_{0} \rightarrow M_{2} \rightarrow 0
$$

where K is by definition the kernel of the map $P_{r-1} \oplus Q_{r-1} \rightarrow P_{r-2} \oplus Q_{r-2}$ (or the map $P_{r-1} \oplus Q_{r-1} \rightarrow M_{2}$ if $r=1$). By the snake lemma, we have a short exact sequence

$$
0 \rightarrow P_{r} \rightarrow K \rightarrow Q_{r} \rightarrow 0
$$

and so K is special. Thus the above is a special resolution of M_{2}, and so $\operatorname{sd}\left(M_{2}\right) \leq r$.
(c) Let $r=\max \left(\operatorname{sd}\left(M_{1}\right), \operatorname{sd}\left(M_{2}\right)\right)$, and let $P_{\bullet} \rightarrow M_{1}$ and $Q_{\bullet} \rightarrow M_{2}$ be special resolutions of length r such that P_{0}, \ldots, P_{r-1} are free. Lift the map $M_{1} \rightarrow M_{2}$ to a map of resolutions $P_{\bullet} \rightarrow Q_{\bullet}$. Then we have a resolution

$$
0 \rightarrow P_{r} \rightarrow P_{r-1} \oplus Q_{r} \rightarrow \cdots \rightarrow P_{0} \oplus Q_{1} \rightarrow Q_{0} \rightarrow M_{3} \rightarrow 0
$$

and so $\operatorname{sd}\left(M_{3}\right) \leq r+1$.

5.3. Special resolutions. We now start on the proof of Theorem 5.1.

Lemma 5.8. Suppose \mathbf{k} is a field and infinitely many of the π_{n} vanish. Then any finitely presented (graded) \mathbf{D}-module is special.

Proof. Let M be a finitely presented D-module. By Proposition 3.15, there exists h and a finitely generated $\mathbf{D}_{<h}$-module N such that $M=N \otimes_{\mathbf{k}} \mathbf{D}^{(h)}$ as a module over $\mathbf{D}=\mathbf{D}_{<h} \otimes_{\mathbf{k}} \mathbf{D}^{(h)}$. Since $\mathbf{D}_{<h}$ is a local artinian ring, N admits a finite filtration such that each graded piece gets annihilated by the maximal ideal. Tensoring with the exact funtor $-\otimes_{\mathbf{k}} \mathbf{D}^{(h)}$, we see that M has a filtration such that each graded piece is a free $\mathbf{D}^{(h)}$-module and so M is special.

Lemma 5.9. Suppose \mathbf{k} is a field and F is a finite free \mathbf{D}-module. Then any finitely generated (graded) submodule of F is special.

Proof. The case when infinitely many of the π_{n} vanish follows from the previous lemma and so we may assume that only finitely many of the π_{n} are zero. Let h be the largest such that $\pi_{h}=0$ and let $R=\mathbf{D}_{<h}$. Then \mathbf{D} is isomorphic to $R \otimes_{\mathbf{k}} \mathbf{D}^{(h)}=R[y]$ where y is an indeterminate of degree h. Let I be a submodule of F. Since R is a local artinian ring (say with maximal ideal \mathfrak{m}) there exists a finite filtration of I such that the graded pieces are of the form $\frac{\mathfrak{m}^{i} I}{\mathfrak{m}^{i+1} I}$. Clearly, each such graded piece is a torsion-free $\mathbf{k}[y]$-module. Since $\mathbf{k}[y]$ is a principal ideal domain the result follows from the structure theorem of finitely generated modules over a principal ideal domain.

Lemma 5.10. Let \mathbf{k} be a domain and let $\mathbf{K}=\operatorname{Frac}(\mathbf{k})$. Then every special $\mathbf{D} \otimes_{\mathbf{k}} \mathbf{K}$-module P has the form $Q \otimes_{\mathbf{k}} \mathbf{K}$ for some special \mathbf{D}-module Q.

Proof. By a "lattice" in a $\mathbf{D} \otimes_{\mathbf{k}} \mathbf{K}$ module P, we mean a \mathbf{D}-submodule Q of P such that $Q \otimes_{\mathbf{k}} \mathbf{K}=P$. Thus the lemma states that every special $\mathbf{D} \otimes_{\mathbf{k}} \mathbf{K}$ module admits a special lattice, that is, one that is special as a \mathbf{D}-module.

First, suppose P is principal special. Then $P \cong\left(\mathbf{D} \otimes_{\mathbf{k}} \mathbf{K}\right)^{(h)}$ for some h with $\pi_{h}=0$. One can then take $Q=\mathbf{D}^{(h)}$. Thus, the lemma holds in this case.

Now suppose P is an arbitrary special module. Choose an exact sequence

$$
0 \rightarrow P^{\prime} \rightarrow P \rightarrow P^{\prime \prime} \rightarrow 0
$$

where $P^{\prime \prime}$ is principal special and P^{\prime} is special and built out of fewer principal specials than P. Let $Q^{\prime \prime} \subset P^{\prime \prime}$ be a special lattice, which exists by the previous paragraph, and let $Q^{\prime} \subset P^{\prime}$ be a special lattice, which exists by induction. Let $\widetilde{Q}^{\prime \prime} \subset P$ be a finitely generated \mathbf{D}-submodule of P that subjects onto $Q^{\prime \prime}$. (One can construct $\widetilde{Q}^{\prime \prime}$ by lifting generators of $Q^{\prime \prime}$ and taking the \mathbf{D}-module they span.) Then $\widetilde{Q}^{\prime \prime} \cap P^{\prime}$ is a finitely generated \mathbf{D}-submodule of P^{\prime}, as it coincides with $\operatorname{ker}\left(\widetilde{Q}^{\prime \prime} \rightarrow Q^{\prime \prime}\right)$ and $Q^{\prime \prime}$ is finitely presented. Since Q^{\prime} is a lattice in P^{\prime},
it follows that $\widetilde{Q}^{\prime \prime} \cap P^{\prime}$ is contained in αQ^{\prime} for some nonzero $\alpha \in \mathbf{K}$. Let $Q=\alpha Q^{\prime}+\widetilde{Q}^{\prime \prime}$. Then we have a short exact sequence

$$
0 \rightarrow Q^{\prime} \xrightarrow{\alpha} Q \rightarrow Q^{\prime \prime} \rightarrow 0
$$

and so Q is special. It is clear that Q is a lattice in P, and so the result follows.

Proof of Theorem 5.1. We first show that $\operatorname{sd}(M)$ is finite. We proceed by Noetherian induction, so we assume the result holds if M has nonzero annihilator in \mathbf{k}. Note that if P is special as a $\mathbf{D} / \mathfrak{a} \mathbf{D}$-module then it is also special as a \mathbf{D}-module, and so if M is annihilated by $\mathfrak{a} \subset \mathbf{k}$ then $\operatorname{sd}(M ; \mathbf{D}) \leq \operatorname{sd}(M ; \mathbf{D} / \mathfrak{a} \mathbf{D})$. We now consider two cases.

Case 1: \mathbf{k} is not a domain. Let $x y=0$ with $x, y \neq 0$. We have an exact sequence

$$
0 \rightarrow x M \rightarrow M \rightarrow M / x M \rightarrow 0
$$

and so by Proposition $5.7(\mathrm{~b})$, we have

$$
\begin{equation*}
\operatorname{sd}(M) \leq \max (\operatorname{sd}(x M), \operatorname{sd}(M / x M)) \tag{5.1}
\end{equation*}
$$

Since $x M$ and $M / x M$ have nonzero annihilators, the right-hand side is finite by the inductive hypothesis, and so $\operatorname{sd}(M)<\infty$.

Case 2: \mathbf{k} is a domain. Let $\mathbf{K}=\operatorname{Frac}(\mathbf{k})$. Let

$$
0 \rightarrow M^{\prime} \rightarrow F \rightarrow M \rightarrow 0
$$

be a short exact sequence with F finite free. Then $M^{\prime} \otimes_{\mathbf{k}} \mathbf{K} \subset F \otimes_{\mathbf{k}} \mathbf{K}$, and so $M^{\prime} \otimes_{\mathbf{k}} \mathbf{K}$ is special by the Lemma 5.9 . We can therefore find a special \mathbf{D} module P and an isomorphism $M^{\prime} \otimes_{\mathbf{k}} \mathbf{K} \rightarrow P \otimes_{\mathbf{k}} \mathbf{K}$. Scaling this isomorphism, we can assume that M^{\prime} maps into P. Let N and N^{\prime} be the kernel and cokernel of the map $M^{\prime} \rightarrow P$, so that we have a 4 -term exact sequence

$$
0 \rightarrow N \rightarrow M^{\prime} \rightarrow P \rightarrow N^{\prime} \rightarrow 0
$$

Breaking this up into two short exact sequences and applying Proposition 5.7, we find

$$
\operatorname{sd}\left(M^{\prime}\right) \leq \max \left(\operatorname{sd}(N), \operatorname{sd}\left(N^{\prime}\right), 1\right)
$$

and so

$$
\begin{equation*}
\operatorname{sd}(M) \leq \max \left(\operatorname{sd}(N), \operatorname{sd}\left(N^{\prime}\right), 1\right)+1 \tag{5.2}
\end{equation*}
$$

But N and N^{\prime} have nonzero annihilator in \mathbf{k}, and so have finite special dimension by the inductive hypothesis. Thus $\operatorname{sd}(M)<\infty$.

Now suppose \mathbf{k} has finite Krull dimension d, and let us show $\operatorname{sd}(M) \leq d+1$. We proceed again by Noetherian induction. If \mathbf{k} is not a domain, then with notation as in Case 1, we have $\operatorname{sd}(x M) \leq d+1$ and $\operatorname{sd}(M / x M) \leq d+1$ by the inductive hypothesis, and so (5.1) gives $\operatorname{sd}(M) \leq d+1$. Now suppose \mathbf{k} is a domain, and use notation as in Case 2. If $d=0$, i.e., \mathbf{k} is a field, then M^{\prime} is
special and $\operatorname{sd}(M) \leq 1$. Now suppose $d \geq 1$. Then the support of N and N^{\prime} has dimension strictly less than d, and so $\operatorname{sd}(N) \leq d$ and $\operatorname{sd}\left(N^{\prime}\right) \leq d$ by the inductive hypothesis, and so (5.2) gives $\operatorname{sd}(M) \leq d+1$.

6. Grothendieck groups

6.1. Notation. For a coherent ring D, we let $\operatorname{Mod}_{D}^{\mathrm{fp}}$ denote the category of finitely presented D-modules, and we let $\mathrm{K}(D)$ be the Grothendieck group of $\operatorname{Mod}_{D}^{\mathrm{fp}}$. If D is graded then we let $\operatorname{Mod}_{D}^{\mathrm{fp}}$ denote the category of finitely presented graded D-modules, and we let $\underline{K}(D)$ be its Grothendieck group. We also apply these definitions to non-graded rings by regarding them as graded and concentrated in degree 0 . The group $\underline{K}(D)$ is naturally a module over the ring $R=\mathbf{Z}\left[t, t^{-1}\right]$ via $t[M]=[M[1]]$. We define R_{n} to be $\frac{1}{t^{n}-1} R$, thought of as an R-submodule of $\operatorname{Frac}(R)$, and put $R_{\infty}=\bigcup_{n \geq 1} R_{n}$.
6.2. Overview. Fix a GDPA D. The purpose of Section 6 is to study $K(\mathbf{D})$ and $\underline{K}(\mathbf{D})$. The existence of special resolutions gives us a spanning set for both of these groups, and the main difficulty lies in understanding the relations these classes satisfy. For this, we need to construct interesting maps out of the Grothendieck group. We first concentrate on the graded case. In Section 6.4, we construct the most obvious map out of $\underline{K}(\mathbf{D})$, the Hilbert series H. It turns out that this is enough to obtain a description of $\underline{K}(\mathbf{D})$ up to R-torsion. Based on the nature of the Hilbert series, in Section 6.5, we formulate a plausible description of $\underline{K}(\mathbf{D})$ (Conjecture 6.4). The Hilbert series is not powerful enough to prove this conjecture, so in Section 6.6 we define a subtler invariant, denoted L. In Section 6.7, we manage to prove Conjecture 6.4 under a certain hypothesis using H and L (Theorem 6.9). In Section 6.8, we show that $K(\mathbf{D})$ can be obtained from $\underline{K}(\mathbf{D})$ in a straightforward manner, and thus Conjecture 6.4 also predicts the structure of $\mathrm{K}(\mathbf{D})$. In Section 6.9, we apply the results to the classical divided power algebra. We show that the hypothesis of Theorem 6.9 is met, and thus deduce a complete description of the Grothendieck group. Finally, in Section 6.10, we show that the hypothesis of Theorem 6.9 is not met for the q-divided power algebra over $\mathbf{Z}[q]$, and so our results do not give a full description of the Grothendieck group in this case.
6.3. The classes $[M(\mathfrak{a}, h)]$. We begin by recording a useful spanning set for the Grothendieck group and some obvious relations they satisfy. For an ideal \mathfrak{a} of \mathbf{k} containing π_{h}, let $M(\mathfrak{a}, h)$ be the \mathbf{D}-module $(\mathbf{D} / \mathfrak{a} \mathbf{D})^{(h)}$. Note that any ideal contains $\pi_{1}=0$, and $M(\mathfrak{a}, 1)=\mathbf{D} / \mathfrak{a} \mathbf{D}$.

Proposition 6.1. Let \mathfrak{a} be an ideal of \mathbf{k} containing π_{h}. Then:
(a) The classes $[M(\mathfrak{a}, h)]$ span both $\mathrm{K}(\mathbf{D})$ and $\underline{\mathrm{K}}(\mathbf{D})$.

Now suppose $k \mid h$ and \mathfrak{a} also contains $\pi_{k}(e . g ., k=1)$. Then:
(b) We have $\frac{h}{k}[M(\mathfrak{a}, h)]=[M(\mathfrak{a}, k)]$ in $\mathrm{K}(\mathbf{D})$.
(c) We have $\frac{1-t^{h}}{1-t^{k}}[M(\mathfrak{a}, h)]=[M(\mathfrak{a}, k)]$ in $\underline{\mathrm{K}}(\mathbf{D})$.

Proof. (a) Follows immediately from the theorem on special resolutions (Theorem 5.1). For (b) and (c), note that

$$
M(\mathfrak{a}, k)=(\mathbf{D} / \mathfrak{a} \mathbf{D})^{(k)}=(\mathbf{D} / \mathfrak{a} \mathbf{D})_{<h}^{(k)} \otimes_{\mathbf{k}}(\mathbf{D} / \mathfrak{a} \mathbf{D})^{(h)}
$$

and $(\mathbf{D} / \mathfrak{a} \mathbf{D})_{<h}^{(k)}$ admits a filtration where the successive quotients are $\mathbf{k}[k], \ldots, \mathbf{k}[(h-1) k]$.
6.4. Hilbert series. Let M be a finitely presented graded \mathbf{D}-module. Define the Hilbert series of M, denoted $\mathrm{H}_{M}(t)$, by

$$
\mathrm{H}_{M}(t)=\sum_{n \in \mathbf{Z}}\left[M_{n}\right] t^{n},
$$

where $\left[M_{n}\right]$ denotes the class of the \mathbf{k}-module M_{n} in $\mathrm{K}(\mathbf{k})$. It is clear that the Hilbert series construction factors through the Grothendieck group and defines an R-linear map

$$
\mathrm{H}: \mathrm{K}(\mathbf{D}) \rightarrow \mathrm{K}(\mathbf{k})((t)) .
$$

Our main result about the Hilbert series is the following proposition.
Proposition 6.2. Let M be a finitely presented graded \mathbf{D}-module. Then there there exists $r \in \mathbf{N}$ and elements $a_{1}(t), \ldots, a_{r}(t) \in R \otimes \mathrm{~K}(\mathbf{k})$ such that

$$
\mathrm{H}_{M}(t)=\sum_{i=1}^{r} \frac{a_{i}(t)}{1-t^{i}} .
$$

Proof. By Proposition 6.1(a), it suffices to check this for the module $M=$ $M(\mathfrak{a}, h)$. We have

$$
M_{n}= \begin{cases}\mathbf{k} / \mathfrak{a} & \text { if } h \mid n, \\ 0 & \text { if } h \nmid n .\end{cases}
$$

Thus, $\mathrm{H}_{M}(t)=\frac{[\mathbf{k} / \mathrm{a}]}{1-t^{n}}$, and the result follows.
We now describe $\underline{K}(\mathbf{D})$ up to R-torsion. Consider the map

$$
\varphi_{0}: \mathrm{K}(\mathbf{k}) \rightarrow \mathrm{K}(\mathbf{D}), \quad[M] \mapsto(t-1)\left[\mathbf{D} \otimes_{\mathbf{k}} M\right] .
$$

Let S be the R-subalgebra of $\operatorname{Frac}(R)$ generated by $\frac{1}{t^{n}-1}$ for $n \geq 1$. We then have:

Proposition 6.3. The map $\varphi: \mathrm{K}(\mathbf{k}) \otimes_{\mathbf{z}} S \rightarrow \mathrm{~K}(\mathbf{D}) \otimes_{R} S$ induced by φ_{0} is an isomorphism.

