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BOUNDS ON THE NORM OF THE BACKWARD SHIFT
AND RELATED OPERATORS IN HARDY AND

BERGMAN SPACES

TIMOTHY FERGUSON

Abstract. We study bounds for the backward shift operator
f �→ (f(z) − f(0))/z and the related operator f �→ f − f(0) on

Hardy and Bergman spaces of analytic and harmonic functions.

If u is a real valued harmonic function, we also find a sharp bound

on M1(r,u − u(0)) in terms of ‖u‖h1 , where M1 is the integral
mean with p= 1.

1. Introduction

For a space of continuous functions in the unit disc with bounded point
evaluation, we can consider the operator B defined by B(f) = f − f(0). For
a space of analytic functions in the unit disc, it also makes sense to consider
the backward shift operator B defined by B(f) = [f − f(0)]/z. On H2, the
backward shift operator is the adjoint of the forward shift operator given by
Sf(z) = zf(z). Both S and B have been extensively studied in the literature.

In this article, we study the norms of these operators on various spaces. For
Hardy spaces, both B and B have the same norm, and since |f(0)| ≤ ‖f‖, it is
clear that the norm is at most 2. However, we are not aware of any references
in the literature that discuss this question further, beyond the observation
that the norms of both B and B are exactly 1 for H2. One can use the
above facts and interpolation to show that ‖B‖Hp ≤ 2(2−p)/p if 1≤ p≤ 2 and
‖B‖Hp ≤ 2(p−2)/p for 2≤ p≤∞. However, this does not settle the question of
whether the norm on H1 and H∞ is less than 2. We prove that ‖B‖H∞ = 2
but that ‖B‖H1 < 2. In fact, we prove that ‖B‖H1 ≤ 1.71.
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We also study bounds for B and B on other spaces. Let Ap denote the
Bergman space of the unit disc with normalized area measure and let ap

R
be the

real harmonic Bergman space on the unit disc with normalized area measure.
We show that ‖B‖Ap ≤ ‖B‖Hp . This also implies that ‖B‖Ap ≤ 2‖B‖Hp . We
also show that ‖B‖a1

R

≤ 1.84.
Lastly, we consider the operator Br from the real valued harmonic Hardy

space h1
R
onto L1(∂D) defined by

u �→ u
(
reiθ

)
− u(0).

This is the operator that maps a harmonic function u in h1
R
to the restriction

of u−u(0) to the circle of radius r. We show that this operator has norm 2−
4
π arccos(r). Furthermore, the maximum in the definition of norm is attained,
for example, by the Poisson kernel.

It turns out that the question of bounds for B and B on subspaces of L1 are
related to questions about concentrations of functions. Consider for example
the space h1

R
. Let fn(z) be the function in h1

R
with boundary values given by

(1) fn
(
eiθ

)
=

{
πn if −1/n≤ θ ≤ 1/n,

0 otherwise.

Then fn(0) = 1 and ‖fn(z)− fn(0)‖h1
R

= 2− (4/n). This shows that the norm

of B on h1
R
is 2. Notice that the boundary functions of the fn have most of

their L1 norm concentrated on sets of small measure. Moreover, their sign
does not oscillate on these sets. Contrast these functions with the functions
gn with boundary values given by

gn
(
eiθ

)
=

⎧⎪⎨⎪⎩
−πn if −1/n≤ θ < 0,

πn if 0≤ θ ≤ 1/n,

0 otherwise.

The gn also have boundary values concentrated on sets of small measure, but
the sign of their boundary values oscillates, which allows gn(0) to be 0. Thus,
‖g(z)− g(0)‖h1

R

= 1. Roughly speaking, for Bf to have large norm, f should
have most of its mass concentrated on a set of small measure, and its sign
should not oscillate much.

For a related example, we define the Poisson kernel by

Pr

(
eit

)
=

1− r2

1− 2r cos(t) + r2
.

If z = reit, then Pr(t) is a harmonic function of z, which we may denote here
by P (z). It is not difficult to see that P (0) = 0 and ‖P − 1‖h1

R

= 2. This
is related to the fact that the Poisson kernel is a Poisson integral of a point
mass, so that P is as concentrated as possible in some sense. This example
also hints at that the fact that ‖B‖H1 < 2, because of the fact that the analytic
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completion of the Poisson kernel is not in H1. Thus, we might expect that
there is some limit to the concentration of boundary values of H1 functions.
Related to this is the fact that it is not difficult to find an analytic function in
H1 that is large only on a set of small measure - for example cn(1 + z)n/2n,
where cn is chosen so that the function has norm 1. However, such functions
oscillate in sign near the points where they are large.

In order to formalize the above observations, we prove two different the-
orems about concentration of of analytic functions on sets of small mea-
sure. Suppose ‖f‖H1 = 1. In the first theorem, we prove that if A ⊂ T and∫
A
Ref(0)dθ/(2π)> 1−ε for small enough ε, then m(A) cannot be too small,

where m is the arc length measure on the unit circle. The second says that
if ‖f‖L1(A) > 1− ε for some small enough set A and for small enough ε, then
f(0) cannot be too large. We provide two proofs that ‖B‖H1 < 2, where each
proof uses one of the above theorems.