Proof. Define $\psi: \mathrm{K}(\mathbf{D}) \otimes_{R} S \rightarrow \mathrm{~K}(\mathbf{k}) \otimes_{\mathbf{z}} S$ by $\psi([M])=\mathrm{H}_{M}(t)$. This map is well-defined by the previous proposition. We claim that ψ is inverse to the map φ in the statement of the theorem. We first check that $\psi \circ \varphi$ is the identity. Thus, let M be a finitely generated \mathbf{k}-module. Then $\varphi([M])=$ $(1-t)\left[M \otimes_{\mathbf{k}} \mathbf{D}\right]$. We have $\mathrm{H}_{M \otimes_{\mathbf{k}} D}(t)=\frac{[M]}{1-t}$, and so $\psi(\varphi([M]))=[M]$. We now check that $\varphi \circ \psi$ is the identity. It suffices to check $\varphi(\psi([M]))=[M]$ when $M=M(\mathfrak{a}, h)$, since these span $\mathrm{K}(\mathbf{D})$. We have $\psi([M])=\frac{1}{1-t^{h}}[\mathbf{k} / \mathfrak{a}]$, and so $\varphi(\psi([M]))=\frac{1-t}{1-t^{h}}[\mathbf{D} / \mathfrak{a} \mathbf{D}]$, which equals $[M]$ by Proposition 6.1(c). This completes the proof.
6.5. Conjectural description of $\underline{K}(\mathbf{D})$. Suppose M is a finitely presented graded D-module then, by Proposition 6.2, we can write

$$
\mathrm{H}_{M}(t)=\sum_{n \geq 1} \frac{a_{n}(t)}{1-t^{n}},
$$

where $a_{n}(t) \in R \otimes_{\mathbf{z}} \mathrm{K}(\mathbf{k})$. If we express $[M]$ as an R-linear combination of classes of the form $[M(\mathfrak{a}, h)]$, then only those classes with $n \mid h$ can contribute to a_{n} (assuming we do not artificially insert canceling factors into the numerator and denominator). That is, a_{n} is an R-linear combination of classes of the form $[N]$, where N belongs to the category \mathcal{C}_{n} of finitely generated k-modules supported on $\bigcup_{n \mid h} V\left(\pi_{h}\right)$. This suggests that a_{n} might be welldefined in $R \otimes \mathrm{~K}_{0}\left(\mathcal{C}_{n}\right)$. We conjecture that this is the case, and that, moreover, it completely explains the structure of $\underline{K}(\mathbf{D})$. We now give a precise statement.

For notational ease, let $\mathcal{K}_{n}=\mathrm{K}_{0}\left(\mathcal{C}_{n}\right)$. For $M \in \mathcal{C}_{n}$ we write $[M]_{n}$ for its class in \mathcal{K}_{n}. Note that \mathcal{C}_{1} is the category of all finitely generated \mathbf{k}-modules, and for $n \mid m$ we have an inclusion $\mathcal{C}_{m} \subset \mathcal{C}_{n}$. We define $\underline{\mathscr{K}}$ to be the quotient of the R-module

$$
\bigoplus_{n \geq 1} \mathcal{K}_{n} \otimes_{\mathbf{Z}} R_{n}
$$

by the relations

$$
\frac{[M]_{m}}{1-t^{n}}=\frac{[M]_{n}}{1-t^{n}}
$$

for $M \in \mathcal{C}_{m}$ and $n \mid m$, where here the left side belongs to the m th summand and the right-hand side to the nth summand. (Note that $\frac{1}{1-t^{n}} \in R_{m}$, so that the left-hand side above does indeed belong to the m th summand.)

We now define an R-linear map

$$
\begin{equation*}
\varphi: \underline{\mathscr{K}} \rightarrow \underline{K}(\mathbf{D}) . \tag{6.1}
\end{equation*}
$$

Suppose $n \mid h$ and \mathfrak{a} is an ideal containing π_{h}. We then put

$$
\varphi\left(\frac{[\mathbf{k} / \mathfrak{a}]_{n}}{1-t^{n}}\right)=\frac{1-t^{h}}{1-t^{n}}[M(\mathfrak{a}, h)]
$$

Since \mathcal{K}_{n} is spanned by the classes $[\mathbf{k} / \mathfrak{a}]$ as above, this specifies φ uniquely. We leave it to the reader to verify that φ is well-defined. It follows from Proposition 6.1(a) that φ is surjective. Our conjectural description of $\underline{K}(\mathbf{D})$ is the following.

Conjecture 6.4. The map φ is an isomorphism.
6.6. The L invariant. Let \mathcal{C}_{+}be the category of finitely generated \mathbf{k} modules supported on $\bigcup_{n \geq 2} V\left(\pi_{n}\right)$, and let $\mathcal{K}_{+}=\mathrm{K}_{0}\left(\mathcal{C}_{+}\right)$. For $M \in \mathcal{C}_{+}$, let $[M]_{+}$be the class of M in \mathcal{K}_{+}. We extend this notation to all \mathbf{k}-modules M by putting $[M]_{+}=0$ if $M \notin \mathcal{C}_{+}$. For a graded \mathbf{k}-module M, we define $\llbracket M \rrbracket$ as $\sum_{n \in \mathbf{Z}}\left[M_{n}\right]_{+} t^{n}$. For a finitely presented graded \mathbf{D}-module M, we define

$$
\mathrm{L}_{M}^{0}(t)=\sum_{i=0}^{\infty}(-1)^{i}\left[\operatorname{Tor}_{i}^{\mathbf{D}}(M, \mathbf{k})\right]_{+} \in \mathcal{K}_{+}((t))
$$

For any fixed d we have $\operatorname{Tor}_{i}^{\mathbf{D}}(M, \mathbf{k})_{d}=0$ for $i \gg 0$ (Proposition 4.8). It follows that in the above sum, any fixed power of t occurs only finitely many times, and so the sum is well-defined. We also put

$$
\mathrm{L}_{M}(t)=\frac{\mathrm{L}_{M}^{0}(t)}{1-t}
$$

Our main result on L is the following proposition.
Proposition 6.5. We have a well-defined R-module homomorphism

$$
\mathrm{K}(\mathbf{D}) \rightarrow R_{\infty} / R_{1} \otimes_{\mathbf{Z}} \mathcal{K}_{+}, \quad[M] \mapsto \mathrm{L}_{M}(t)
$$

We need some lemmas before proving this. In what follows, all D-modules are finitely presented and graded.

Lemma 6.6. Let M be a \mathbf{D}-module. Then $\operatorname{Tor}_{i}^{\mathbf{D}}(M, \mathbf{k})$ belongs to \mathcal{C}_{+}for $i \gg 0$.

Proof. If $M=\mathbf{D} / \mathfrak{a} \mathbf{D}$, then the Tor in question vanishes for $i>0$ (Proposition 4.5). If $M=M(\mathfrak{a}, h)$ for some $h \geq 2$, then all the Tor's are annihilated by π_{h}. The result now follows from the theorem on special resolutions (Theorem 5.1).

Lemma 6.7. Suppose that

$$
0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow 0
$$

is a short exact sequence of \mathbf{D}-modules. Then $\mathrm{L}_{M_{1}}(t)+\mathrm{L}_{M_{3}}(t)=\mathrm{L}_{M_{2}}(t)+\delta$ for some $\delta \in R_{1} \otimes \mathcal{K}_{+}$. If each M_{i} supported on $\bigcup_{n \geq 2} V\left(\pi_{n}\right)$ as a \mathbf{k}-module then $\delta=0$.

Proof. Let N be such that $\operatorname{Tor}_{i}^{\mathbf{D}}\left(M_{j}, \mathbf{k}\right)$ belongs to \mathcal{C}_{+}for all $i \geq N$ and all $j \in\{1,2,3\}$. This exists by Lemma 6.6. Let d_{0} be the maximal degree
occurring in the groups $\operatorname{Tor}_{i}^{\mathbf{D}}\left(M_{j}, \mathbf{k}\right)$ for $0 \leq i<N$ and $j \in\{1,2,3\}$. Consider the degree $d>d_{0}$ piece of the long exact sequence in Tor:

$$
\begin{aligned}
\cdots & \rightarrow \operatorname{Tor}_{i+1}^{\mathbf{D}}\left(M_{3}, \mathbf{k}\right)_{d} \rightarrow \operatorname{Tor}_{i}^{\mathbf{D}}\left(M_{1}, \mathbf{k}\right)_{d} \\
& \rightarrow \operatorname{Tor}_{i}^{\mathbf{D}}\left(M_{2}, \mathbf{k}\right)_{d} \rightarrow \operatorname{Tor}_{i}^{\mathbf{D}}\left(M_{3}, \mathbf{k}\right)_{d} \rightarrow \cdots
\end{aligned}
$$

This is an exact sequence in the category \mathcal{C}_{+}, and so the alternating sum of the classes in \mathcal{K}_{+}is zero. It follows that the coefficient of t^{d} in $\delta^{0}=\mathrm{L}_{M_{1}}^{0}-\mathrm{L}_{M_{2}}^{0}+$ $\mathrm{L}_{M_{3}}^{0}$ vanishes for all $d>d_{0}$, and so $\delta=\frac{\delta^{0}}{t-1} \in R_{1}$. If each M_{i} is supported on $\bigcup_{n \geq 2} V\left(\pi_{n}\right)$, then all the Tor's in question belong to \mathcal{C}_{+}, so the above reasoning applies to all $d \in \mathbf{Z}$, and so $\delta=0$.

Lemma 6.8. Let $M=M(\mathfrak{a}, h)$ with $h \geq 1$. Then

$$
\mathrm{L}_{M}(t)=\frac{[\mathbf{k} / \mathfrak{a}]_{+}}{1-t^{h}}
$$

Proof. We have $\frac{1-t^{h}}{1-t}[M]=[\mathbf{D} / \mathfrak{a} \mathbf{D}]$ in $\mathrm{K}(\mathbf{D} / \mathfrak{a} \mathbf{D})$ by Proposition 6.1(c), and so $\frac{1-t^{h}}{1-t} \mathrm{~L}_{M}(t)=\mathrm{L}_{\mathbf{D} / \mathfrak{a} \mathbf{D}}(t)$ (by the previous lemma if $h \geq 2$, and is trivially true for $h=1$). By Proposition 4.5, the group $\operatorname{Tor}_{i}^{\mathbf{D}}(\mathbf{D} / \mathfrak{a} \mathbf{D}, \mathbf{k})$ vanishes for $i>0$ and equals $\mathbf{k} / \mathfrak{a}$ for $i=0$, and so $\mathrm{L}_{\mathbf{D} / \mathfrak{a} \mathbf{D}}^{0}(t)=[\mathbf{k} / \mathfrak{a}]_{+}$. The result follows.

Proof of Proposition 6.5. By Lemma 6.7, L gives a well-defined homomorphism $\mathrm{K}(\mathbf{D}) \rightarrow \mathbf{Z}((t)) / R_{1} \otimes \mathcal{K}_{+}$. Proposition 6.1(a) and Lemma 6.8 show that the image is contained in $R_{\infty} / R_{1} \otimes \mathcal{K}_{+}$.
6.7. Conditional proof of Conjecture 6.4. For $n \geq 2$, we have an inclusion $\mathcal{C}_{n} \subset \mathcal{C}_{+}$, and thus an induced homomorphism $\mathcal{K}_{n} \rightarrow \mathcal{K}_{+}$.

Theorem 6.9. Assume the following condition holds:
(*) For all $n \geq 2$ the map $\mathcal{K}_{n} \rightarrow \mathcal{K}_{+}$is injective.
Then Conjecture 6.4 is true.
Proof. Let $\underline{\mathscr{K}^{1}} \subset \underline{\mathscr{K}}$ be the R-span of classes of the form $\frac{[M]}{t-1}$ with M a finitely generated \mathbf{k}-module. Then $\underline{\mathscr{K}^{1}}$ is identified with $\mathrm{K}(\mathbf{k}) \otimes R_{1}$. Let \underline{K}^{2} be the quotient of \underline{K} by \mathscr{K}^{1}. Then \mathscr{K}^{2} is identified with the submodule of $R_{\infty} / R_{1} \otimes \mathcal{K}_{+}$consisting of elements of the form $\sum_{n \geq 2} \frac{a_{n}(t)}{t^{n}-1}$ where $a(n) \in$ $\mathcal{K}_{n} \otimes R$ (this identification uses $\left.(*)\right)$.

We first claim that the map

$$
\underline{\mathscr{K}}^{2} \rightarrow R_{\infty} / R_{1} \otimes \mathcal{K}_{+}, \quad f \mapsto \mathrm{~L}_{\varphi(f)}(t)
$$

is well-defined and simply the identity. If $f \in \underline{\mathscr{K}}^{1}$, then $\mathrm{L}_{\varphi(f)}(t)=0$ by the definition of L . Thus, the above map is well-defined. The module \mathscr{K}^{2} is generated by elements of the form $f=\frac{[\mathbf{k} / \mathfrak{a}]_{+}}{t^{n}-1}$ where \mathfrak{a} is an ideal containing π_{h}
and $n \mid h$. By definition, we have $\varphi(f)=\frac{1-t^{h}}{1-t^{n}}[M(\mathfrak{a}, h)]$. Thus, by Lemma 6.8, we have

$$
\mathrm{L}_{\varphi(f)}(t)=\frac{1-t^{h}}{1-t^{n}} \cdot \mathrm{~L}_{M(\mathfrak{a}, h)}(t)=\frac{1-t^{h}}{1-t^{n}} \cdot \frac{[\mathbf{k} / \mathfrak{a}]_{+}}{1-t^{h}}=f
$$

and the claim is proved.
We next claim that the map

$$
\underline{\mathscr{K}}^{1} \rightarrow R_{1} \otimes \mathrm{~K}(\mathbf{k}), \quad f \mapsto \mathrm{H}_{\varphi(f)}(t)
$$

is the identity. The module $\underline{\mathscr{K}}^{1}$ is spanned by elements of the form $f=\frac{[\mathbf{k} / \mathbf{a}]}{t-1}$. We have $\varphi(f)=[\mathbf{D} / \mathfrak{a} \mathbf{D}]$ by definition. Thus

$$
\mathrm{H}_{\varphi(f)}(t)=\mathrm{H}_{\mathbf{D} / \mathfrak{a} \mathbf{D}}(t)=\frac{[\mathbf{k} / \mathfrak{a}]}{t-1}=f
$$

and the claim is proved.
We now prove the theorem. It suffices to show that φ is injective. Thus, suppose $\varphi(x)=0$. Let \bar{x} be the image of x in \underline{K}^{2}. Then $\bar{x}=\mathrm{L}_{\varphi(x)}(t)=0$ by the first paragraph. Thus, $x \in \mathscr{\mathscr { K }}^{1}$. But then $x=\mathrm{H}_{\varphi(x)}(t)=0$ by the second paragraph. This completes the proof.
6.8. Comparison of $\underline{K}(\mathbf{D})$ and $K(\mathbf{D})$. The forgetful functor $\operatorname{Mod}_{\mathrm{D}}^{\mathrm{fp}} \rightarrow$ $\operatorname{Mod}_{\mathbf{D}}^{\mathrm{fp}}$ induces a map $\underline{K}(\mathbf{D}) \rightarrow \mathrm{K}(\mathbf{D})$ that obvious kills $(t-1) \underline{K}(\mathbf{D})$. In fact, is the following proposition.

Proposition 6.10. The natural map $\underline{\mathrm{K}}(\mathbf{D}) /(t-1) \underline{\mathrm{K}}(\mathbf{D}) \rightarrow \mathrm{K}(\mathbf{D})$ is an isomorphism.

The proof closely follows the proof of the so-called fundamental theorem of K-theory, as presented in [Sr, Section 5]. We will make extensive use of the ring $\mathbf{D}[u]$, which we grade using the usual grading on \mathbf{D} and setting $\operatorname{deg}(u)=1$. Note that if $\mathbf{D}=\mathbf{D}\left(\mathbf{k}, \pi_{\bullet}\right)$ then (ignoring the grading) $\mathbf{D}[u]=\mathbf{D}\left(\mathbf{k}[u], \pi_{\bullet}\right)$, and so $\mathbf{D}[u]$ is coherent since $\mathbf{k}[u]$ is Noetherian.

Lemma 6.11. We have an equivalence of categories $\underline{\operatorname{Mod}}_{\mathbf{D}\left[u, u^{-1}\right]}^{\mathrm{fp}}=\operatorname{Mod}_{\mathbf{D}}^{\mathrm{fp}}$.
Proof. Let $\varphi: \mathbf{D} \rightarrow \mathbf{D}\left[u, u^{-1}\right]_{0}$ be the map given by $\varphi(x)=u^{-\operatorname{deg}(x)} x$ on homogeneous elements $x \in \mathbf{D}$. Then φ is an isomorphism. If M is a graded $\mathbf{D}\left[u, u^{-1}\right]$-module then its degree 0 piece is a module over $\mathbf{D}\left[u, u^{-1]}\right]_{0}$ and thus, via φ, over \mathbf{D}. Conversely, if N is a $\mathbf{D}\left[u, u^{-1}\right]_{0}$-module, then $\bigoplus_{k \in \mathbf{Z}} N u^{k}$ is a graded $\mathbf{D}\left[u, u^{-1}\right]$-module, with u acting in the obvious manner, and $x \in$ \mathbf{D} acting by $\left(u^{-\operatorname{deg}(x)} x\right) u^{\operatorname{deg}(x)}$. One easily sees that these constructions are inverse to each other.

Let $\alpha: \underline{K}(\mathbf{D}) \rightarrow \underline{\mathrm{K}}(\mathbf{D}[u])$ be the map induced by the functor $M \mapsto M \otimes_{\mathbf{D}}$ $\mathbf{D}[u]$, and let $\beta: \underline{\mathrm{K}}(\mathbf{D}[u]) \rightarrow \underline{\mathrm{K}}(\mathbf{D})$ be the map induced by the functor $M \mapsto$ $M \stackrel{\mathrm{~L}}{\otimes}_{\mathbf{D}[u]} \mathbf{D}$, where here \mathbf{D} is thought of as a $\mathbf{D}[u]$-module by $\mathbf{D}=\mathbf{D}[u] /(u)$.

We note that \mathbf{D} has projective dimension 1 as a $\mathbf{D}[u]$-module, and so the left-derived functor of $-\otimes_{\mathbf{D}[u]} \mathbf{D}$ does indeed induce a map on K-theory.

Lemma 6.12. The maps α and β are mutually inverse.
Proof. It is clear that $\beta \alpha=\mathrm{id}$, so we must show $\alpha \beta=\mathrm{id}$. For $h \geq 1$, consider the following diagram

The map f_{h} is induced by the functor $M \mapsto\left(M \otimes_{\mathbf{k}} \mathbf{D}\right)^{(h)}$, and f_{h}^{\prime} is defined similarly. The map i_{h} is extension of scalars. The theorem on special resolutions (Theorem 5.1) states that the maps f_{h}^{\prime} are jointly surjective, that is, the sum of their images is the entire $\underline{K}(\mathbf{D}[u])$. The map i_{h} is an isomorphism by the following lemma. It follows from this that α is surjective. Since $\beta \alpha=\mathrm{id}$, we have $\alpha \beta \alpha=\alpha$, and thus $\alpha \beta=\mathrm{id}$ since α is surjective.

Lemma 6.13. Let \mathbf{k} be a non-graded ring, and regard $\mathbf{k}[u]$ as graded $b y \operatorname{deg}(u)=1$. Then extension of scalars induces an isomorphism $\underline{K}(\mathbf{k}) \rightarrow$ $\underline{K}(\mathbf{k}[u])$.

Proof. The map $\mathrm{K}(\mathbf{k}) \otimes_{\mathbf{z}} R \rightarrow \underline{\mathrm{~K}}(\mathbf{k}[u])$ induced by extension of scalars is an isomorphism by [Sr , Proposition 5.4]. However, we have an obvious identification $\mathrm{K}(\mathbf{k}) \otimes_{\mathbf{z}} R=\underline{\mathrm{K}}(\mathbf{k})$ since \mathbf{k} is non-graded.

Proof of Proposition 6.10. Let $\underline{\operatorname{Mod}}_{\mathbf{D}[u]}^{0}$ denote the category of finitely presented graded $\mathbf{D}[u]$-modules annihilated by a power of u, and let $\underline{K}^{0}(\mathbf{D}[u])$ be its Grothendieck group. We then have the localization sequence

$$
\underline{\mathrm{K}}^{0}(\mathbf{D}[u]) \rightarrow \underline{\mathrm{K}}(\mathbf{D}[u]) \rightarrow \underline{\mathrm{K}}\left(\mathbf{D}\left[u, u^{-1}\right]\right) \rightarrow 0 .
$$

By dévissage, $\underline{K}^{0}(\mathbf{D}[u])=\underline{K}(\mathbf{D})$. Combining this and Lemmas 6.11 and 6.12 with the above sequence gives the diagram

We claim that the bottom left map is multiplication by $1-t$, which will complete the proof. Thus let $M \in \underline{\operatorname{Mod}}_{\mathbf{D}}$. Starting with $[M]$ in the bottom left group and going up and right, we obtain the class in $\underline{K}(\mathbf{D}[u])$ obtained by treating M as a $\mathbf{D}[u]$-module with u acting by 0 . We now want to move this class down under β. By definition, $\beta([M])$ is the class of $M \stackrel{\mathrm{Q}}{\otimes}_{\mathbf{D}[u]} \mathbf{D}$. Using
the resolution $\mathbf{D}[u][1] \xrightarrow{u} \mathbf{D}[u]$ of \mathbf{D} (where [1] indicates shift in grading), we see that $\beta([M])$ is the class of the complex $M[1] \rightarrow M$, that is, $(1-t)[M]$.

Combining the above result with Proposition 6.3 yields a rational description of $K(\mathbf{D})$.

Proposition 6.14. The map $\mathrm{K}(\mathbf{k}) \otimes \mathbf{Q} \rightarrow \mathrm{K}(\mathbf{D}) \otimes \mathbf{Q}$ taking $[M]$ to $\left[M \otimes_{\mathbf{k}}\right.$ D] is an isomorphism.

We also give a conjectural description of $\mathrm{K}(\mathbf{D})$. Define \mathscr{K} to be the quotient of $\bigoplus_{n \geq 1} \mathcal{K}_{n}$ by the relations $\frac{m}{n}[M]_{m}=[M]_{n}$ for $M \in \mathcal{C}_{m}$ and $n \mid m$, where the left-hand side belongs to the m th summand and the right-hand side to the nth summand. Then $\mathscr{K} /(t-1) \mathscr{K}$ is identified with \mathscr{K}, and so the map (6.1) induces a natural map $\mathscr{K} \rightarrow \mathrm{K}(\mathbf{D})$. Thus, Proposition 6.10 gives us the following proposition.

Proposition 6.15. Suppose Conjecture 6.4 holds for \mathbf{D}. Then the natural map $\mathscr{K} \rightarrow \mathrm{K}(\mathbf{D})$ is an isomorphism.
6.9. The classical divided power algebra. We now assume that \mathbf{D} is the classical divided power algebra over \mathbf{k}.

Proposition 6.16. The condition (*) of Theorem 6.9 holds.
Proof. By definition, \mathcal{C}_{+}is the category of finitely generated \mathbf{k}-modules that are torsion as Abelian groups. If $n \geq 2$, is a power of the prime p then \mathcal{C}_{n} is the category of finitely generated \mathbf{k}-modules that are annihilated by a power of p. By the Chinese remainder theorem, \mathcal{C}_{n} is a summand of \mathcal{C}_{+}, and so $\mathcal{K}_{n} \rightarrow \mathcal{K}_{+}$is injective. If $n \geq 2$ is not a prime power, then $\mathcal{C}_{n}=0$.

For a prime number p, let $R_{p^{\infty}}=\bigcup_{n \geq 1} R_{p^{n}}$.
Corollary 6.17. We have short exact sequences

$$
0 \rightarrow R_{1} \otimes \mathrm{~K}(\mathbf{k}) \rightarrow \underline{\mathrm{K}}(\mathbf{D}) \rightarrow \bigoplus_{p} R_{p^{\infty}} / R_{1} \otimes \mathrm{~K}(\mathbf{k} / p \mathbf{k}) \rightarrow 0
$$

and

$$
0 \rightarrow \mathrm{~K}(\mathbf{k}) \rightarrow \mathrm{K}(\mathbf{D}) \rightarrow \bigoplus_{p} \mathbf{Q}_{p} / \mathbf{Z}_{p} \otimes \mathrm{~K}(\mathbf{k} / p \mathbf{k}) \rightarrow 0
$$

where in both lines the sum is over all prime numbers p.
Proof. These sequences simply come from computing \mathscr{K} and \mathscr{K}. In the notation of the proof of Theorem 6.9 , the first short exact sequence is simply

$$
0 \rightarrow \underline{\mathscr{K}}^{1} \rightarrow \underline{\mathrm{~K}}(\mathbf{D}) \rightarrow \underline{\mathscr{K}}^{2} \rightarrow 0 .
$$

Example 6.18. Let $\mathbf{k}=\mathbf{Z}_{p}$, let \mathfrak{p} be the maximal ideal of \mathbf{k}, and let $h>1$ be a power of p. Note that $\pi_{h} \in \mathfrak{p}$. We have $[\mathbf{D} / \mathfrak{p} \mathbf{D}]=[\mathbf{D}]-[\mathbf{D}]=0$, and so $[M(\mathfrak{p}, h)]$ is killed by $\frac{1-t^{h}}{1-t}$ by Proposition $6.1(\mathrm{c})$. However, we have
$\mathrm{L}_{M(\mathfrak{p}, h)}(t)=\frac{\left[\mathbf{F}_{p}\right]_{+}}{1-t^{h}}$ and $\left[\mathbf{F}_{p}\right]_{+}$is not zero in \mathcal{K}_{+}; thus $\mathrm{L}_{M(\mathfrak{p}, h)}(t)$ is nonzero in $R_{\infty} / R_{1} \otimes \mathcal{K}_{+}$, and so $[M(\mathfrak{p}, h)]$ is nonzero in $\mathrm{K}(\mathbf{D})$. We therefore have an example of a nonzero class in $\mathrm{K}(\mathbf{D})$ that is killed by a nonzero element of R.

Remark 6.19. Let \mathcal{D} be the bounded derived category of finitely presented non-graded \mathbf{D}-modules. Let \mathcal{F} be the full subcategory on objects that can be represented by bounded complexes whose terms have the form $M \otimes_{\mathbf{k}} \mathbf{D}$ with M a finitely presented \mathbf{k}-module. Let \mathcal{D}^{t} be the full subcategory of \mathcal{D} on objects represented by bounded complexes of finitely presented \mathbf{D}-modules that are torsion as Z-modules. Then $\mathrm{K}(\mathcal{F})=\mathrm{K}(\mathbf{k})$ and

$$
\mathrm{K}\left(\mathcal{D}^{t} /\left(\mathcal{F} \cap \mathcal{D}^{t}\right)\right)=\bigoplus_{p} \mathbf{Q}_{p} / \mathbf{Z}_{p} \otimes \mathrm{~K}(\mathbf{k} / p \mathbf{k}) .
$$

Thus, Corollary 6.17 suggests an equivalence

$$
\frac{\mathcal{D}}{\mathcal{F}} \cong \frac{\mathcal{D}^{t}}{\mathcal{D}^{t} \cap \mathcal{F}}
$$

Such an equivalence also seems plausible due to the form of special resolutions. (This remark is not specific to the classical divided power algebra, and should apply to any GDPA.)
6.10. The q-divided power algebra. Let \mathbf{D} be the q-divided power algebra over $\mathbf{Z}[q]$. We now study the groups \mathcal{K}_{n} and \mathcal{K}_{+}, and ultimately show that condition $(*)$ of Theorem 6.9 does not hold. For an integer $n \geq 1$, we write $\mathbf{Z}\left[\zeta_{n}\right]$ for the quotient $\mathbf{Z}[q] /\left(\Phi_{n}\right)$, where ζ_{n} is the image of q, a primitive nth root of unity. The group $\mathrm{K}\left(\mathbf{Z}\left[\zeta_{n}\right]\right)$ canonically decomposes as $\mathbf{Z} \oplus \operatorname{Cl}\left(\mathbf{Q}\left(\zeta_{n}\right)\right)$, where \mathbf{Z} is generated by the class of $\mathbf{Z}\left[\zeta_{n}\right]$ itself, and $\mathrm{Cl}\left(\mathbf{Q}\left(\zeta_{n}\right)\right)$ is the class group of the number field $\mathbf{Q}\left(\zeta_{n}\right)$, which is finite. Now, it is a general fact that if \mathfrak{a} and \mathfrak{b} are ideals in a Noetherian ring \mathbf{k} then we have an exact sequence

$$
\mathrm{K}(\mathbf{k} /(\mathfrak{a}+\mathfrak{b})) \rightarrow \mathrm{K}(\mathbf{k} / \mathfrak{a}) \oplus \mathrm{K}(\mathbf{k} / \mathfrak{b}) \rightarrow \mathrm{K}(\mathbf{k} / \mathfrak{a} \mathfrak{b}) \rightarrow 0
$$

Taking $\mathfrak{a}=\left(\Phi_{n}\right)$ and $\mathfrak{b}=\left(\Phi_{m}\right)$ yields

$$
\mathrm{K}\left(\mathbf{Z}[q] /\left(\Phi_{n}, \Phi_{m}\right)\right) \rightarrow \mathrm{K}\left(\mathbf{Z}\left[\zeta_{n}\right]\right) \oplus \mathrm{K}\left(\mathbf{Z}\left[\zeta_{m}\right]\right) \rightarrow \mathrm{K}\left(\mathbf{Z}[q] /\left(\Phi_{n} \Phi_{m}\right)\right) \rightarrow 0
$$

Applying the above sequence repeatedly and taking a direct limit yields a presentation

$$
\bigoplus_{t<s, n \mid t, s} \mathrm{~K}\left(\mathbf{Z}[q] /\left(\Phi_{t}, \Phi_{s}\right)\right) \xrightarrow{\alpha} \bigoplus_{n \mid t} \mathrm{~K}\left(\mathbf{Z}\left[\zeta_{t}\right]\right) \rightarrow \mathcal{K}_{n} \rightarrow 0
$$

Now, observe that $\left(\Phi_{t}, \Phi_{s}\right)$ is a height 2 prime of $\mathbf{Z}[q]$, and so the image of α lands in the sum of the class groups. In particular, after tensoring with \mathbf{Q} we see that α is 0 . Thus $\mathcal{K}_{n} \otimes \mathbf{Q}$ has a natural basis indexed by the multiples of n. A similar analysis holds for $\mathcal{K}_{+} \otimes \mathbf{Q}$: it has a natural basis indexed by integers ≥ 2. We thus find the following proposition.

Proposition 6.20. The condition (*) of Theorem 6.9 holds rationally. Thus the map $\underline{K} \otimes \mathbf{Q} \rightarrow \underline{K}(\mathbf{D}) \otimes \mathbf{Q}$ induced from the map φ in Conjecture 6.4 is an isomorphism.

For $n \mid t$, let $\mathrm{N}_{t}: \mathrm{K}\left(\mathbf{Z}\left[\zeta_{t}\right]\right) \rightarrow \mathrm{K}\left(\mathbf{Z}\left[\zeta_{n}\right]\right)$ be the norm map. On the \mathbf{Z} summand, this is multiplication by the degree $\left[\mathbf{Q}\left(\zeta_{t}\right): \mathbf{Q}\left(\zeta_{n}\right)\right]$, while on the class group summand it is the usual norm map on ideals. Summing these maps yields a map

$$
\widetilde{\mathrm{N}}: \bigoplus_{n \mid t} \mathrm{~K}\left(\mathbf{Z}\left[\zeta_{t}\right]\right) \rightarrow \mathrm{K}\left(\mathbf{Z}\left[\zeta_{n}\right]\right) .
$$

We claim that $\widetilde{\mathrm{N}}$ kills the image of α. Thus, let $t<s$ be multiples of n. The ideal $\left(\Phi_{t}, \Phi_{s}\right)$ is the unit ideal unless $s=t p^{r}$ for some prime p, so assume this is the case. Let \mathfrak{m} be a maximal ideal of $\mathbf{Z}[q]$ containing $\left(\Phi_{t}, \Phi_{s}\right)$, and let \mathfrak{m}_{t} and \mathfrak{m}_{s} be the images of \mathfrak{m} in $\mathbf{Z}\left[\zeta_{t}\right]$ and $\mathbf{Z}\left[\zeta_{s}\right]$. Then \mathfrak{m}_{t} is totally ramified in $\mathbf{Z}\left[\zeta_{s}\right]$, and \mathfrak{m}_{s} is the unique prime above it. Thus, the norm of \mathfrak{m}_{s} down to $\mathbf{Z}\left[\zeta_{t}\right]$ is \mathfrak{m}_{t}. By the compatibility of norms in towers, we see that \mathfrak{m}_{t} and \mathfrak{m}_{s} have the same norm down to $\mathbf{Z}\left[\zeta_{n}\right]$. This establishes the claim. We thus see that $\widetilde{\mathrm{N}}$ induces a map

$$
\mathrm{N}: \mathcal{K}_{n} \rightarrow \mathrm{~K}\left(\mathbf{Z}\left[\zeta_{n}\right]\right)
$$

It follows immediately from the definition that N is left-inverse to the canonical $\operatorname{map} \mathrm{K}\left(\mathbf{Z}\left[\zeta_{n}\right]\right) \rightarrow \mathcal{K}_{n}$, and so we find:

Proposition 6.21. The canonical map $\mathrm{K}\left(\mathbf{Z}\left[\zeta_{n}\right]\right) \rightarrow \mathcal{K}_{n}$ is a split injection.
We now come to the main point.
Proposition 6.22. The condition $(*)$ of Theorem 6.9 does not hold. In fact, the map $\mathcal{K}_{39} \rightarrow \mathcal{K}_{+}$is not injective.