2. Bounds for Hardy spaces

For a continuous function f in the unit disc D, we define the pth integral
mean of f at radius r by

Mp(r, f) =

(
1

2π

∫ 2π

0

∣∣f(reiθ)∣∣p dθ)1/p

if 0< p<∞ and we define M∞(r, f) = sup0≤θ<2π |f(reiθ)|.
Denote by Hp the space of analytic functions in the unit disc such that

‖f‖Hp = sup0≤r<1Mp(r, f)<∞. We let hp
R
be the space of real valued har-

monic functions in the unit disc such that ‖f‖Hp = sup0≤r<1Mp(r, f) <∞.
Note that Mp(r, f) is increasing for 0 < p ≤ ∞ if f is analytic and for
1 ≤ p ≤ ∞ if f is harmonic (see [2, Theorems 1.5 and 1.6]). Functions in
H1 have radial limits almost everywhere on the boundary of the unit disc,
and they are uniquely determined by their boundary value functions. In fact,
the norm of an H1 function is equal to the L1 norm of its boundary func-
tion. In contrast to this, h1

R
functions, even though they have radial limits

almost everywhere, are not uniquely determined by their boundary values.
However, they can be written as convolutions of Poisson kernels with finite
Radon measures (see [2]).

We define Ap to be the subspace of Lp of the unit disc (with normalized
area measure) consisting of analytic functions. Let ap

R
be the (real) subspace

of Lp consisting of real valued harmonic functions.
In this section, we discuss bounds for the operators B and B on H1 and also

on H∞. We begin with two theorems. The first roughly says that an analytic
function in H1 that has most of the mass of its boundary value function
concentrated on a small set must show an appreciable degree of cancellation
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if the function is integrated over the set. The second theorem is similar, but
deals instead with the integral of the function over all of the unit circle.

Theorem 2.1. Suppose that ‖f‖H1 = 1 and that for some set A ⊂ T, we
have

∫
A
Ref dt/2π ≥ 1− ε for ε < 1/4. Then

m(A)≥ max
0<γ<1

log(γ + ε)− log(1− 2ε)

logγ
.

Proof. Let

F (z) = exp

{
1

2π

∫ 2π

0

eit + z

eit − z
logψ(t)dt

}
,

where

ψ(t) =

{
γ on A,

1 on Ac

and 0 < γ < 1. Then F (0) is real and log(F (0)) = log(γ) ·m(A), and thus
F (0) = γm(A). Also, |F (eiθ)| = 1 a.e. if eiθ ∈ Ac, and |F (eiθ)| = γ a.e. if
eiθ ∈A a.e. Now note that∣∣∣∣∫ 2π

0

f
(
eit

) dt
2π

∣∣∣∣≥ ∣∣∣∣∫
A

Ref
(
eit

) dt
2π

∣∣∣∣− ∫
Ac

∣∣f(eit)∣∣ dt
2π

≥ (1− ε)− ε.

Thus, |f(0)| ≥ 1− 2ε and∣∣F (0) · f(0)
∣∣≥ γm(A)(1− 2ε).

But also∣∣F (0) · f(0)
∣∣= ∣∣∣∣∫ F · f

(
eiθ

) dt
2π

∣∣∣∣≤ γ

∫
A

|f | dt
2π

+

∫
Ac

|f | dt
2π

≤ γ + ε.

Thus,

γm(A)(1− 2ε)≤ γ + ε.

But this means

m(A)≥ log(γ + ε)− log(1− 2ε)

logγ
.

To see the maximum of this quantity for 0< γ < 1 is attained, notice that the
expression on the right of the above inequality approaches 0 as γ → 0+ and
approaches −∞ as γ → 1−, but is positive for γ = ε. �

In the next theorem, we let m denote normalized arc length measure.

Theorem 2.2. Suppose that f ∈ Hp and that ‖f‖Hp = 1. Furthermore,
suppose that ‖f‖L1(E) ≥ 1− ε for some set E ⊂ T where m(E) ≤ δ and 0 <
ε, δ < 1/2. Then ∣∣f(0)∣∣≤(

1− ε

δ

)δ(
ε

1− δ

)1−δ

.
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Proof. Let m(E) = δ0 and ‖f‖L1(E) = 1 − ε0. Writing f as the product
of an outer function and an inner function (see [2]) shows that it suffices to
assume that f is outer. Then we may assume that

f(z) = exp

{
1

2π

∫ 2π

0

eit + z

eit − z
logψ(t)dt

}
for some nonnegative function ψ ∈ Lp such that logψ ∈ L1. Also |f(eit)| =
ψ(t) a.e. Note that f(0) = exp( 1

2π

∫ 2π

0
logψ(t)dt). Now, Jensen’s inequality

shows that

exp

(∫
E

logψ(t)
dt

2π

)
= exp

(∫
E

m(E) logψ(t)
dt

2πm(E)

)
=

{
exp

(∫
E

logψ(t)
dt

2πm(E)

)}m(E)

≤
{∫

E

ψ(t)
dt

2πm(E)

}m(E)

=

(
1− ε0
δ0

)δ0

.