Proof. Fix a primitive cube root of unity $\eta \in \mathbf{F}_{13}$, and give $M=\mathbf{F}_{13}$ the structure of a $\mathbf{Z}[q]$-module by letting q act by η. The module M is killed by Φ_{3} and Φ_{39}, and can thus be regarded as a module over $\mathbf{Z}\left[\zeta_{3}\right]$ and $\mathbf{Z}\left[\zeta_{39}\right]$. Let \mathfrak{p} be the prime of $\mathbf{Z}\left[\zeta_{3}\right]$ over 13 corresponding to η, i.e., $\mathfrak{p}=\left(13, \zeta_{3}-\eta\right)$, and let \mathfrak{q} be the unique prime of $\mathbf{Z}\left[\zeta_{39}\right]$ over \mathfrak{p}. Then $M \cong \mathbf{Z}\left[\zeta_{3}\right] / \mathfrak{p}$ as a $\mathbf{Z}\left[\zeta_{3}\right]$-module and $M \cong \mathbf{Z}\left[\zeta_{39}\right] / \mathfrak{q}$ as a $\mathbf{Z}\left[\zeta_{39}\right]$-module. Now, the ideal \mathfrak{p} is principal since $\mathbf{Q}\left(\zeta_{3}\right)$ has class number 1, and so the class of M in $\mathrm{K}\left(\mathbf{Z}\left[\zeta_{3}\right]\right)$ is zero. It follows that the class of M vanishes in \mathcal{K}_{3}, and thus in \mathcal{K}_{+}as well. On the other hand, \mathfrak{q} is non-principal (see [Le]). Thus the class of M in $\mathrm{K}\left(\mathbf{Z}\left[\zeta_{39}\right]\right)$ is nonzero, and therefore the class of M in \mathcal{K}_{39} is non-zero by Proposition 6.21. This class is therefore a nonzero element of the kernel of $\mathcal{K}_{39} \rightarrow \mathcal{K}_{+}$.

7. Injective dimension and duality

7.1. Self-injectivity. Throughout this section, \mathbf{k} denotes a field and \mathbf{D} a GDPA over \mathbf{k}. Our goal is to prove the following theorem.

Theorem 7.1. The injective dimension of \mathbf{D} as $a \mathbf{D}$-module is at most 1 , in both the graded and ungraded cases. More precisely:
(a) If infinitely many of the π_{n} vanish, then \mathbf{D} is injective as a graded \mathbf{D} module.
(b) If infinitely many of the π_{n} vanish, then \mathbf{D} has injective dimension 1 in the category of all \mathbf{D}-modules, and $\operatorname{Ext}_{\mathbf{D}}^{i}(M, \mathbf{D})=0$ for all finitely presented M and all $i>0$.
(c) If only finitely many of the π_{n} vanish, then \mathbf{D} has injective dimension 1 in both the graded and ungraded categories.
Lemma 7.2. (In this lemma, \mathbf{k} can be any ring.) Suppose $\pi_{h}=0$. Then $\operatorname{Hom}_{\mathbf{k}}\left(\mathbf{D}_{<h}, \mathbf{k}\right)$ is free of rank one as a $\mathbf{D}_{<h \text {-module. }}$

Proof. As a k-module, $\mathbf{D}_{<h}$ is free with basis $x^{[0]}, \ldots, x^{[h-1]}$. Thus, $\operatorname{Hom}_{\mathbf{k}}\left(\mathbf{D}_{<h}, \mathbf{k}\right)$ is also free. Let $\lambda_{0}, \ldots, \lambda_{h-1}$ be the dual basis, so that $\lambda_{i}\left(x^{[j]}\right)=\delta_{i, j}$. We have $x^{[i]} \lambda_{h-1}=u \lambda_{h-1-i}$, where $u \in \mathbf{k}$ is given by $x^{[i]} x^{[h-1-i]}=u x^{[h-1]}$. We claim that u is a unit. Indeed, if \mathfrak{m} is any maximal ideal of \mathbf{k} then $h=b_{\mathfrak{m}, i}$ for some i, and so there are no carries in the sum $i+(h-1-i)$ when working in base $b_{\mathfrak{m}, \bullet}$. It follows that u is a unit in $\mathbf{k}_{\mathfrak{m}}$ for all \mathfrak{m}, and thus a unit. This proves the claim. It now follows that λ_{h-1} is a basis for $\operatorname{Hom}_{\mathbf{k}}\left(\mathbf{D}_{<h}, \mathbf{k}\right)$ as a $\mathbf{D}_{<h}$-module.

Lemma 7.3. Suppose $\pi_{n}=0$. Then $\mathbf{D}_{<n}$ is injective as a module over itself, both in the graded and non-graded settings.

Proof. Let $D=\mathbf{D}_{<n}$, and let M be an arbitrary D-module. We have

$$
\operatorname{Hom}_{D}(M, D) \cong \operatorname{Hom}_{D}\left(M, \operatorname{Hom}_{\mathbf{k}}(D, \mathbf{k})\right)=\operatorname{Hom}_{\mathbf{k}}(M, \mathbf{k})
$$

The first isomorphism comes from Lemma 7.2, while the second is a standard adjunction. Since the functor $\operatorname{Hom}_{\mathbf{k}}(-, \mathbf{k})$ is exact, it follows that D is injective as an D-module. The same proof works in the graded case.

Proof of Theorem 7.1(b). We first prove the Ext vanishing statement. By dimension shifting, it suffices to treat the $i=1$ case. By dévissage, it suffices to treat the case where $M=\mathbf{D} / I$ with I a finitely generated ideal. For this, it is enough to show that a given map $\varphi: I \rightarrow \mathbf{D}$ extends to a map $\psi: \mathbf{D} \rightarrow \mathbf{D}$. Let f_{1}, \ldots, f_{r} be generators for I. Pick $n \gg 0$ such that $\pi_{n}=0$ and the elements f_{i} and $\varphi\left(f_{i}\right)$ all belong to $\mathbf{D}_{<n}$. Let $I_{0} \subset \mathbf{D}_{<n}$ be the ideal generated by the f 's, and let $\varphi_{0}: I_{0} \rightarrow \mathbf{D}_{<n}$ be the restriction of φ. We have an isomorphism $\mathbf{D}=\mathbf{D}_{<n} \otimes_{\mathbf{k}} \mathbf{D}^{(n)}$, under which I corresponds to $I_{0} \otimes \mathbf{D}^{(n)}$ and φ corresponds to $\varphi_{0} \otimes \mathrm{id}$. Since $\mathbf{D}_{<n}$ is injective as a module over itself by Lemma 7.3, the map φ_{0} extends to a map $\psi_{0}: \mathbf{D}_{<n} \rightarrow \mathbf{D}_{<n}$. Then $\psi=\psi_{0} \otimes \mathrm{id}$ is an extension of φ.

We now show that the injective dimension of \mathbf{D} is at most one. This follows from the previous paragraph by general considerations, as follows. First, suppose that $M=\mathbf{D} / I$ is a cyclic \mathbf{D}-module. Since \mathbf{D} has countable dimension
over \mathbf{k}, the ideal I is countably generated. Write $I=\bigcup_{n \geq 1} I_{n}$ with I_{n} finitely generated, and put $M_{n}=\mathbf{D} / I_{n}$ so that M is the direct limit of the M_{n} and each M_{n} is finitely presented. We have

$$
\operatorname{RHom}_{\mathbf{D}}(M, \mathbf{D})=\mathrm{R} \lim _{\rightleftarrows} \mathrm{R} \operatorname{Hom}_{\mathbf{D}}\left(M_{i}, \mathbf{D}\right) .
$$

Since $\mathrm{R}^{i} \operatorname{Hom}_{\mathbf{D}}\left(M_{i}, \mathbf{D}\right)=0$ for $i>0$ and $\mathrm{R}^{i} \underset{\rightleftarrows}{\varliminf}=0$ for $i>1$, we find that $\mathrm{R}^{i} \operatorname{Hom}_{\mathbf{D}}(M, \mathbf{D})=0$ for $i>1$. It follows from this that $\operatorname{Ext}_{\mathbf{D}}^{i}(M, \mathbf{D})=0$ for $i>1$ for any D-module M (see [Stacks, Tag 0A5T]), and so D has injective dimension at most one. Example 7.5 below shows that the injective dimension is exactly 1.

REMARK 7.4. The first two paragraphs of the above argument can be easily adapted to prove the following statement. Let $\left\{A_{i}\right\}_{i \in I}$ be a family of finite dimensional (not necessarily commutative) \mathbf{k}-algebras such that for any finite subset $J \subset I$ the algebra $\bigotimes_{i \in J} A_{i}$ is self-injective, and suppose $\# I=\aleph_{r}$. Then the algebra $\bigotimes_{i \in I} A_{i}$ has injective dimension at most $r+1$ over itself. For instance, if $\left\{G_{i}\right\}_{i \in I}$ is a family of finite groups and $G \subset \prod_{i \in I} G_{i}$ is the subgroup where all but finitely many coordinates are the identity then $\mathbf{k}[G]$ has injective dimension at most $r+1$.

Example 7.5. Suppose infinitely many π_{n} vanish and let I be the ideal $\left(x^{[1]}, x^{[2]}, \ldots\right)$ of \mathbf{D}. We show that $\operatorname{Ext}_{\mathbf{D}}^{1}(\mathbf{k}, \mathbf{D}) \neq 0$ in the ungraded category, where $\mathbf{k}=\mathbf{D} / I$. To do this, it suffices to construct a homomorphism $\varphi: I \rightarrow \mathbf{D}$ that does not extend to \mathbf{D}. Let b_{1}, b_{2}, \ldots be a strictly increasing sequence with $\pi_{b_{i}}=0$ for all i, and define

$$
g=\sum_{i \geq 1} x^{\left[b_{i}-1\right]},
$$

regarded as a formal sum. For any $n \geq 1$, we have $x^{[n]} x^{\left[b_{i}-1\right]}=0$ for all $i \gg 0$; in fact, as soon as $b_{i}>n$ there is necessarily a carry when computing $n+\left(b_{i}-1\right)$ in base b_{\bullet}, and then the product will vanish. It follows that the product $g x$ is a well-defined element of \mathbf{D} for all $x \in I$, and one easily sees that putting $\varphi(x)=g x$ gives a well-defined module homomorphism $I \rightarrow \mathbf{D}$. Suppose that φ extended to \mathbf{D}. Then we would have $g x=\varphi(x)=h x$ for all $x \in I$, where $h=\varphi(1)$ is an actual element of \mathbf{D}. But this is clearly impossible, since $g x^{\left[b_{i+1}\right]}$ is a sum of i monomials, while the number of monomials in $h x^{\left[b_{i+1}\right]}$ is bounded as i varies.

Proof of Theorem 7.1(a). Let I be a nonzero finitely generated homogeneous ideal and let $\varphi: I[d] \rightarrow \mathbf{D}$ be a map of graded modules. The argument in the first paragraph of the proof of Theorem 7.1(b) applies and shows that φ extends to a map $\psi: \mathbf{D}[d] \rightarrow \mathbf{D}$. Since the space $\underline{\operatorname{Hom}(\mathbf{D}, \mathbf{D})_{d} \text { is at most }}$ one-dimensional, it follows that ψ is unique. It follows from this that if J is a finitely generated homogeneous ideal containing I then φ extends uniquely to
J; indeed, any two extensions to J would further extend to \mathbf{D}, and therefore coincide.

Now suppose I is an arbitrary non-zero homogeneous ideal and let $\varphi: I[d] \rightarrow \mathbf{D}$ be a map of graded modules. Write $I=\bigcup_{n \geq 1} I_{n}$ with I_{n} finitely generated and $I_{1} \neq 0$. Let $\psi: \mathbf{D}[d] \rightarrow \mathbf{D}$ be an extension of $\left.\varphi\right|_{I_{1}}$. Then $\left.\varphi\right|_{I_{n}}$ and $\left.\psi\right|_{I_{n}}$ are two extensions of $\left.\varphi\right|_{I_{1}}$ to I_{n}, and therefore must coincide. It follows that $\left.\psi\right|_{I}=\varphi$, and so φ extends to \mathbf{D}. By a graded version of Baer's criterion, it follows that \mathbf{D} is injective as a graded \mathbf{D}-module.

Proof of Theorem 7.1(c). We give the proof in the non-graded case, the argument in the graded case being identical. Let n be maximal such that $\pi_{n}=0$. Then $\mathbf{D}=A \otimes_{\mathbf{k}} B$, where $A=\mathbf{D}_{<n}$ is finite dimensional and $B=$ $\mathbf{D}^{(n)} \cong \mathbf{k}[x]$. For a B-module M, let $F(M)=\operatorname{Hom}_{B}(\mathbf{D}, M)$. This functor is right adjoint to the forgetful functor from \mathbf{D}-modules to B-modules, and therefore takes injectives to injectives. Since \mathbf{D} is projective as a B-module, the functor F is exact. We have

$$
F(M)=\operatorname{Hom}_{B}(A \otimes B, M)=\operatorname{Hom}_{\mathbf{k}}(A, M)=\operatorname{Hom}_{\mathbf{k}}(A, \mathbf{k}) \otimes_{\mathbf{k}} M \cong A \otimes_{\mathbf{k}} M
$$

where in the first step we used an adjunction, in the second we used that A is finite dimensional, and in the third we used Lemma 7.2. In particular, we see that $F(B) \cong \mathbf{D}$. Now, it is well-known that B has injective dimension 1 as a module over itself. Let

$$
0 \rightarrow B \rightarrow I_{0} \rightarrow I_{1} \rightarrow 0
$$

be an injective resolution. Applying F, we obtain a length one injective resolution of \mathbf{D} as a \mathbf{D}-module, and so \mathbf{D} has injective dimension at most one. On the other hand,

$$
0 \rightarrow B \xrightarrow{x} B \rightarrow B /(x) \rightarrow 0
$$

is a non-split extension, and is easily seen to remain non-split after applying $-\otimes_{\mathbf{k}} A$, and so the injective dimension is exactly one.

Remark 7.6. Suppose infinitely many of the π_{n} vanish. Then \mathbf{D} is not Noetherian, and so the Bass-Papp theorem asserts that some infinite direct sum of injective \mathbf{D}-modules is non-injective. We give an explicit example in the graded case. Let $n_{1}<n_{2}<\cdots$ be an infinite divisible sequence with $\pi_{n_{i}}=0$ for all i. Let I be the ideal generated by the $x^{[i]}$ with $i \geq 1$. Let $M=\prod_{i \geq 1} \mathbf{D}[1-$ $\left.n_{i}\right]$ and $M_{0} \subset M$ be the direct sum. Define $\varphi: \mathbf{D} \rightarrow M$ by using multiplication by $x^{\left[n_{i}-1\right]}$ on the i th factor. One then verifies the following that $\left.\varphi\right|_{I}$ maps into M_{0} but that $\left.\varphi\right|_{I}$ cannot be extended to a map $\mathbf{D} \rightarrow M_{0}$. Thus, M_{0} is not injective. Therefore, not all free \mathbf{D}-modules are injective.
7.2. Injective dimension. Let R be a ring. Let $\mathrm{D}(R)$ be the derived category of R-modules, and let $\mathrm{D}_{\mathrm{fp}}^{\mathrm{b}}(R)$ be the full subcategory of complexes M such that $\mathrm{H}^{i}(M)$ is finitely presented for all i and nonzero for only finitely many i. We say that an object of $\mathrm{D}(R)$ has injective amplitude $[a, b]$ if it is isomorphic in $\mathrm{D}(R)$ to a complex of injectives I^{\bullet} with $I^{i}=0$ for $i \notin[a, b]$. This is equivalent to $\operatorname{Ext}_{R}^{i}(N, M)=0$ for all (or even just cyclic) modules N and $i \notin[a, b]$ [Stacks, Tag 0A5T]. We say that M has finite injective dimension if it has injective amplitude $[a, b]$ for some a, b. Similar definitions apply in the graded case.

Suppose \mathbf{k} is a Noetherian ring and E_{0} is a complex of \mathbf{k}-modules with injective amplitude $[a, b]$. Then $E=E_{0} \otimes_{\mathbf{k}} \mathbf{k}[x]$ has injective amplitude $[a, b+1]$ as a complex of $\mathbf{k}[x]$-modules, see [Stacks, Tag 0A6J]. The following theorem generalizes this statement to GDPA's:

Theorem 7.7. Let \mathbf{k} be a Noetherian ring and let \mathbf{D} be a GDPA over \mathbf{k}. Let E_{0} be a complex of \mathbf{k}-modules with finitely generated cohomology and injective amplitude $[a, b]$, and put $E=\mathbf{D} \otimes_{\mathbf{k}} E_{0}$. Then:
(a) If M is a finitely presented \mathbf{D}-module then $\operatorname{Ext}_{\mathbf{D}}^{i}(M, E)=0$ for $i \notin$ $[a, b+1]$.
(b) E has injective amplitude $[a, b+2]$ as a complex of \mathbf{D}-modules.

The same statements hold in the graded case.
Corollary 7.8. Suppose that \mathbf{k} is a Gorenstein Noetherian ring of finite Krull dimension and let \mathbf{D} be a GDPA over \mathbf{k}. Then \mathbf{D} has finite injective dimension as a (graded or ungraded) \mathbf{D}-module.

Proof of Theorem 7.7. Statement (a) implies statement (b) using an argument similar to that in the proof of Theorem 7.1(b). Thus, it is enough to prove (a). We assume, by Noetherian induction, that the statement is true for every proper quotient of \mathbf{k}. We now prove it for \mathbf{k}, in several steps.

Step 1. We first prove the result assuming M has nonzero annihilator \mathfrak{a}. We have

$$
\operatorname{RHom}_{\mathbf{D}}(M, E)=\operatorname{RHom}_{\mathbf{D} / \mathfrak{a} \mathbf{D}}\left(M, \mathrm{R}_{\operatorname{Hom}_{\mathbf{D}}}(\mathbf{D} / \mathfrak{a} \mathbf{D}, E)\right)
$$

By [Stacks, Tag 0A6A], we have

$$
\operatorname{RHom}_{\mathbf{D}}(\mathbf{D} / \mathfrak{a} \mathbf{D}, E)=\mathbf{D} \otimes_{\mathbf{k}} \operatorname{RHom}_{\mathbf{k}}\left(\mathbf{k} / \mathfrak{a k}, E_{0}\right)
$$

Let $E_{0}^{\prime}=\mathrm{R} \operatorname{Hom}_{\mathbf{k}}\left(\mathbf{k} / \mathfrak{a} \mathbf{k}, E_{0}\right)$. Then E_{0}^{\prime} has injective amplitude $[a, b]$ and finitely generated cohomology. Let $E^{\prime}=\mathbf{D} / \mathfrak{a D} \otimes_{\mathbf{k} / \mathfrak{a}} E_{0}^{\prime}$. By the above, we have

$$
\operatorname{RHom}_{\mathbf{D}}(M, E)=\operatorname{RHom}_{\mathbf{D} / \mathfrak{a} \mathbf{D}}\left(M, E^{\prime}\right) .
$$

By the inductive hypothesis, the right side only has cohomology in degrees $[a, b+1]$, and so the same is true of the left-hand side.

Step 2. We now prove the result assuming \mathbf{k} is not a domain. Let $x, y \in \mathbf{k}$ be nonzero such that $x y=0$. We have a short exact sequence

$$
0 \rightarrow x M \rightarrow M \rightarrow M / x M \rightarrow 0
$$

and thus a triangle

$$
\operatorname{RHom}_{\mathbf{D}}(M / x M, E) \rightarrow \operatorname{RHom}_{\mathbf{D}}(M, E) \rightarrow \mathrm{R}_{\operatorname{Hom}_{\mathbf{D}}}(x M, E) \rightarrow
$$

Both $x M$ and $M / x M$ are finitely presented and have non-zero annihilator, and so the outside terms only have cohomology in degrees $[a, b+1]$ by Step 1 . Thus, the same is true of the middle term.

Step 3. We now prove the result assuming \mathbf{k} is a domain. Fix $i>b+1$. Let $x \in \mathbf{k}$ be non-zero. Consider the exact sequence

$$
0 \rightarrow M[x] \rightarrow M \xrightarrow{x} M \rightarrow M / x M \rightarrow 0
$$

Both $M[x]$ and $M / x M$ are finitely presented with nonzero annihilator, and so $\operatorname{Ext}_{\mathbf{D}}^{j}(M[x], E)$ and $\operatorname{Ext}_{\mathbf{D}}^{j}(M / x M, E)$ vanish for $j \notin[a, b+1]$ by Step 1. It follows that the map

$$
x: \operatorname{Ext}_{\mathbf{D}}^{i}(M, E) \rightarrow \operatorname{Ext}_{\mathbf{D}}^{i}(M, E)
$$

is surjective, and an isomorphism if $i>b+2$. However, $\operatorname{Ext}_{\mathbf{D}}^{i}(M, E)$ is a finitely generated \mathbf{D}-module, and so a surjective endomorphism of it is necessarily an isomorphism [Stacks, Tag 05G8]; thus multiplication by x is an isomorphism for $i=b+2$ as well. We have thus shown that every non-zero element of \mathbf{k} acts invertibly on $\operatorname{Ext}_{\mathbf{D}}^{i}(M, E)$, that is to say, $\operatorname{Ext}_{\mathbf{D}}^{i}(M, E)$ is in fact a vector space over $\mathbf{K}=\operatorname{Frac}(\mathbf{k})$. We thus have

$$
\operatorname{Ext}_{\mathbf{D}}^{i}(M, E)=\mathbf{K} \otimes_{\mathbf{k}} \operatorname{Ext}_{\mathbf{D}}^{i}(M, E)=\operatorname{Ext}_{\mathbf{D}^{\prime}}^{i}\left(M^{\prime}, E^{\prime}\right),
$$

where the primes denote extension to \mathbf{K}. We have $E^{\prime}=\mathbf{D}^{\prime} \otimes_{\mathbf{K}} E_{0}^{\prime}$, and E_{0}^{\prime} is (represented by) a complex of finite dimensional \mathbf{K} vector spaces in degrees $[a, b]$. Thus, E^{\prime} is a complex of finitely generated free \mathbf{D}^{\prime}-modules in degrees $[a, b]$. Since \mathbf{D}^{\prime} has injective dimension at most 1 (Theorem 7.1), it follows that E^{\prime} has injective amplitude $[a, b+1]$. Thus, $\operatorname{Ext}_{\mathbf{D}^{\prime}}^{i}\left(M^{\prime}, E^{\prime}\right)=0$, and the result is proved.

As stated, the above theorem holds in the graded case as well. However, in that case we can prove a stronger result with additional assumptions.

Theorem 7.9. Let $\mathbf{k}, \mathbf{D}, E_{0}$, and E be as in Theorem 7.7 , though now E_{0} is graded. Assume that every maximal ideal of \mathbf{k} contains infinitely many of the π_{n} 's. Then:
(a) If M is a finitely presented graded \mathbf{D}-module, then $\operatorname{Ext}_{\mathbf{D}}^{i}(M, E)=0$ for $i \notin[a, b]$.
(b) E has injective amplitude $[a, b+1]$ as a complex of graded \mathbf{D}-modules.

Proof. As in the proof of Theorem 7.7, it suffices to prove (a), which we again do by Noetherian induction. Steps 1 and 2 from that proof apply here, so it suffices to treat the case where \mathbf{k} is a domain. We consider two cases.

Case 1: \mathbf{k} is a field. We then have that \mathbf{D} is injective as a graded \mathbf{D}-module (Theorem 7.1(a)). We can represent E_{0} by a complex of finite dimensional kvector spaces concentrated in degrees $[a, b]$, and so we find that E is a complex of injective \mathbf{D}-modules concentrated in the same degrees. Thus, E has injective amplitude $[a, b]$, which certainly implies the required Ext vanishing.

Case 2: \mathbf{k} is not a field. Fix $i>b$. As in Step 3 of the proof of Theorem 7.7, we find that every nonzero element of \mathbf{k} acts bijectively on $\operatorname{Ext}^{i}(M, E)$. It follows that each graded piece $\underline{\operatorname{Ext}}^{i}(M, E)_{n}$ is both a $\operatorname{Frac}(\mathbf{k})$ vector space and a finitely generated \mathbf{k}-module, and thus vanishes. This proves the theorem.

Remark 7.10. Theorems 7.7 and 7.9 both require E_{0} to have finitely generated cohomology. We are not sure if this is necessary. Also, in part (b) of both theorems, the upper bound on the amplitude increases by 1 ; we do not know if this is necessary either.

The following is a slight variant of Theorem 7.7 where we relax the finiteness condition on E_{0} at the expense of adding a different hypothesis. We state only the ungraded version, though it is also true in the graded case.

Theorem 7.11. Let \mathbf{D} be a GDPA over a Noetherian ring \mathbf{k}. Let \mathfrak{p} be a prime ideal of \mathbf{k} containing infinitely many of the π_{n} 's. Let E_{0} be the injective envelope of $\mathbf{k} / \mathfrak{p}$ and let $E=\mathbf{D} \otimes_{\mathbf{k}} E_{0}$. Then $\operatorname{Ext}_{\mathbf{D}}^{n}(M, E)=0$ for all $n \geq 1$ and all finitely presented \mathbf{D}-modules M. Thus, E has injective dimension at most 1.

Proof. We just sketch a proof. First, one reduces to the case where \mathbf{k} is local and $\mathfrak{p}=\mathfrak{m}$ is the unique maximal ideal. Next, as in the proof of Theorem 7.7, one can reduce to the case where \mathbf{k} is a domain and one already knows the result for modules with nonzero annihilators. If \mathbf{k} is a field, the result follows from Theorem 7.1. Otherwise, let x be a nonzero element of \mathfrak{m}. As in Step 3 of the proof of Theorem 7.7, we see that multiplication by x is bijective on $\operatorname{Ext}_{\mathbf{D}}^{i}(M, E)$ for $i \geq 1$. Let $F_{\bullet} \rightarrow M$ be a resolution of M by finitely generated free \mathbf{D}-modules. (Here is the one place we use that M is finitely presented.) Then $\operatorname{Ext}_{\mathbf{D}}^{i}(M, E)$ is a subquotient of $\operatorname{Hom}_{\mathbf{D}}\left(F_{i}, E\right)$, which is isomorphic to a finite direct sum of E_{0} 's. Since every element of E_{0} is killed by some power of \mathfrak{m}, multiplication by x cannot act bijectively on any nonzero subquotient of $\operatorname{Hom}_{\mathbf{D}}\left(F_{i}, E\right)$. We thus find that $\operatorname{Ext}_{\mathbf{D}}^{i}(M, E)$ vanishes for $i \geq 1$, which proves the theorem.

Remark 7.12. In fact, the module E in Theorem 7.11 is not injective in general. To see this, let \mathbf{D} be the classical divided power algebra over \mathbf{Z}_{p} and let I be the ideal generated by elements of positive degree. Then
we have a \mathbf{D}-module homomorphism $I[-1] \rightarrow \mathbf{D} \otimes \mathbf{z}_{p} \mathbf{Q}_{p} / \mathbf{Z}_{p}$ (note that the injective envelope of $\mathbf{Z}_{p} / p \mathbf{Z}_{p}$ is $\left.\mathbf{Q}_{p} / \mathbf{Z}_{p}\right)$ given by $x^{[i]} \mapsto x^{[i-1]} \otimes \frac{1}{i}$. Clearly this map does not extend to $\mathbf{D}[-1]$ because there are no nonzero maps from $\mathbf{D}[-1] \rightarrow \mathbf{D} \otimes_{\mathbf{z}_{p}} \mathbf{Q}_{p} / \mathbf{Z}_{p}$.
7.3. Duality. Let R be a coherent ring. We say that a complex $\omega_{R} \in \mathrm{D}(R)$ is a dualizing complex if:
(a) ω_{R} has finite injective dimension;
(b) $\mathrm{H}^{i}\left(\omega_{R}\right)$ is finitely presented for all i; and
(c) the natural map $R \rightarrow R \operatorname{Hom}_{R}\left(\omega_{R}, \omega_{R}\right)$ is a quasi-isomorphism.

Dualizing complexes are discussed in [Stacks, Tag 0A7A] under the assumption that R is noetherian. Some of the basic results remain true in our more general setting: for example, if ω_{R} is a dualizing complex then $R \operatorname{Hom}_{R}\left(-, \omega_{R}\right)$ gives a duality of the category $\mathrm{D}_{\mathrm{fp}}^{\mathrm{b}}(R)$ (the proof given in [Stacks, Tag 0A7C] applies). We note that if R is noetherian and admits a dualizing complex then it has finite Krull dimension [Stacks, Tag 0A80].

Our main result on duality for GDPA's is the following theorem. We treat only the ungraded case, but the graded case goes through in exactly the same manner.

Theorem 7.13. Let \mathbf{k} be a Noetherian ring with dualizing complex $\omega_{\mathbf{k}}$ and let \mathbf{D} be a GDPA over \mathbf{k}. Then $\omega_{\mathbf{D}}=\omega_{\mathbf{k}} \otimes_{\mathbf{k}} \mathbf{D}$ is a dualizing complex for \mathbf{D}.

Proof. By Theorem 7.7, $\omega_{\mathbf{D}}$ has finite injective dimension, and so condition (a) holds. Since $H^{i}\left(\omega_{\mathbf{D}}\right)=\mathbf{D} \otimes_{\mathbf{k}} \mathrm{H}^{i}\left(\omega_{\mathbf{k}}\right)$ and $\mathrm{H}^{i}\left(\omega_{\mathbf{k}}\right)$ is a finitely generated \mathbf{k} module, condition (b) holds. Finally, by [Stacks, Tag 0A6A], the natural map

$$
\mathbf{D} \otimes_{\mathbf{k}} \operatorname{RHom}_{\mathbf{k}}\left(\omega_{\mathbf{k}}, \omega_{\mathbf{k}}\right) \rightarrow \operatorname{RHom}_{\mathbf{D}}\left(\omega_{\mathbf{D}}, \omega_{\mathbf{D}}\right)
$$

is an isomorphism. Since the left-hand side is isomorphic to \mathbf{D} via the natural map, we conclude that (c) holds. This completes the proof.

Corollary 7.14. In the context of the theorem, the category $\mathrm{D}_{\mathrm{fp}}^{\mathrm{b}}(\mathbf{D})$ is self-dual (i.e., equivalent to its opposite).

Corollary 7.15. Suppose \mathbf{k} is a regular Noetherian ring of finite Krull dimension. Then \mathbf{D} is a dualizing complex for \mathbf{D}.

Proof. Under the hypotheses on \mathbf{k}, we can take $\omega_{\mathbf{k}}=\mathbf{k}$.

8. Torsion and finitely presented modules

8.1. Torsion in finitely presented modules. An element m of a Dmodule M is torsion if $x^{[n]} m=0$ for $n \gg 0$. A \mathbf{D}-module is torsion if all of its elements are, and torsion-free if it has no nonzero torsion element.

Theorem 8.1. Let $\mathbf{D}=\mathbf{D}\left(\mathbf{k}, \pi_{\bullet}\right)$ be a GDPA over the Noetherian ring \mathbf{k}. The following are equivalent:
(a) Every finitely presented \mathbf{D}-module (graded or not) is torsion-free.
(b) Every maximal ideal of \mathbf{k} contains infinitely many π_{n} 's.

Proof. Suppose (b) does not hold, and let \mathfrak{m} be a maximal ideal containing only finitely many of the π_{n}. Then $\mathbf{D} / \mathfrak{m} \mathbf{D}$ has the form $A \otimes_{\mathbf{k}} B$ where A is a finite dimensional algebra over $\mathbf{k} / \mathfrak{m}$ and B is a polynomial ring in one variable over $\mathbf{k} / \mathfrak{m}$. This algebra certainly has finitely presented modules with nonzero torsion; for example, A itself (with the variable in B acting by 0). Thus, (a) does not hold.