A similar calculation for the set Ec shows that

exp

(∫
Ec

logψ(t)
dt

2π

)
≤
(

ε0
1− δ0

)1−δ0

.

Putting this together gives

f(0) = exp

(∫
E∪Ec

logψ(t)
dt

2π

)
≤
(
1− ε0
δ0

)δ0( ε0
1− δ0

)1−δ0

.

Since the function (1 − ε0)
xε1−x

0 is increasing, it follows that (1 −
ε0)

δ0ε1−δ0
0 ≤ (1 − ε0)

δε1−δ
0 . Since the function x(1 − x) is increasing for

0< x< 1/2, we have

(1− ε0)
δε1−δ

0 = (1− ε0)
δεδ0ε

1−2δ
0 ≤ (1− ε)δεδε1−2δ = (1− ε)δε1−δ.

Since the function xx(1− x)1−x is decreasing for 0≤ x < 1/2, we have

δ−δ0
0 (1− δ0)

δ0−1 ≤ δ−δ(1− δ)δ−1

if 0< δ0 ≤ δ < 1/2. Putting this together gives the result. �

We now use Theorem 2.1 to bound ‖B‖H1 .

Theorem 2.3. The norm of B (and of B) on the Hardy space H1 is at
most 1.952396.
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Proof. Let m denote Lebesgue measure divided by 2π on the unit circle.
Suppose that ‖f‖H1 = 1. Without loss of generality, we may assume that
f(0) > 0. Suppose that ‖f − f(0)‖H1 > 2 − α for some 0 < α < 1/2. We
will show that this leads to a contradiction for small enough α. Note that
f(0)> 1− α and |f(0)| ≤ 1.

Now consider u = Ref and v = Imf . Let 0 < β < 1/2. Define A = {eiθ :
u > β} and B = {eiθ : u≤ β}. Now if u(eiθ)≥ u(0) we have |u(eiθ)− u(0)| ≤
|u(eiθ)| so |f(eiθ)− f(0)| ≤ |f(eiθ)| since f(0) = u(0) is real.

However if β < u(eiθ) < u(0) we have |f(eiθ) − f(0)| = |u(0) − u(eiθ) +
iv(eiθ)| ≤ 1− β + |f(eiθ)|. So if eiθ ∈ A we have |f(eiθ)− f(0)| ≤ |f(eiθ)|+
1− β. Thus ∫

A

∣∣f − f(0)
∣∣dm≤

∫
A

|f |dm+ (1− β)m(A).

And if eiθ ∈B, we have |f(eiθ)− f(0)| ≤ |f(eiθ)|+ 1. Thus∫
B

∣∣f − f(0)
∣∣dm≤

∫
B

|f |dm+m(B).

Therefore,

2− α<

∫ ∣∣f − f(0)
∣∣dm≤

∫
|f |dm+ (1− β)m(A) +m(B)

= 1+ (1− β)m(A) +m(B).

And therefore (1 − β)m(A) + m(B) > 1 − α. But m(A) + m(B) = 1 so
−βm(A)≥−α so

m(A)≤ α

β
.

But it is also clear that
∫
A
udm+ β >

∫
udm> 1−α. By Theorem 2.1 we

have

α/β ≥ max
0<γ<1

log(γ + (α+ β))− log(1− 2(α+ β))

logγ

as long as α + β < 1/4. However, this is false for α = 0.047604 and β =
0.127079, as can be seen by taking γ = 0.104634. �

Similarly to the above theorem, we now use Theorem 2.2 to bound ‖B‖H1 .
This yields a better bound than the previous result.

Theorem 2.4. The norm of B (and of B) on H1 is at most 1.7047.

Proof. Suppose that ‖f − f(0)‖H1 > 2− α for 0< α< 1/2. Then |f(0)|>
1−α and we may assume without loss of generality that f(0) is positive. Now
consider u = Ref and v = Imf . Let 0 < β < 1/2. Define A = {eiθ : u > β}
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and B = {eiθ : u≤ β}. By the reasoning in the proof of the previous theorem,
m(A)≤ α/β and

∫
A
|f |dm≥

∫
A
udm> 1− α− β. So by Theorem 2.2,

1− α<
∣∣f(0)∣∣≤(

1− (α+ β)

α/β

)α/β(
α+ β

1− α/β

)1−(α/β)

.

However, the above inequality is false if α= 0.295302 and β = 0.476286. �

In contrast to the case with H1, we show that the norm of the backward
shift operator on H∞ is exactly 2.

Theorem 2.5. The norm of B (and also of B) on H∞ is 2.

Proof. If we let φa(z) =
a−z
1−az for 0< a< 1, then φa(1) =−1 and φa(0) = a

and ‖φa‖∞ = 1. But by the continuity of these functions in D, we have

‖Bφa‖∞ = ‖φa − a‖∞ ≥
∣∣φa(1)− a

∣∣= 1+ a.