Now suppose (b) holds, and let M be a finitely presented D-module. We must show that M is torsion-free. Suppose that $m \in M$ is torsion, and let T be the \mathbf{D}-submodule of M generated by m. Then T is finitely presented, since it is a finitely generated submodule of a finitely presented module, and torsion. Thus, $T=0$ by the following lemma, which completes the proof.

Lemma 8.2. Suppose condition (b) of the Theorem holds, and let T be a finitely presented torsion \mathbf{D}-module. Then $T=0$.

Proof. First, suppose \mathbf{k} is a field. By Proposition 3.15, there is an $h \gg 0$ with $\pi_{h}=0$ such that T is free over $\mathbf{D}^{(h)}$. Since T is finite dimensional over \mathbf{k}, it follows that T must have rank 0 over $\mathbf{D}^{(h)}$, and so $T=0$.

We now treat the general case. If \mathfrak{m} is a maximal ideal of \mathbf{k}, then $T / \mathfrak{m} T=0$ by the previous paragraph, and so $T_{\mathfrak{m}}=0$ by Nakayama's lemma (again, T is finitely generated as a k-module). Since $T_{\mathfrak{m}}=0$ for all maximal ideals \mathfrak{m}, it follows that $T=0$.

8.2. Extensions between finitely presented and torsion modules.

 The purpose of this section is to prove the following theorem.Theorem 8.3. Let \mathbf{D} be a GDPA over the Noetherian ring k. Assume that \mathbf{k} is complete with respect to an ideal \mathfrak{I} containing infinitely many of the π_{n}. Let M and T be graded \mathbf{D}-modules, with M finitely presented and T torsion. Then $\operatorname{Ext}_{\mathbf{D}}^{n}(T, M)=0$ for all $n \geq 0$.

Remark 8.4. Here is an example showing that Theorem 8.3 can fail without the completeness hypothesis. Let $\mathbf{k}=\mathbf{Z}_{(p)}$, let $M=\mathbf{D} /\left(x^{[1]}\right)$, and let $N \subset M$ be the submodule of strictly positive degree elements. Note that every homogeneous element of N is killed by a power of p, and so N is naturally a \mathbf{Z}_{p}-module. We have an exact sequence

$$
\begin{equation*}
0 \rightarrow N \rightarrow M \rightarrow \mathbf{Z}_{(p)} \rightarrow 0 \tag{8.1}
\end{equation*}
$$

Applying $\underline{\operatorname{Hom}}_{\mathbf{D}}\left(\mathbf{Z}_{(p)},-\right)_{0}$, we obtain an exact sequence

$$
0 \rightarrow \mathbf{Z}_{(p)} \rightarrow \underline{\operatorname{Ext}}_{\mathbf{D}}^{1}\left(\mathbf{Z}_{(p)}, N\right)_{0} \rightarrow \underline{\operatorname{Ext}_{\mathbf{D}}^{1}}\left(\mathbf{Z}_{(p)}, M\right)_{0}
$$

Thus, $\operatorname{Ext}_{\mathbf{D}}^{1}\left(\mathbf{Z}_{(p)}, N\right)_{0}$ is a \mathbf{Z}_{p}-module containing a copy of $\mathbf{Z}_{(p)}$. It cannot be equal to $\mathbf{Z}_{(p)}$, and so $\underline{\operatorname{Ext}_{\mathbf{D}}^{1}}\left(\mathbf{Z}_{(p)}, M\right)_{0}$ must be nonzero. To obtain an explicit
extension, take the push-out of (8.1) along a map $N \xrightarrow{a} N \rightarrow M$, where $a \in$ $\mathbf{Z}_{p} \backslash \mathbf{Z}_{(p)}$, and the second map is the inclusion.

Remark 8.5. We also remark that Theorem 8.3 can fail in the non-graded case, as Example 7.5 shows.

Lemma 8.6. Suppose $\pi_{n}=0$ and put $D=\mathbf{D}_{<n}$. Let $d<n-1$ be an integer and let M be a graded \mathbf{k}-module supported in nonnegative degrees. Then $R \underline{H o m}_{D}\left(\mathbf{k}, M \otimes_{\mathbf{k}} D\right)_{d}=0$.

Proof. Since D is Noetherian and \mathbf{k} is finitely generated, the RHom in question commutes with direct limits in M, and so we can assume M is finitely generated. First, suppose \mathbf{k} is a field. We can then assume $M=\mathbf{k}[e]$ for some $e \geq 0$. Since D is self-injective (by Lemma 7.3), we have $\operatorname{Ext}_{D}^{i}(\mathbf{k}, D[e])_{d}=$ 0 for $i>0$. We also have $\underline{\operatorname{Hom}}_{D}(\mathbf{k}, D[e])_{d}=\underline{\operatorname{Hom}}_{D}(\mathbf{k}[d-e], D)_{0}=0$, since $x^{[n-1-(d-e)]}$ acts non-trivially on $x^{[d-e]}$ (see the proof of Lemma 7.2). Thus, the result holds when \mathbf{k} is a field.

We now proceed by Noetherian induction. We thus assume the result holds for every proper quotient of \mathbf{k}. Suppose M has nonzero annihilator \mathfrak{a}. Then

$$
\begin{aligned}
\operatorname{RHom}_{D}\left(\mathbf{k}, M \otimes_{\mathbf{k}} D\right)_{d} & =\operatorname{R\underline {\operatorname {Hom}}}_{D / \mathfrak{a} D}\left(\mathbf{k} \stackrel{\mathrm{~L}}{\otimes_{D}} D / \mathfrak{a} D, M \otimes_{\mathbf{k}} D\right)_{d} \\
& =\mathrm{R} \underline{\operatorname{Hom}}_{D / \mathfrak{a} D}\left(\mathbf{k} / \mathfrak{a}, M \otimes_{\mathbf{k}} D\right)_{d}=0
\end{aligned}
$$

where the final equality comes from the inductive hypothesis. From this, we can reduce to the case where \mathbf{k} is a domain (as in Step 2 of the proof of Theorem 7.7) and $M=\mathbf{k}$ (by dévissage it suffices to treat cyclic modules M, and the only cyclic module with zero annihilator is \mathbf{k}).

Let a be a nonzero element of \mathbf{k}. Using the exact sequence

$$
0 \rightarrow \mathbf{k} \xrightarrow{a} \mathbf{k} \rightarrow \mathbf{k} /(a) \rightarrow 0
$$

in the M variable, we find that multiplication by a is bijective on $\operatorname{Ext}_{D}^{n}(\mathbf{k}, D)_{d}$. But this Ext group is a finitely generated \mathbf{k}-module. Thus, if \mathbf{k} is not a field then it must vanish. And we have already treated the field case.

Lemma 8.7. Suppose $\mathfrak{I}=0$. Then $\mathrm{RHom}_{\mathbf{D}}(\mathbf{k}, \mathbf{D})=0$.
Proof. Let $n_{1}<n_{2}<\cdots$ be a sequence with $\pi_{n_{i}}=0$, and put $D_{i}=\mathbf{D}_{<n_{i}}$. Let $A_{i}=D_{i}^{\left(n_{i-1}\right)}$, a subalgebra of D_{i}. We have an isomorphism of algebras $D_{i} \cong A_{i} \otimes D_{i-1}$ (see Proposition 3.13). Let $Q_{\bullet}^{(i)} \rightarrow \mathbf{k}$ be a projective resolution over A_{i}, with $Q_{0}^{(i)}=A_{i}$. Then $P_{\bullet}^{(i)}=Q_{\bullet}^{(0)} \otimes \cdots \otimes Q_{\bullet}^{(i)}$ is a projective resolution of \mathbf{k} over D_{i}, and we have a natural map $P_{\bullet}^{(i)} \rightarrow P_{\bullet}^{(i+1)}$ coming from the natural \mathbf{k}-linear map $\mathbf{k} \rightarrow Q_{\bullet}^{(i+1)}$. One easily sees that the direct limit of the $P_{\bullet}^{(i)}$ is a projective resolution of \mathbf{k} over \mathbf{D}. We thus see that $\mathrm{RHom}_{\mathbf{D}}(\mathbf{k}, \mathbf{D})$ is computed by $\underline{H o m}_{\mathbf{D}}\left(\underset{\longrightarrow}{\lim _{\bullet}} P_{\bullet}^{(i)}, \mathbf{D}\right)$. One easily sees that this is isomorphic to $\underset{\longleftarrow}{\lim } C_{i}^{\bullet}$, where $C_{i}^{\bullet}=\underline{\operatorname{Hom}}_{D_{i}}\left(P_{\bullet}^{(i)}, \mathbf{D}\right)$. It follows from the construction of $P_{\bullet}^{(i)}$
that the natural map $C_{i}^{\bullet} \rightarrow C_{i-1}^{\bullet}$ is surjective. By general, results on inverse limits of complexes (see, for instance, [Lu, Ch. III, Cor. 1.2]), we thus have a short exact sequence

$$
0 \rightarrow \mathrm{R}^{1} \underset{\longleftarrow}{\lim } \mathrm{H}^{n-1}\left(C_{i}^{\bullet}\right) \rightarrow \mathrm{H}^{n}\left(\lim _{\longleftarrow} C_{i}^{\bullet}\right) \rightarrow \lim _{\longleftarrow} \mathrm{H}^{n}\left(C_{i}^{\bullet}\right) \rightarrow 0
$$

Since C_{i}^{\bullet} computes $\mathrm{R} \underline{\operatorname{Hom}}_{D_{i}}(\mathbf{k}, \mathbf{D})$, this yields

In any particular degree, the outer terms vanish for $i \gg 0$ by Lemma 8.6, and so the outer terms are 0 . (Note: this reasoning does not apply in the ungraded case, and the vanishing does not hold.) This completes the proof.

Lemma 8.8. Let M be a graded \mathbf{D}-module such that $\operatorname{RHom}_{\mathbf{D}}(\mathbf{k}, M)=0$. Then we have $\mathrm{R}_{\operatorname{Hom}_{\mathbf{D}}}(T, M)=0$ for all graded torsion modules T.

Proof. We proceed in three steps.
Step 1: T is finitely generated and concentrated in degree 0 . Thus, T is just a finitely generated \mathbf{k}-module with \mathbf{D}_{+}acting by 0 . Let $F_{\bullet} \rightarrow T$ be a resolution of T by finitely generated free \mathbf{k}-modules. Regard F_{i} as a \mathbf{D}-module by letting \mathbf{D}_{+}act by zero. We have a convergent spectral sequence

$$
\operatorname{Ext}_{\mathbf{D}}^{i}\left(F_{j}, M\right) \Longrightarrow \operatorname{Ext}_{\mathbf{D}}^{i+j}(T, M)
$$

Since each F_{j} is a finite direct sum of \mathbf{k} 's, each $\operatorname{Ext}_{\mathbf{D}}^{i}\left(F_{j}, M\right)$ vanishes by our hypothesis, and so the result follows.

Step 2: T is finitely generated. We then have $\mathbf{D}_{+}^{n} T=0$ for sufficiently large n. Filtering by powers of \mathbf{D}_{+}and passing to the associated graded, we can thus assume $\mathbf{D}_{+} T=0$. But then T is a finite sum of shifts of modules concentrated in a single degree, and so the result follows from Step 1.

Step 3: arbitrary T. Write $T=\underset{\longrightarrow}{\lim } T_{i}$ with T_{i} finitely generated. Then

$$
\mathrm{R} \underline{\operatorname{Hom}}_{\mathbf{D}}(T, M)=\mathrm{R} \underset{\check{\lim }}{ } \mathrm{R} \underline{\operatorname{Hom}}_{\mathbf{D}}\left(T_{i}, M\right) .
$$

Since $\mathrm{RHom}_{\mathbf{D}}\left(T_{i}, M\right)=0$ for all i, the result follows.
Lemma 8.9. Theorem 8.3 holds if $\mathfrak{I}=0$.
Proof. By Theorem 5.1, it suffices to treat the case where M is principal special, say $M=\mathbf{D}^{\prime}=(\mathbf{D} / \mathfrak{a} \mathbf{D})^{(h)}$ with $\pi_{h} \in \mathfrak{a}$. Note that \mathbf{D}^{\prime} is a quotient ring of \mathbf{D}, and (after regrading) is itself a GDPA. For a torsion \mathbf{D}-module T, we have

$$
\mathrm{R} \underline{\operatorname{Hom}_{\mathbf{D}}}\left(T, \mathbf{D}^{\prime}\right)=\mathrm{R}{\underline{\operatorname{Hom}_{\mathbf{D}^{\prime}}}}\left(T \stackrel{\mathrm{~L}}{\otimes_{\mathbf{D}}} \mathbf{D}^{\prime}, \mathbf{D}^{\prime}\right)
$$

Note that $\operatorname{Tor}_{p}^{\mathbf{D}}\left(T, \mathbf{D}^{\prime}\right)$ is a torsion \mathbf{D}^{\prime}-module for all p. Thus, renaming \mathbf{D}^{\prime} to \mathbf{D}, we have reduced to the case $M=\mathbf{D}$. As $\mathrm{RHom}_{\mathbf{D}}(\mathbf{k}, \mathbf{D})=0$ by Lemma 8.7, the result follows from Lemma 8.8.

Lemma 8.10. Theorem 8.3 holds if T is annihilated by a power of \mathfrak{I}.

Proof. Filtering by powers of \mathfrak{I}, it suffices to treat the case where T is annihilated by \mathfrak{I}. We then have

$$
\mathrm{R}_{\operatorname{Hom}_{\mathbf{D}}}(T, M)=\mathrm{R} \underline{\operatorname{Hom}}_{\mathbf{D} / \mathfrak{\mathfrak { D }}}\left(T, \mathrm{R}{\underline{\operatorname{Hom}_{\mathbf{D}}}}_{\mathbf{D}}(\mathbf{D} / \mathfrak{I} \mathbf{D}, M)\right) .
$$

Since $\operatorname{Ext}_{\mathbf{D}}^{i}(\mathbf{D} / \mathfrak{I} \mathbf{D}, M)$ is finitely presented as a $\mathbf{D} / \mathfrak{I} \mathbf{D}$-module for all i, the result follows from the $\mathfrak{I}=0$ case (Lemma 8.9).

Lemma 8.11. Let M and T be modules over a ring A such that M is complete with respect to an ideal $I \subset A$ and $\operatorname{Tor}_{i}^{A}(T, A / I A)=0$ for all $i>0$. Then

$$
\operatorname{RHom}_{A}(T, M)=\mathrm{R} \lim _{\check{L}} \mathrm{R} \operatorname{Hom}_{A / I^{i}}\left(T / I^{i} T, M / I^{i} M\right)
$$

Similar statements hold in the graded case with Hom.
Proof. We have

$$
\begin{aligned}
\operatorname{R~}_{\operatorname{Hom}_{A}(T, M)} & \cong \mathrm{R} \operatorname{Hom}_{A}\left(T, \mathrm{R}{\underset{\mathrm{lim}}{\leftrightarrows}} M / I^{i} M\right) \\
& \cong \mathrm{R} \lim _{\leftrightarrows} \operatorname{Hom}_{A}\left(T, M / I^{i} M\right) \\
& \cong \mathrm{R} \lim _{\leftrightarrows} \operatorname{Hom}_{A / I^{i}}\left(T / I^{i} T, M / I^{i} M\right)
\end{aligned}
$$

The first isomorphism follows from the completeness of M; note that the transition maps in the inverse system $M / I^{i} M$ are surjective, and so there are no higher inverse limits. The second isomorphism follows from the (derived version of the) universal property of inverse limits. And the third is derived adjunction of tensor and Hom, combined with the vanishing of the higher Tor's of T with A / I^{i}.

Proof of Theorem 8.3. By Lemma 8.8, it suffices to treat the case $T=\mathbf{k}$. By Lemma 8.11, we have

$$
\mathrm{R} \underline{\operatorname{Hom}_{\mathbf{D}}}(T, M)=\mathrm{R}{\underset{\lim }{幺}} \mathrm{R} \underline{\operatorname{Hom}_{\mathbf{D}} / \mathfrak{I}^{i} \mathbf{D}}\left(T / \mathfrak{I}^{i} T, M / \mathfrak{I}^{i} M\right) .
$$

Since $\underline{\operatorname{Ext}}_{\mathbf{D} / \mathfrak{J}^{i} \mathbf{D}}^{i}\left(T / \mathfrak{I}^{i} T, M / \mathfrak{I}^{i} M\right)=0$ for all i by Lemma 8.10 , the result follows. (Note that the hypotheses of Lemma 8.11 are satisfied: T is free over \mathbf{k}, so all higher Tor's with it vanish, and each graded piece of M is finitely generated over \mathbf{k}, and thus \mathfrak{I}-adically complete, and so $M=\lim _{\leftrightarrows} M / \mathfrak{I}^{i} M$ in the category of graded \mathbf{D}-modules.)