Since this can be made as close to 2 as we like by letting a→ 1, we see that
‖B‖= 2. �

We remark that a proof could also be given by an argument involving
conformal maps.

3. Bergman spaces

We first prove a theorem relating the norm of B on Bergman spaces to its
norm on Hardy spaces.

Theorem 3.1. Suppose that the norm of the operator B is equal to K on
Hp. Let μ be a radial weight such that μ(D)<∞. Then the norm of B is at
most K on the Bergman space Ap(μ).

Proof. Let μdA= μ̃(r)2r dr dθ. Note that Mp(r, f − f(0))≤KMp(r, f) by
the Hardy space bound applied to the dilation fr(z). Thus,∥∥f − f(0)

∥∥p
Ap(μ)

=

∫ 1

0

Mp
p

(
r, f − f(0)

)
2r dμ̃(r)≤Kp

∫ 1

0

Mp
p (r, f)2r dμ̃(r)

=Kp‖f‖pAp(μ). �

We now prove a similar theorem to the one above, but for B. This theorem
is slightly more difficult to prove since dividing by z can increase the norm of
a Bergman space function.

Theorem 3.2. Suppose that the norm of the operator B is equal to K on
H1. Let μ be a finite radial weight that is increasing. Then the norm of B is
at most 2K on the Bergman space A1(μ).

Proof. This theorem follows immediately from Theorem 3.1 and the fol-
lowing lemma. �



88 T. FERGUSON

Lemma 3.3. Let μ be an increasing radial measure. Then ‖zf‖A1(μ) ≥
(1/2)‖f‖A1(μ).

Proof. Let μdA= μ̃(r)2r dr dθ. Note that∫ 1

0

M1(r, f)2rμ̃(r)dr

=

∫ 1/2

0

M1(r, f)2r+M1(1− r, f)2(1− r)μ̃(1− r)dr

=

∫ 1/2

0

M1(r, f)4(1/2)r+M1(1− r, f)4(1/2)(1− r)μ̃(1− r)dr.

Now note that M1(r, f)≤M1(1− r, f) and μ̃(r)≤ μ̃(1− r) for 0≤ r ≤ 1/2 to
see that the last displayed expression is at most∫ 1/2

0

M1(r, f)4r
2μ̃(r) +M1(1− r, f)4(1− r)2μ̃(1− r)dr

= 2

∫ 1

0

M1(r, zf)2rμ̃(r)dr. �

Using a different method, we now establish a bound for B on the real
harmonic Bergman space a1

R
.

Theorem 3.4. The norm of the backward shift on the real harmonic
Bergman space a1

R
is at most 1.835. In fact, the same estimate holds on

any subspace X of L1 with the property that u ∈X implies that |u(reiθ)| ≤
(1 − r)−2 and the property that the average value of any u ∈ X on circles
centered at the origin is constant.

Proof. Suppose that there is a u ∈ a1
R
with ‖u‖= 1 and ‖u−u(0)‖> 2−α,

where 0<α< 1/2. This implies that u(0)> 1−α. Without loss of generality,
assume u(0)> 0. Choose β such that 0< β < 1/2 and define A= {z : u > β}
and B = {z : u≤ β}.

Now, we have that |u(z)| ≤ (1− r)−2 (see [3, Chapter 1, Theorem 1]). Let
Ar =A∩ {z : |z|= r} and define Br similarly.

Let m denote normalized area measure and let mr denote Hausdorff 1-
measure on the circle of radius r divided by 2πr. Since∫

Ar

udmr + β >

∫
udmr = u(0)> 1− α

we have
∫
Ar

udmr > 1− α− β.

Notice that
∫
Br

udmr ≤ mr(Br)β = (1 − mr(Ar))β and
∫
Ar

udmr ≤
mr(Ar)/(1− r)2. Since

∫
Ar

udmr +
∫
Br

udmr = u(0), we have that

mr(Ar)≥
u(0)− β

(1− r)−2 − β
,
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and thus

mr(Ar)≥
1− α− β

(1− r)−2 − β
.

Therefore

m(A) =

∫ 1

0

m(Ar)2r dr ≥
1− α− β

β

(
1

2
√
β
ln

(
1 +

√
β

1−
√
β

)
− 1

)
.

However,∫
B

∣∣u− u(0)
∣∣dm≤

∫
B

|u|dm+

∫
B

u(0)dm=

∫
B

|u|dm+m(B)u(0).

If z ∈A we have |u(z)− u(0)| ≤ |u(z)|+ u(0)− 2β. Therefore,∫
A

∣∣u− u(0)
∣∣dm≤

∫
A

|u|dm+m(A)u(0)− 2m(A)β

and thus ∫ ∣∣u− u(0)
∣∣dm≤

∫
|u|dm+ u(0)− 2m(A)β.

This implies that ∫ ∣∣u− u(0)
∣∣− 1− u(0)≤−2m(A)β,

so

m(A)≤ 1

2β

(
1 + u(0)−

∥∥u− u(0)
∥∥)≤ α

2β
.

Therefore
1− α− β

β

(
1

2
√
β
ln

(
1 +

√
β

1−
√
β

)
− 1

)
≤ α

2β
.

Choosing β = 0.506 and α= 0.165 gives a contradiction. �

4. The norm of the operator Br

Suppose that f and g are functions defined on the interval [a, b]. By the
convolution of f and g, we mean the function

f ∗ g(x) = 1

b− a

∫ b

a

f̃(y)g̃(x− y)dy,

where f̃ and g̃ are the periodic extensions of f and g to the real line.
We define the operator Br : h

1
R
→ h1

R
to be the operator f �→ (Bf)r, where

(Bf)r(z) = (Bf)(rz). Equivalently Br can be thought of as the operator ob-
tained by applying B and then restricting the function obtained to the circle
centered at the origin with radius r. In this section, we investigate the norm
of Br and find that the Poisson kernel is a solution to the problem of finding
a function f ∈ h1

R
of norm 1 such that ‖Brf‖ is as large as possible.

In order to proceed, we need to prove several lemmas. The first is elemen-
tary but is surprisingly useful.
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Lemma 4.1. Let f be a real function with average μ and let ν be a finite
measure. Then ∫

|f − μ|dν = 2

∫
{x:f>μ}

(f − μ)dν.

Proof. Note that
∫
{x:f=μ}(f−μ)dν = 0. Since

∫
(f−μ)dν = 0, this implies

that
∫
{x:f>μ}(f − μ)dν =

∫
{x:f<μ} |f − μ|dν. �

The next theorem basically deals with maximizing
∫
{x:f>μ} |f − μ|, where

f is itself an average of rearrangements of some other function. However, we
present the theorem in a discreet form which is easier to prove.

Theorem 4.2. Suppose we are given an m × n matrix A. Let μ be a
fixed number, and let Cj =

∑m
k=1 akj . Define Dj = max(Cj − μ,0), and let

D =
∑n

j=1Dj . Suppose that Dj ≥Dk but aij ≤ aik. Then we do not decrease
D by interchanging aij and aik.

Proof. We may assume without loss of generality that D1 ≥D2, but that
a11 ≤ a12. Let A′ be the matrix formed by interchanging a11 and a12. We
claim that D′ ≥D.

If D = 0, then we are done. If D1 > 0 and D2 = 0, then since D′
1 ≥D1 and

D′
2 ≥ 0, we are done. Suppose then that D1 > 0 and D2 > 0. If D′

2 > 0, then
also D′

1 > 0 so D1 +D2 =D′
1 +D′

2 =C1 +C2 − 2μ, so we are done. However,
suppose that D2 > 0 but D′

2 = 0. Let B1 the the sum of the rest of the entries
in column 1, and B2 be the sum of the rest of the entries in column 2. Then
D1 +D2 = a11 + a12 +B1 +B2 − 2μ and D′

1 +D′
2 = a12 +B1 − μ. So we will

have D1 +D2 ≤D′
1 +D′

2 if a11 +B2 ≤ μ. But this is true since D′
2 = 0. �

We now have the following lemma, which is a continuous form of the
above theorem. We omit the proof, since we prove a more general version
in Lemma 4.5. Note that P ∗ 1 is the integral of P , and similarly for P ∗ f ∗ 1
and P ∗ f .

Lemma 4.3. Suppose that P and f are nonnegative integrable functions on
[a, b] and that ‖f‖1 = 1, where ‖ · ‖1 denotes the L1 norm with normalized
Lebesgue measure. Then ‖P ∗ f − P ∗ f ∗ 1‖1 ≤ ‖P − P ∗ 1‖1.

Corollary 4.4. Suppose that u is a nonnegative harmonic function in the
unit disc and that 0≤ r < 1. Then

1

2π

∫ 2π

0

∣∣u(reiθ)− u(0)
∣∣dθ ≤ u(0)

1

2π

∫ 2π

0

∣∣Pr

(
eiθ

)
− 1

∣∣dθ
= u(0)

(
2− 4

π
arccos(r)

)
,

where Pr is a Poisson kernel.
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Note that this corollary holds for r = 1 if we replace 1
2π

∫ 2π

0
|u(eiθ)−u(0)|dθ

by ‖u− u(0)‖h1
R

.

Proof. The rightmost equality is proved in Theorem 4.7. Also note that
the inequality holds for r = 0 trivially. For other values of r, if u is the real
part of a function in H1, then we can write u(reiθ) = Pθ(re

i·) ∗ f(eiθ), where
f is the boundary value function of u. The result then follows from the above
lemma by letting P = Pr.

If u is not the real part of an H1 function, then u is still in h1
R
since it is

nonnegative (see [2, Theorem 1.1]). Let 0< s< 1. Define us by us(z) = u(sz).
Then us is the real part of an H1 function, since it is actually continuous in D.
So for fixed r, the above inequality is true for us. (Note that us(0) = u(0)).
If we let s → 1, we get the result for u, since u(rseit) → u(reit) as s → 1
uniformly for t ∈ [0,2π). �

We must now deal with functions that are allowed to be negative.