9. Nearly finitely presented modules

9.1. Definitions. Let \mathbf{D} be a GDPA. For a graded \mathbf{D}-module M, we put

$$
\tau^{\leq n}(M)=\bigoplus_{k=0}^{n} M_{n}, \quad \tau_{\geq n}(M)=\bigoplus_{k=n}^{\infty} M_{n}
$$

Then $\tau_{\geq n}(M)$ is a \mathbf{D}-submodule of M, while $\tau^{\leq n}$ is a quotient \mathbf{D}-module of M.

Definition 9.1. A D-module M is nearly finitely presented (nfp) if each M_{n} is finitely generated as a k-module, $M_{n}=0$ for $n \ll 0$, and there exists a finitely presented \mathbf{D}-module N, called a weak fp-envelope of M, such that $\tau_{\geq n}(M) \cong \tau_{\geq n}(N)$ for some n. We let $\operatorname{Mod}_{\mathbf{D}}^{\text {nfp }}$ be the full subcategory of $\operatorname{Mod}_{\mathbf{D}}$ on the nearly finitely presented modules.

Definition 9.2. Let M be a D-module. An fp-envelope of M is a map of D-modules $f: M \rightarrow N$ with N finitely presented such that any other map from M to a finitely presented \mathbf{D}-module factors through f.

Definition 9.3. A map of \mathbf{D}-modules $f: M \rightarrow N$ is a near isomorphism if $f_{n}: M_{n} \rightarrow N_{n}$ is an isomorphism for all $n \gg 0$.
9.2. The complete case. Throughout this section, we fix a GDPA over a noetherian ring \mathbf{k}. We assume that \mathbf{k} is complete with respect to an ideal \mathfrak{I} containing infinitely many of the π_{n} 's. We show, in this setting, that there is a very good theory of nfp modules.

Lemma 9.4. Let $\varphi: M \rightarrow M^{\prime}$ be a near isomorphism of \mathbf{D}-modules and let N be a finitely presented \mathbf{D}-module. Then the restriction map

$$
\varphi^{*}: \operatorname{Ext}_{\mathbf{D}}^{i}\left(M^{\prime}, N\right) \rightarrow \underline{\operatorname{Ext}}_{\mathbf{D}}^{i}(M, N)
$$

is an isomorphism for all i.
Proof. Consider the 4-term exact sequence

$$
0 \rightarrow K \rightarrow M \xrightarrow{\varphi} M^{\prime} \rightarrow C \rightarrow 0,
$$

where K and C are the kernel and cokernel of φ. Since φ is a near isomorphism, both K and C are torsion. By Theorem 8.3, we have $\underline{\operatorname{Ext}}_{\mathbf{D}}^{i}(K, N)=$ $\operatorname{Ext}_{\mathbf{D}}^{i}(C, N)=0$ for all i. The result follows.

Proposition 9.5. The notions of "weak fp-envelope" and "fp-envelope" coincide for nfp modules. Precisely:
(a) Suppose M is an nfp module and M^{\prime} is a weak fp-envelope, so that we have an isomorphism $\tau_{\geq n}(M) \rightarrow \tau_{\geq n}\left(M^{\prime}\right)$ for some n. Then there exists a unique map $M \rightarrow M^{\prime}$ restricting to the given isomorphism in degrees $\geq n$, and this makes M^{\prime} into an fp-envelope of M.
(b) Suppose M is an nfp module and $M \rightarrow M^{\prime}$ is an fp-envelope. Then this map is a near isomorphism, and so M^{\prime} is a weak fp-envelope of M.
In particular, every nfp module admits an fp-envelope, and any two weak fpenvelopes are canonically isomorphic.

Proof. (a) Let M be an nfp module and let M^{\prime} be a weak fp-envelope, so that we are given an isomorphism $\tau_{\geq n}(M) \cong \tau_{\geq n}\left(M^{\prime}\right)$ for some n. By Lemma 9.4, the map $\tau_{\geq n}(M) \rightarrow \tau_{\geq n}(M)^{\prime} \subset M^{\prime}$ extends uniquely to a map
$\varphi: M \rightarrow M^{\prime}$. Note that φ is a near isomorphism. Thus if N is finitely presented, then the map

$$
\varphi^{*}: \underline{\operatorname{Hom}}_{\mathbf{D}}\left(M^{\prime}, N\right) \rightarrow \underline{\operatorname{Hom}}_{\mathbf{D}}(M, N)
$$

is an isomorphism by Lemma 9.4, which exactly says that φ is an fp-envelope.
(b) Let $M \rightarrow M^{\prime}$ be an fp-envelope of the nfp module M, and let $M^{\prime \prime}$ be a weak fp-envelope of M. By (a), $M^{\prime \prime}$ is canonically an fp-envelope of M. Since any two fp-envelopes are canonically isomorphic, we see M^{\prime} is also a weak fp-envelope.

For an nfp module M, let $\Phi(M)$ denote its fp-envelope. Then Φ defines a functor $\operatorname{Mod}_{\mathbf{D}}^{\mathrm{nfp}} \rightarrow \operatorname{Mod}_{\mathbf{D}}^{\mathrm{fp}}$, and there is a natural transformation $M \rightarrow \Phi(M)$.

Proposition 9.6. The category $\operatorname{Mod}_{\mathbf{D}}^{\mathrm{nfp}}$ is an Abelian subcategory of $\operatorname{Mod}_{\mathbf{D}}$.

Proof. Let $f: M \rightarrow N$ be a map of nfp modules. Then we have a commutative square

The vertical maps are near isomorphisms. It follows that the map $\operatorname{ker}(f) \rightarrow$ $\operatorname{ker}(\Phi(f))$ is also a near isomorphism, and so $\operatorname{ker}(f)$ is nfp. Similarly for the cokernel and image of f. This shows that $\operatorname{Mod}_{\mathbf{D}}^{\text {nfp }}$ is an Abelian subcategory of $\operatorname{Mod}_{\mathbf{D}}$.

Proposition 9.7. The functor Φ is exact.
Proof. Suppose that

$$
0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow 0
$$

is an exact sequence of nfp modules. Then the sequence

$$
0 \rightarrow \Phi\left(M_{1}\right) \rightarrow \Phi\left(M_{2}\right) \rightarrow \Phi\left(M_{3}\right) \rightarrow 0
$$

is isomorphic to the original one in all sufficiently high degrees. Thus the homology of this sequence is both torsion and finitely presented, and therefore vanishes.

Let $\operatorname{Mod}_{\mathbf{D}}^{\text {tors }}$ denote the category of finitely generated torsion modules. This is a Serre subcategory of $\operatorname{Mod}_{\mathbf{D}}^{\mathrm{nfp}}$.

Proposition 9.8. The inclusion functor $\operatorname{Mod}_{\mathbf{D}}^{\mathrm{fp}} \rightarrow \operatorname{Mod}_{\mathbf{D}}^{\mathrm{nfp}}$ induces an equivalence of categories $\operatorname{Mod}_{\mathbf{D}}^{\mathrm{fp}} \rightarrow \operatorname{Mod}_{\mathbf{D}}^{\mathrm{nfp}} / \operatorname{Mod}_{\mathbf{D}}^{\text {tors }}$. The functor $\Phi: \operatorname{Mod}_{\mathbf{D}}^{\mathrm{nfp}} \rightarrow \operatorname{Mod}_{\mathbf{D}}^{\mathrm{fp}}$ induces a quasi-inverse.

Proof. Since Φ is exact and kills $\operatorname{Mod}_{\mathbf{D}}^{\text {tors }}$, it does factor through the Serre quotient. If M is an nfp module, then the kernel and cokernel of $M \rightarrow \Phi(M)$ are torsion, and so this map is an isomorphism in the Serre quotient. Of course, if M is finitely presented, then $\Phi(M)=M$. This proves the claim.

Proposition 9.9. An extension of nfp modules is again nfp.
Proof. Consider an exact sequence

$$
0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow 0
$$

with M_{1} and $M_{3} \mathrm{nfp}$. We must show that M_{2} is nfp. Let M_{1}^{\prime} and M_{3}^{\prime} be the fp-envelopes of M_{1} and M_{3}. Pusing out the above extension along the map $M_{1} \rightarrow M_{1}^{\prime}$, we obtain a new extension

$$
0 \rightarrow M_{1}^{\prime} \rightarrow M_{2}^{\prime} \rightarrow M_{3} \rightarrow 0
$$

The map $M_{2} \rightarrow M_{2}^{\prime}$ is a near isomorphism, so it suffices to show M_{2}^{\prime} is nfp. By Lemma 9.4 , the pullback map $\operatorname{Ext}^{1}\left(M_{3}^{\prime}, M_{1}^{\prime}\right) \rightarrow \operatorname{Ext}^{1}\left(M_{3}, M_{1}^{\prime}\right)$ is an isomorphism. Thus, there is an extension

$$
0 \rightarrow M_{1}^{\prime} \rightarrow M_{2}^{\prime \prime} \rightarrow M_{3}^{\prime} \rightarrow 0
$$

such that M_{2}^{\prime} is the pullback of $M_{2}^{\prime \prime}$ along $M_{3} \rightarrow M_{3}^{\prime}$. Since $M_{2}^{\prime \prime}$ is an extension of finitely presented modules, it is finitely presented. The map $M_{2}^{\prime} \rightarrow M_{2}^{\prime \prime}$ is a near isomorphism, and so M_{2}^{\prime} is nfp. The result follows.
9.3. Decompletion over Noetherian rings. In this section, we prove some results about completions that are needed in the following section. We fix a Noetherian ring R and an ideal \mathfrak{a} of R. We assume that R is \mathfrak{a}-adically separated, or equivalently, that \mathfrak{a} is contained in the Jacobson radical of R. For a R-module M, we write \widehat{M} for its \mathfrak{a}-adic completion.

Proposition 9.10. Let M and N be finitely generated R-modules. Then there exists an integer $k \geq 0$ such that for any $n \geq k$ the natural map $\mathfrak{a}^{n-k} \operatorname{Hom}_{R}\left(M, \mathfrak{a}^{k} N\right) \rightarrow \operatorname{Hom}\left(M, \mathfrak{a}^{n} N\right)$ is an isomorphism.

Proof. The map in the proposition is clearly injective, so it suffices to prove it is surjective. Let $B=\bigoplus_{n \geq 0} \mathfrak{a}^{n}$ be the blow-up algebra, a graded Noetherian R-algebra, and let $H=\bigoplus_{n \geq 0} \operatorname{Hom}_{R}\left(M, \mathfrak{a}^{n} N\right)$, a graded B-module. Let $F \rightarrow$ M be a surjection with F a finite free R-module, and define H^{\prime} similarly but with F in place of M. Then H is naturally a B-submodule of H^{\prime}. However, H^{\prime} is just a finite direct sum of copies of $\bigoplus_{n \geq 0} \mathfrak{a}^{n} N$, and thus a finitely generated B-module. By noetherianity, H is finitely generated as a B-module. Suppose H is generated in degrees $\leq k$. Then, since B is generated in degree 1 (as a R-algebra), we find that the natural map $B_{n-k} \otimes_{R} H_{k} \rightarrow H_{n}$ is surjective for any $n \geq k$. This proves the proposition.

Proposition 9.11. Let M and N be finitely generated R-modules. Then the natural map

$$
\Phi: \operatorname{Hom}_{R}(M, N)^{\wedge} \rightarrow \operatorname{Hom}_{\widehat{R}}(\widehat{M}, \widehat{N})
$$

is an isomorphism.
Proof. We first prove that Φ is injective. Suppose $\Phi(f)=0$, and let $\left(f_{i}\right) \in \operatorname{Hom}_{R}(M, N)$ be a sequence converging to f in the \mathfrak{a}-adic topology. Since $\Phi(f)=0$, we have $\Phi\left(f_{i}\right) \rightarrow 0$. Thus, for any $n \geq 0$, we have $\Phi\left(f_{i}\right) \in \mathfrak{a}^{n} \operatorname{Hom}_{\widehat{R}}(\widehat{M}, \widehat{N})$ for all $i \gg n$. Fix such an i. Thus f_{i} maps M into $N \cap \mathfrak{a}^{n} \widehat{N}=\mathfrak{a}^{n} N$, and so $f_{i} \in \operatorname{Hom}_{R}\left(M, \mathfrak{a}^{n} N\right)$. By the previous proposition, we find $f_{i} \in \mathfrak{a}^{n-k} \operatorname{Hom}_{R}(M, N)$ for some k depending only on M and N. This shows that $f_{i} \rightarrow 0$ in $\operatorname{Hom}_{R}(M, N)$ for the \mathfrak{a}-adic topology, and so $f=0$.

We now prove that Φ is surjective. Let $f: \widehat{M} \rightarrow \widehat{N}$ be given. It suffices to find a sequence $\left(g_{n}\right)$ in $\operatorname{Hom}_{R}(M, N)$ converging to f. Let

$$
0 \rightarrow K \rightarrow F \rightarrow M \rightarrow 0
$$

be a presentation for M with F finite free, and let e_{1}, \ldots, e_{r} be a basis for F. Let $x_{i}=f\left(e_{i}\right) \in \widehat{N}$ and choose $y_{i}^{(n)} \in N$ such that $x_{i}-y_{i}^{(n)} \in \mathfrak{a}^{n} \widehat{N}$. Define $h_{n}: F \rightarrow N$ by $h_{n}\left(e_{i}\right)=y_{i}^{(n)}$. We have $h_{n}(K) \subset \mathfrak{a}^{n} N$.

Let H be the image of the restriction map $\operatorname{Hom}_{R}(F, N) \rightarrow \operatorname{Hom}_{R}(K, N)$. Let $k \geq 0$ be such that

$$
\operatorname{Hom}_{R}\left(K, \mathfrak{a}^{n}\right)=\mathfrak{a}^{n-k} \operatorname{Hom}_{R}\left(K, \mathfrak{a}^{k} N\right)
$$

for $n \geq k$, and let ℓ be such that

$$
H \cap \mathfrak{a}^{n} \operatorname{Hom}_{R}(K, N)=\mathfrak{a}^{n-\ell}\left(H \cap \mathfrak{a}^{\ell} \operatorname{Hom}_{R}(K, N)\right)
$$

for $n \geq k$. The number k exists by the previous proposition, while the number ℓ exists by the Artin-Rees lemma. We have

$$
\begin{aligned}
\left.h_{n}\right|_{K} & \in H \cap \operatorname{Hom}_{R}\left(K, \mathfrak{a}^{n} N\right)=H \cap \mathfrak{a}^{n-k} \operatorname{Hom}_{R}\left(K, \mathfrak{a}^{k} N\right) \\
& =\mathfrak{a}^{n-k-\ell}\left(H \cap \mathfrak{a}^{\ell} \operatorname{Hom}_{R}\left(K, \mathfrak{a}^{k} N\right)\right),
\end{aligned}
$$

and so $\left.h_{n}\right|_{K} \in \mathfrak{a}^{n-k-\ell} H$. In other words, we can find maps $h_{i}^{\prime}: F \rightarrow N$ and elements $a_{i} \in \mathfrak{a}^{n-k-\ell}$, for i in some index set I_{n}, such that h_{n} and $\sum_{i \in I_{n}} a_{i} h_{i}^{\prime}$ have the same restriction to K.

Let $g_{n}=h_{n}-\sum_{i \in I_{n}} a_{i} h_{i}^{\prime}$. Then g_{n} restricts to 0 on K, and thus defines an element of $\operatorname{Hom}_{R}(M, N)$. We have $g_{n}\left(e_{i}\right)=h_{n}\left(e_{i}\right)$ modulo $\mathfrak{a}^{n-k-\ell}$, and $h_{n}\left(e_{i}\right)=x_{i}$ modulo \mathfrak{a}^{n}. Thus $f-g_{n}$ maps into $\mathfrak{a}^{n-k-\ell} \widehat{N}$, that is, $f-g_{n} \in$ $\operatorname{Hom}_{\widehat{R}}\left(\widehat{M}, \mathfrak{a}^{n-k-\ell} \widehat{N}\right)$. Another application of the previous proposition now gives $g_{n} \rightarrow f$, which completes the proof.

Proposition 9.12. Let M and N be finitely generated R-modules. Then $\operatorname{Isom}(M, N)$ is open in $\operatorname{Hom}(M, N)$ for the \mathfrak{a}-adic topology.