Lemma 4.5. Suppose that P is a nonnegative integrable function on [α,β]
and f is an integrable function such that ‖f‖1 = 1, where ‖ · ‖1 denotes the
L1 norm with normalized Lebesgue measure. Let P ∗ denote the decreasing
rearrangement of P , so that P ∗(t) = inf{x : m({y ∈ [α,β] : P (y) > x}) ≤ t}.
Then ‖P ∗ f − P ∗ f ∗ 1‖1 ≤ ‖Q − Q ∗ 1‖1 where Q is some function of the
form aP ∗(x)− bP ∗(α+ β − x), where a+ b= 1.

Proof. Without loss of generality, we may assume that α= 0 and β = 1.
We may assume that P and f are continuous (and thus uniformly con-

tinuous), since these functions are dense in L1([0,1]). Let ε > 0 and assume
without loss of generality that ε < 1. Let M = ‖f‖∞ + ‖P‖∞ + 1.

Approximate P and f by the step functions

P̃ =

n−1∑
k=0

ckχ[k/n,(k+1)/n) and

f̃ =

n−1∑
k=0

dkχ[k/n,(k+1)/n)

respectively, so that∫ (k+1)/n

k/n

f̃ dx=

∫ (k+1)/n

k/n

f dx and

∫ (k+1)/n

k/n

P̃ dx=

∫ (k+1)/n

k/n

P dx

for each 0≤ k ≤ n−1. We may choose n large enough so that |f(x)−f(y)|< ε

if |x−y| ≤ 1/n and ‖P − P̃‖∞ < ε and ‖f− f̃‖∞ < ε. Thus, ‖P ∗f− P̃ ∗ f̃‖∞ <

Mε. Also ‖P ∗ − P̃ ∗‖∞ < ε because decreasing rearrangement decreases the
L∞ distance between two functions.

For k not in [0, n − 1], define ck and dk so the sequences {ck}k∈Z and
{dk}k∈Z are periodic with period n. Let A be the matrix with (i, j) entry
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ai,j = cj−idi. Then the column sums Cj of A are equal to nP̃ ∗ f̃(j/n). Define
Dj =max(Cj − n,0) and let D be the sum of the Dj .

Now, let A′ be the matrix A with rows rearranged so that they are in

decreasing order. Define C ′
j and D′

j similarly. Then C ′
j = nQ̃(j/n), where Q̃

has the form aP̃ ∗(x)− bP̃ ∗(1− x), where P̃ ∗ is the decreasing rearrangement

of P̃ and a+ b= 1. Define Q(x) = aP ∗(x) + bP ∗(1− x). Then ‖Q− Q̃‖ ≤ ε.

Because |cj−cj+1|< ε and |dj−dj+1|< ε we have |Q̃(j/n+δ)−Q̃(j/n)|< ε

and |P̃ ∗ f̃(j/n+ δ)− P̃ ∗ f̃(j/n)|<Mε for |δ|< 1/n.
Let μ= a− b. Thus∣∣max

(
P̃ ∗ f̃(j/n)− μ,0

)
−max

(
P̃ ∗ f̃(j/n+ δ)− μ,0

)∣∣<Mε and∣∣max
(
Q̃(j/n)− μ,0

)
−max

(
Q̃(j/n+ δ)− μ,0

)∣∣< ε.

Integrating each of these expressions over δ ∈ [0,1/n] and summing from j = 0
to n− 1 gives that ∣∣∣∣D/n−

∫
{x:P̃∗f̃(x)>μ}

P̃ ∗ f̃ − μdx

∣∣∣∣< ε

and ∣∣∣∣D′/n−
∫
{x:Q̃(x)>μ}

Q̃(x)− μdx

∣∣∣∣<Mε.

Theorem 4.2 with μ= a− b implies that D ≤D′. Thus∫
{x:P̃∗f̃(x)>μ}

P̃ ∗ f̃ − μdx≤ (M + 1)ε+

∫
{x:Q̃(x)>μ}

Q̃(x)− μdx

and therefore∫
{x:P∗f(x)>μ}

P ∗ f − μdx≤ 2(M + 1)ε+

∫
{x:Q(x)>μ}

Q(x)− μdx.

Since this is true for any ε, we must have∫
{x:P∗f(x)>μ}

P ∗ f − μdx≤
∫
{x:Q(x)>μ}

Q(x)− μdx.

The result now follows from Lemma 4.1. �

It is useful to have a condition under which we can conclude that Q(x) =
P ∗(x). The following theorem provides such a condition.

Theorem 4.6. Suppose that P is a continuous function on [α,β] and that
P is nonnegative with average 1 and decreasing. Let Q(x) = aP (x)− bP (β +
α− x) for some nonnegative real numbers a and b such that a+ b= 1. Then
there is a c between α and β such that aP (c)− bP (β + α− c) = a− b. If for
some such c, ∫ α+c

α

P dx+

∫ β

β−c

P dx≥ 2c,
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then ‖P − P ∗ 1‖1 ≥ ‖Q − Q ∗ 1‖1, where ‖ · ‖1 denotes the L1 norm with
normalized Lebesgue measure.

Proof. We will suppose without loss of generality that α = 0 and β = 1.
Also we may suppose without loss of generality that a ≥ b, since if Q(x) =

aP (x)− bP (1−x) and Q̂(x) = bP (x)− aP (1−x), then Q̂(x) =−Q(1−x), so

‖Q−Q∗1‖1 = ‖Q̂−Q̂∗1‖1. The average of aP (x)−bP (1−x) is a−b= 1−2b.
Let c be such that aP (c)− bP (1− c) = 1− 2b. (Such a c exists by the integral
mean value theorem.)

Suppose that f(x) is nonnegative between 0 and c, and that ν is non-
negative. Let A(ν, f ; c) denote the area below f and above ν and between

0 and c. Let Ã(ν, f ; c) be 0 if f(c) ≤ ν and be f(c) − ν if f(c) ≥ ν. Then

A(ν, f ; c) =
∫ c

0
Ã(ν, f ;x)dx.

Let μ = a − b. Note that between 0 and c, the function Q always has a
value of at least μ, so A(μ,Q; c) =

∫ c

0
Q(x) − μdx. Similarly, we have that

A(μ,P ; c) =
∫ c

0
P (x) − μdx. Also P (x) = Q(x) + bP (x) + bP (1 − x). Thus

A(μ,P ; c) =A(μ,Q; c) + b
∫ c

0
P dx+ b

∫ 1

1−c
P dx.

If P (x)≥ 1 observe that P (x)−1 = P (x)−μ−2b since μ= 1−2b. So in this

case Ã(1, P ; c) = Ã(μ,P ; c)− 2b. If however P (x)≤ 1 then Ã(1, P ; c) = 0 and

Ã(μ,P ; c)≤ 2b since 1−μ= 2b. Thus in either case Ã(1, P ; c)≥ Ã(μ,P ; c)−2b.
This implies that A(1, P ; c)≥A(μ,P ; c)− 2bc. And thus

A(1, P ; c)≥A(μ,Q; c) + b

∫ c

0

P dx+ b

∫ 1

1−c

P dx− 2bc.

So we will have A(1, P ; c)≥A(μ,Q; c) if∫ c

0

P dx+

∫ 1

1−c

P dx≥ 2c.

In this case, by Lemma 4.1,∫ 1

0

∣∣P (x)− 1
∣∣dx= 2A(1, P ; 1)≥ 2A(1, P ; c)≥ 2A(μ,Q; c).

Since Q(c) = μ and Q(x) ≤ μ for x > c, we have that 2A(μ,Q; c) =

2A(μ,Q; 1) =
∫ 1

0
|Q(x)− μ|dx. �

We are now able to prove the following theorem.

Theorem 4.7. Suppose that 0≤ r < 1 and u ∈ h1
R
. Then

1

2π

∫ 2π

0

∣∣u(reiθ)− u(0)
∣∣dθ ≤ inf

a∈R

‖u− a‖h1
R

1

2π

∫ 2π

0

∣∣Pr

(
eiθ

)
− 1

∣∣dθ
= inf

a∈R

‖u− a‖h1
R

(
2− 4

π
arccos(r)

)
,

where Pr is a Poisson kernel.
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Note that the theorem holds for r = 1 if we replace 1
2π

∫ 2π

0
|u(eiθ)−u(0)|dθ

by ‖u− u(0)‖h1
R

.

Proof. First note that it suffices to prove the statement for a = 0, since
u(reiθ)− u(0) = ũ(reiθ)− ũ(0) if ũ= u− a.

First assume that u is the real part of an H1 function, and let f be its
boundary value function. Let P (θ) be the Poisson kernel Pr(e

iθ) restricted to
0≤ θ ≤ π. Let a, b≥ 0 and a+ b= 1.

Let c be the number between 0 and π such that aP (c) − bP (π − c) =
a − b. Such a c exists by the integral mean value theorem. Note that c is
unique and a continuous function of a by the fact that aP (c)− bP (π − c) is
strictly decreasing and the implicit function theorem. Note that P (π/2) =
(1− r2)/(1 + r2)< 1. If a= 1/2, then c= π/2 since then aP (π/2)− bP (π −
(π/2)) = 0. However, for 0≤ a < 1/2, the number c is strictly less than π/2,
because

aP (π/2)− bP
(
π− (π/2)

)
= (a− b)P (π/2)< (a− b).

Let

α= arg
[(
eic − r

)
/(1− r)

]
and

β = arg
[
(−1− r)/

(
ei(π−c) − r

)]
= arg

[(
eic + r

)
/(1 + r)

]
.

Now 1
2π

∫ δ

γ
P (x)dx is equal to the harmonic measure of the arc of the unit

circle [eiγ , eiδ] at the point r, which equals φ/π − (δ − γ)/(2π), where φ is
the angle subtended at z by the arc (see [4, Chapter 1, Exercise 1]). Thus,
1
2π

∫ c

0
P (x)dx = α/π − c/(2π). Also 1

2π

∫ π

π−c
P (x)dx = β/π − c/(2π). So the

sum of the last two integrals is (α+ β − c)/π. We will show that this is at
least 2c/2π. To do so, we need α+ β ≥ 2c. But

eic − r

1− r

eic + r

1 + r
=

e2ic − r2

1− r2
.