Proof. If M and N are not isomorphic then $\operatorname{Isom}(M, N)$ is empty, and thus open. Thus, assume M and N are isomorphic. It suffices to treat the case where $M=N$. Furthermore, since Aut (M) is a group, it suffices to show that some open neighborhood of id_{M} in $\operatorname{End}(M)$ is contained in $\operatorname{Aut}(M)$. In fact, $\mathrm{id}+\mathfrak{a} \operatorname{End}(M) \subset \operatorname{Aut}(M)$. To see this, let $f: M \rightarrow M$ be an endomorphism such that $f-\mathrm{id} \in \mathfrak{a} \operatorname{End}(M)$. Then $f: M / \mathfrak{a} M \rightarrow M / \mathfrak{a} M$ is surjective, and so f is surjective by Nakayama's lemma (here it is important that \mathfrak{a} is contained in the Jacobson radical of R). Surjectivity of f implies injectivity [Stacks, Tag 05G8], and so $f \in \operatorname{Aut}(M)$.

Proposition 9.13. Let $f: M \rightarrow N$ be a map of finitely generated R modules. If $\widehat{f}: \widehat{M} \rightarrow \widehat{N}$ is an isomorphism, then f is an isomorphism.

Proof. Consider the sequence

$$
0 \rightarrow K \rightarrow M \stackrel{f}{\rightarrow} N \rightarrow C \rightarrow 0
$$

Since completion is exact, we find $\widehat{K}=\widehat{C}=0$, and so $K=C=0$. Thus, f is an isomorphism.

Proposition 9.14. Let M and N be finitely generated R-modules. If $\widehat{M} \cong$ \widehat{N} then $M \cong N$.

Proof. Identify $Y=\operatorname{Hom}_{\mathbf{D}}(M, N)$ with a subset of $X=\operatorname{Hom}_{\widehat{\mathbf{D}}}(\widehat{M}, \widehat{N})$. We have shown that X is the \mathfrak{a}-adic completion of Y, and so Y is dense in X. The set of isomorphisms in X is open, and non-empty by hypothesis. Since Y is dense in X, it follows that Y meets the locus of isomorphisms. Thus, there is a map $M \rightarrow N$ that induces an isomorphism on completions, and is therefore itself an isomorphism.
9.4. Uniqueness of weak fp-envelopes. Fix a GDPA D over a Noetherian ring \mathbf{k}. We assume that the Jacobson radical \mathfrak{I} of \mathbf{k} contains infinitely many of the π_{n} 's. Our main result is the following theorem.

Theorem 9.15. Let M and N be finitely presented \mathbf{D}-modules such that $\tau_{\geq n}(M)$ is isomorphic to $\tau_{\geq n}(N)$ for some n. Then M is isomorphic to N.

Corollary 9.16. Any two weak fp-envelopes of an nfp module are isomorphic.

Beware that the isomorphism provided by the theorem is not canonical! We require a few lemmas before proving the theorem. We write \widehat{M} for the I-adic completion of M. Note that if M is a graded \mathbf{k}-module then \widehat{M} is the direct sum of the completions of the graded pieces of M.

Lemma 9.17. Let M and N be \mathbf{D}-modules with M finitely presented. Let n be larger than the degrees of generators and relations of M. Then the natural map $\underline{\operatorname{Hom}}_{\mathbf{D}}(M, N)_{0} \rightarrow \underline{\operatorname{Hom}}_{\mathbf{D}}\left(\tau^{\leq n}(M), \tau^{\leq n}(N)\right)_{0}$ is an isomorphism.

Proof. Informally, to give a map $M \rightarrow N$ one says where the generators go and checks that relations to go to 0 , and all of this can be done by looking up to degree n. We now give a formal argument. We have an exact sequence

$$
0 \rightarrow \tau_{>n}(N) \rightarrow N \rightarrow \tau^{\leq n}(N) \rightarrow 0
$$

Applying $\underline{H o m}_{\mathbf{D}}(M,-)_{0}$, we find

$$
0 \rightarrow \underline{\operatorname{Hom}}_{\mathbf{D}}(M, N)_{0} \rightarrow{\underline{\operatorname{Hom}_{\mathbf{D}}}}_{\mathbf{D}}\left(M, \tau^{\leq n}(N)\right)_{0} \rightarrow{\underline{\operatorname{Ext}_{\mathbf{D}}}}^{1}\left(M, \tau_{>n}(M)\right)_{0} .
$$

Note that $\underline{\operatorname{Hom}}_{\mathbf{D}}\left(M, \tau_{>n}(N)\right)_{0}=0$, since the generators of M must map to 0 for degree reasons. Now, consider an exact sequence

$$
0 \rightarrow K \rightarrow F \rightarrow M \rightarrow 0
$$

with F free. The map $\underline{\operatorname{Hom}}_{\mathbf{D}}\left(K, \tau_{>n}(N)\right)_{0} \rightarrow \underline{\operatorname{Ext}}^{1}\left(M, \tau_{>n}(N)\right)_{0}$ is surjective. But once again, this Hom is 0 for degree reasons. We have thus shown that the natural map ${\underline{\operatorname{Hom}_{\mathbf{D}}}}_{\mathbf{D}}(M, N)_{0} \rightarrow{\underline{\operatorname{Hom}_{\mathbf{D}}}}^{(}\left(M, \tau^{\leq n}(N)\right)_{0}$ is an isomorphism. It is clear that the natural map

$$
\underline{\operatorname{Hom}}_{\mathbf{D}}\left(\tau^{\leq n}(M), \tau^{\leq n}(N)\right)_{0} \rightarrow{\underline{\operatorname{Hom}_{\mathbf{D}}}}_{\mathbf{D}}\left(M, \tau^{\leq n}(N)\right)_{0}
$$

is also an isomorphism, and so the result follows.
Lemma 9.18. Let M and N be finitely presented \mathbf{D}-modules. Let n be larger than the degrees of generators and relations of both M and N. Then the natural map $\underline{\operatorname{Isom}}_{\mathbf{D}}(M, N)_{0} \rightarrow{\underline{\operatorname{Isom}_{\mathbf{D}}}\left(\tau^{\leq n}(M), \tau^{\leq n}(N)\right)_{0} \text { is an isomorphism. }}_{\text {a }}$

Proof. Injectivity follows immediately from the previous proposition. Let $\bar{f}: \tau^{\leq n}(M) \rightarrow \tau^{\leq n}(N)$ be an isomorphism, and let \bar{g} be its inverse. By the previous proposition, $\bar{f}=\tau^{\leq n}(f)$ and $\bar{g}=\tau^{\leq n}(g)$. Since $\tau^{\leq n}(g f)=\tau^{\leq n}\left(\mathrm{id}_{M}\right)$, the previous proposition gives $g f=\mathrm{id}_{M}$. Similarly $f g=\mathrm{id}_{N}$, and the result follows.

Proof of Theorem 9.15. Let M and N be finitely presented D-modules with $\tau_{\geq n}(M) \cong \tau_{\geq n}(N)$. Suppose that the generators and relations of M and N are in degrees $\leq d$. Let $M_{0}=\tau^{\leq d}(M)$ and $N_{0}=\tau^{\leq d}(N)$, both of which are finitely generated modules over the noetherian ring $R=\tau^{\leq d}(\mathbf{D})$. Since $\tau_{\geq n}(M) \cong \tau_{\geq n}(N)$, we find $\tau_{\geq n}(\widehat{M}) \cong \tau_{\geq n}(\widehat{N})$. Proposition 9.5 yields an isomorphism $\widehat{M} \cong \widehat{N}$ of $\widehat{\mathbf{D}}$-modules. Applying $\tau^{\leq d}$, we obtain an isomorphism $\widehat{M}_{0} \cong \widehat{N}_{0}$ of \widehat{R}-modules. Proposition 9.14 now gives an isomorphism $M_{0} \cong N_{0}$ of R-modules. (Here we use $\mathfrak{a}=\mathfrak{I} \cdot R$.) Finally, Lemma 9.18 gives $M \cong N$, completing the proof.
9.5. Some counterexamples. We now give some examples showing that the hypotheses in some of our results are necessary.
9.5.1. An nfp module without an fp-envelope. Let $\mathbf{k}=\mathbf{Z}_{(p)}$, let \mathbf{D} be the classical divided power algebra over \mathbf{k}, and let $M=\mathbf{D} /\left(x^{[1]}\right)$.

Proposition 9.19. The nfp module $\tau_{\geq 1}(M)$ does not have an fp-envelope.
Proof. Since M_{n} is torsion for $n \geq 1$, we see that $\tau_{\geq 1}(M)$ is naturally a $\mathbf{Z}_{p^{-}}$ module. Furthermore, since there is no bound on the exponent of the group M_{n}, it follows that \mathbf{Z}_{p} acts faithfully on $\tau_{\geq 1}(M)$.

Now, suppose that N is an fp-envelope of $\tau_{\geq 1}(M)$. Then

$$
\underline{\operatorname{Hom}}_{\mathbf{D}}\left(\tau_{\geq 1}(M), \tau_{\geq 1}(M)\right)_{0}=\underline{\operatorname{Hom}}_{\mathbf{D}}\left(\tau_{\geq 1}(M), M\right)_{0}=\underline{\operatorname{Hom}}_{\mathbf{D}}(N, M)_{0}
$$

The first equality is elementary, while the second comes from the definition of fp-envelope. We have shown that the left group above contains \mathbf{Z}_{p}, while the right group is a finitely generated $\mathbf{Z}_{(p)}$-module. This is a contradiction, and so the result follows.

This shows that the completeness assumption in place in Proposition 9.5 cannot be removed.
9.5.2. An nfp modules with multiple weak fp-envelopes. Let \mathbf{k} be the ring of integers in a number field \mathbf{K}, let \mathbf{D} be the classical divided power algebra over \mathbf{k}, and let $M=\mathbf{D} /\left(x^{[1]}\right)$.

Proposition 9.20. If the class group of \mathbf{K} is non-trivial, then the nfp module $\tau_{\geq 1}(M)$ admits non-isomorphic weak fp-envelopes.

Proof. Each graded piece of $\tau_{\geq 1}(M)$ is torsion as a \mathbf{k}-module, and is thus a module over $\widehat{\mathbf{k}}=\mathbf{k} \otimes_{\mathbf{Z}} \widehat{\mathbf{Z}}$. Let \mathfrak{a} be an ideal of \mathbf{k}. Then $\mathfrak{a} \otimes_{\mathbf{k}} \widehat{\mathbf{k}}$ is isomorphic to $\widehat{\mathbf{k}}$. Thus $\tau_{\geq 1}\left(M \otimes_{\mathbf{k}} \mathfrak{a}\right)$ is isomorphic to $\tau_{\geq 1}(M)$. It follows that both M and $M \otimes_{\mathbf{k}} \mathfrak{a}$ are weak fp-envelopes of M. If \mathfrak{a} is not principal, then these modules are not isomorphic, since their degree 0 pieces are not isomorphic.

We thus see that in Corollary 9.16, the hypothesis that infinitely many of the π_{n} 's belong to the Jacobson radical is necessary. (Note that in the above example, the Jacobson radical of \mathbf{k} is 0 , and π_{n} is nonzero for all $n \geq 1$.)

Remark 9.21. In fact, there is a simpler, though less interesting, counterexample: taking $\mathbf{D}=\mathbf{k}[x]$, the nfp module \mathbf{D} itself admits non-isomorphism fp-envelopes, such as \mathbf{D} and $\mathbf{D} \oplus \mathbf{D} /(x)$.

10. Open problems

1. Does there exist a graded-coherent GDPA \mathbf{D} such that $\mathbf{D}^{[h]}$ is not gradedcoherent for some h ?
2. Let \mathbf{D} be the classical divided power algebra over \mathbf{k}. Suppose that \mathbf{D} is graded-coherent and $\mathbf{D} \otimes \mathbf{Q} \cong(\mathbf{k} \otimes \mathbf{Q})[x]$ is Gröbner-coherent. Is \mathbf{D} Gröbner-coherent?
3. In Proposition 3.20 we computed $\operatorname{Tor}_{1}^{\mathbf{D}}(\mathbf{k}, \mathbf{k})$. Can one compute $\operatorname{Tor}_{\bullet}^{\mathbf{D}}(\mathbf{k}, \mathbf{k})$ as a co-algebra? If M is a finitely presented \mathbf{D}-module, does $\operatorname{Tor}_{\bullet}^{\mathbf{D}}(M, \mathbf{k})$ admit a nice structure as a co-module?
4. If $f: M \rightarrow N$ is a surjection of special modules, is $\operatorname{ker}(f)$ special?
5. Can special dimension be detected by the vanishing of some kind of derived functor?
6. Conjecture 6.4 on the structure of $\underline{K}(\mathbf{D})$ when $(*)$ does not hold, e.g., for the q-divided power algebra. To prove this, it would be useful to have a refined version of the L invariant that picks off the \mathcal{K}_{n} piece of a class in $\underline{K}(\mathbf{D})$, much as L picks off the \mathcal{K}_{+}piece. At the very least, there should be a "residue map" $\underline{K}(\mathbf{D}) \rightarrow \mathcal{K}_{n} \otimes \mathbf{Q}\left[\zeta_{n}\right]$ for each $n \geq 1$, where ζ_{n} is primitive nth root of unity, corresponding to taking the residue of an element of \underline{K} at $t=\zeta_{n}$. One can construct this map for the q-divided power algebra over $\mathbf{Z}[q]$ using Proposition 6.20 , but for a general GDPA we do not know how to construct it.
7. Does the equivalence in Remark 6.19 hold? Can one reconstruct \mathcal{D} from $\mathcal{F}, \mathcal{D}^{t}$, and $\mathcal{D}^{t} \cap \mathcal{F}$ in some direct manner?
8. Are weak fp-envelopes unique when $\mathbf{k}=\mathbf{Z}$?
9. Suppose \mathbf{k} is Noetherian and its Jacobson radical contains infinitely many of the π_{n} 's. Is $\operatorname{Mod}_{\mathbf{D}}^{\text {nfp }}$ Abelian?

Acknowledgment. The second author thanks Bhargav Bhatt for helpful conversations.

References

[BO] P. Berthelot and A. Ogus, Notes on crystalline cohomology, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1978. MR 0491705
[DB] M. Dziemiańczuk and W. Bajguz, On GCD-morphic sequences, IeJNART 3 (2009), 33-37; available at arXiv:0802.1303v1.
[Le] F. Lemmermeyer, Non-principal ideals in cyclotomic fields, 2015; available at http://mathoverflow.net/questions/195955.
[Lu] S. Lubkin, Cohomology of completions, North-Holland Mathematics Studies, vol. 42, North-Holland Publishing Co., Amsterdam-New York, 1980. MR 0589714
[Na] R. Nagpal, FI-modules and the cohomology of modular representations of symmetric groups; available at arXiv:1505.04294.
[NS] R. Nagpal and A. Snowden, Gröbner-coherent rings and modules, to appear in J. Commut. Algebra; available at arXiv:1606.03429.
[NS2] R. Nagpal and A. Snowden, Periodicity in the cohomology of the symmetric group via divided powers, Proc. Lond. Math. Soc. (3) 116 (2018), no. 5, 1244-1268. Available at arXiv:1705.10028.
[Nak] M. Nakaoka, Decomposition theorem for homology groups of symmetric groups, Ann. of Math. (2) $\mathbf{7 1}$ (1960), 16-42. MR 0112134
[No] A. Nowicki, Strong divisibility and LCM-sequences, Amer. Math. Monthly 122 (2015), no. 10, 958-966. MR 3447749
[OEIS] N. J. A. Sloane, ed., The on-line encyclopedia of integer sequences; available at https://oeis.org.
[So] J. P. Soublin, Anneaux et modules cohérents, J. Algebra 15 (1970), 455-472. MR 0260799
[Sr] V. Srinivas, Algebraic K-theory, Progress in Mathematics, vol. 90, Birkhäuser Boston, Inc., Boston, MA, 1991. MR 1102246
[Stacks] Stacks Project, 2016; available at http://stacks.math.columbia.edu.
Rohit Nagpal, Department of Mathematics, University of Chicago, Chicago, IL, USA

E-mail address: nagpal@math.uchicago.edu
URL: http://math.uchicago.edu/~nagpal/
Andrew Snowden, Department of Mathematics, University of Michigan, Ann Arbor, MI, USA

E-mail address: asnowden@umich.edu
URL: http://www-personal.umich.edu/~asnowden/

[^0]: Received January 9, 2017; received in final form March 9, 2018.
 AS was supported by NSF grants DMS-1303082 and DMS-1453893.
 2010 Mathematics Subject Classification. 13C, 13P10, 16Z05, 14F30.

[^1]: 1 Except Theorem 1.3, for which we only have partial results.
 2 We give a better definition in the body of the paper that does not require division.
 3 Same caveat regarding Theorem 1.3.