The argument of the last expression is measure of the angle with vertex r2 and
endpoints 0 and 2c, which is at least 2c if r > 0 and 0≤ c≤ π/2. But we have
shown above that 0≤ c≤ π/2. So we always have

∫ c

0
P (x)dx+

∫ π

π−c
P (x)dx≥

2c.
Let ‖ · ‖ denote the L1 norm with normalized Lebesgue measure. Apply

Theorem 4.6 to see that ‖Q − Q ∗ 1‖ ≤ ‖P − P ∗ 1‖ for any Q of the form

aP (x)− bP (π − x) where a, b≥ 0 and a+ b= 1. If P̃ (x) is defined on [0,2π]

by P̃ (x) = P (x/2), and similarly for Q̃, then this implies that ‖Q̃− Q̃ ∗ 1‖ ≤
‖P̃ − P̃ ∗ 1‖.

Now let P ∗ be the decreasing rearrangement of Pr(e
iθ), thought of as a

function of θ, where 0 ≤ θ ≤ 2π. Notice that Lemma 4.5 shows that ‖Pr ∗
f −Pr ∗ f ∗ 1‖ ≤ ‖Q̂− Q̂ ∗ 1‖, where Q̂ is some function of the form aP ∗

r (x)−
bP ∗

r (2π−x) and f is any continuous function on [0,2π] that has norm 1. But
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for 0≤ x≤ 2π one has P ∗
r (x) = Pr(x/2) = P̃ (x) since Pr is symmetric about 0.

And thus we have shown above that ‖Q̂− Q̂ ∗ 1‖ is at most ‖P̃ − P̃ ∗ 1‖. But
P̃ ∗ 1 = Pr ∗ 1 = 1, where Pr is considered as a function on [0,2π]. And

also Pr − 1 is equimeasurable with P̃ − 1. And thus ‖Pr ∗ f − Pr ∗ f ∗ 1‖ ≤
‖Pr − Pr ∗ 1‖.

Now notice that Pr(θ) = 1 if θ =±arccos(r). Now

1

2π

∫ arccos(r)

−arccos(r)

Pr(θ)dθ = α/π− 2arccos(r)/(2π),

where α is the measure of the angle between e−iarccos(r), r, and eiarccos(r). But
the measure of the angle is π. Thus the integral is 1− arccos(r)/π. The (nor-
malized) integral of Pr over the complementary interval is thus arccos(r)/π.

Thus

1

2π

∫ π

−π

∣∣Pr(θ)− 1
∣∣dθ = [(

1− arccos(r)

π

)
− arccos r

π

]
+

[
−arccos(r)

π
+

(
1− arccos(r)

π

)]
= 2− 4

π
arccos(r).

This proves the result if u is the real part of an H1 function.
Now suppose that u is not the real part of an H1 function. As before, let

us be defined by us(z) = u(sz) for 0< s < 1. Then ‖us‖h1
R

≤ ‖u‖h1
R

since the

M1 integral means increase for harmonic functions (see [2]). So

1

2π

∫ 2π

0

∣∣us

(
reiθ

)
− u(0)

∣∣dθ ≤ ‖u‖h1
R

(
2− 4

π
arccos(r)

)
.

Letting s→ 1 gives the result. �

Corollary 4.8. The value of ‖B‖h1
R
→a1

R

= 1.

Proof. We have that

‖B‖h1
R
→a1

R

≤
∫ 1

0

‖Br‖2r dr =
∫ 1

0

(
2− 4

π
arccos(r)

)
2r dr = 1.

This is attained for the Poisson kernel, though of as the function reiθ �→ Pr(e
iθ)

defined in the unit disc. �

It would be interesting to find analogues of Theorem 4.7 for other values
of p, and also to extend the result to complex valued harmonic functions.
It would also be interesting to study similar questions for analytic functions
instead of for complex valued harmonic functions.

We mention one partial result in this direction. If ‖f‖H∞ ≤ 1, then
M∞(r, f − f(0)) ≤ 1 for r ≤ 1/3. To see this, let f(z) =

∑∞
n=0 anz

n and let
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g(z) =
∑∞

n=0 |an|zn. Bohr’s theorem [1] says that g(r)≤ 1 for r ≤ 1/3. Thus,
if |z|= r ≤ 1/3 we have∣∣f(z)− f(0)

∣∣= ∣∣∣∣∣
∞∑

n=1

anz
n

∣∣∣∣∣≤
∞∑

n=1

|an|rn ≤
∞∑

n=0

|an|rn ≤ 1.

Acknowledgments. Thanks to the referee for pointing out a simpler proof
of Theorem 2.5. Thanks to Dmitry Khavinson for alerting the author to the
existence of Bohr’s theorem.
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