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NON-COMPACT SUBSETS OF THE ZARISKI SPACE OF AN
INTEGRAL DOMAIN

DARIO SPIRITO

ABSTRACT. Let V be a minimal valuation overring of an integral
domain D and let Zar(D) be the Zariski space of the valuation
overrings of D. Starting from a result in the theory of semistar
operations, we prove a criterion under which the set Zar(D)\{V'}
is not compact. We then use it to prove that, in many cases,
Zar(D) is not a Noetherian space, and apply it to the study of the
spaces of Kronecker function rings and of Noetherian overrings.

1. Introduction

The Zariski space Zar(K|D) of the valuation rings of a field K containing a
domain D was introduced (under the name abstract Riemann surface) by O.
Zariski, who used it to show that resolution of singularities holds for varieties
of dimension 2 or 3 over fields of characteristic 0 ([31], [32]). In particular,
Zariski showed that Zar(K|D), endowed with a natural topology, is always
a compact space [33, Chapter VI, Theorem 40]; this result has been subse-
quently improved by showing that Zar(K|D) is a spectral space (in the sense
of Hochster [17]), first in the case where K is the quotient field of D ([4], [5]),
and then in the general case [8, Corollary 3.6(3)]. The topological aspects of
the Zariski space has subsequently been used, for example, in real and rigid
algebraic geometry ([18], [34]) and in the study of representation of integral
domains as intersections of valuation overrings ([26], [27], [28]). In the latter
context, that is, when K is the quotient field of D, two important properties
for subspaces of Zar(K|D) to investigate are the properties of compactness
and of Noetherianess.
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792 D. SPIRITO

In this paper, we concentrate on the case where K is the quotient field of D,
studying subspaces of Zar(K|D) = Zar(D) that are not compact. The starting
point is a criterion based on semistar operations, proved in [8, Theorems 4.9
and 4.13] (see also [11, Proposition 4.5] for a slightly stronger version) and
integrated, as in [9, Example 3.7], with the use of the two-faced definition of
the integral closure/b-operation, either through valuation overrings or through
equations of integral dependence (see, e.g., [19, Chapter 6]). In particular,
we analyze sets of the form Zar(D) \ {V}, where V is a minimal valuation
overring of D: we show in Section 3 that such a space is compact only if V'
can be obtained from D in a very specific way (more precisely, as the integral
closure of a localization of a finitely generated algebra over D), and we follow
up in Sections 4 and 5 by showing that this condition implies a bound on
the dimension of V in relation with the dimension of D (Proposition 4.3)
and a quite strict condition on the intersection of sets of prime ideals of D
(Theorem 5.1). Section 6 is dedicated to a brief application of these criteria
to the study of Kronecker function rings (the definition will be recalled later).

In Section 7, we consider the set Over(D) of overrings of D (which is known
to be itself a spectral space [7, Proposition 3.5]). Using the result proved in
the previous sections, we show that, when D is a Noetherian domain, some
distinguished subspaces of Over(D) (for example, the subspace of overrings
of D that are Noetherian) are not spectral.

2. Preliminaries and notation

2.1. Spectral spaces. A topological space X is a spectral space if there
is a ring R such that X is homeomorphic to the prime spectrum Spec(R),
endowed with the Zariski topology. Spectral spaces can be characterized in a
purely topological way as those spaces that are Ty, compact, with a basis of
open and compact subset that is closed by finite intersections and such that
every irreducible closed subset has a generic point (i.e., it is the closure of a
single point) [17, Proposition 4].

On a spectral space X it is possible to define two new topologies: the
inverse and the constructible topology.

The inverse topology is the topology on X having, as a basis of closed sets,
the family of open and compact subspaces of X. Endowed with the inverse
topology, X is again a spectral space [17, Proposition 8]; moreover, a subspace
Y C X is closed in the inverse topology if and only if Y is compact (in the
original topology) and Y =Y®&" [8 Remark 2.2 and Proposition 2.6], where

yer . ={ze X |z<y for somey €Y}
={ze X |yeCl(z) for some y € Y},

with Cl(z) denoting the closure of the singleton {z} (again, in the original
topology) and < is the order induced by the original topology [22, d-1], which
coincides on Spec(R) with the set-theoretic inclusion.
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The constructible topology on X (also called patch topology) is the coarsest
topology such that the open and compact subsets of X are both open and
closed. Endowed with the constructible topology, X is a spectral space that
is also Haussdorft (see [29, Propositions 3 and 5], [30] or [14, Proposition 5]),
and the constructible topology is finer than both the original and the inverse
topology. A subset of X closed in the constructible topology is said to be a
proconstructible subset of X ; if Y is proconstructible, then it is a spectral space
when endowed with the topology induced by the original spectral topology of
X, and the constructible topology on Y is exactly the topology induced by
the constructible topology on X (this follows from [3, 1.9.5(vi—vii)]).

2.2. Noetherian spaces. A topological space X is Noetherian if X verifies
the ascending chain condition on the open subsets, or equivalently if every
subspace of X is compact. Examples of Noetherian spaces are finite spaces
and the prime spectra of Noetherian rings. If Spec(R) is a Noetherian space,
then every proper ideal of R has only finitely many minimal primes (see, e.g.,
the proof of [2, Chapter 4, Corollary 3, p.102] or [1, Chapter 6, Exercises 5
and 7]).

2.3. Overrings and the Zariski space. Let D C K be an extension of
integral domains. We denote the set of all rings contained between D and K
by Over(K|D); if K is a field (not necessarily the quotient field of D), the
set of all valuation rings containing D with quotient field K is denoted by
Zar(K|D), and it is called the Zariski space (or the Zariski-Riemann space)
of D.

The Zariski topology on Over(K|D) is the topology having, as a subbasis,
the sets of the form

B(z1,...,2y,) :={T € Over(K|D) | 1,...,2, €T},

as {z1,...,x,} ranges among the finite subsets of K. Under this topology,
both Over(K|D) [7, Proposition 3.5] and its subspace Zar(K|D) ([5], [4]) are
spectral spaces, and the order induced by this topology is the inverse of the
set-theoretic inclusion. In particular, every ¥ C Over(K|D) with a minimum
element is compact, and, if Z is an arbitrary subset of Over(KX|D), then
z&g™ ={T € Over(K|D) | T D A for some A€ Z}.

We denote by Zarmi, (D) the set of minimal elements of Zar(D); since
Zar(D) is a spectral space, every V € Zar(D) contains an element W €
Zarmin(D).

If K is the quotient field of D, then we set Over(K|D) =: Over(D) and
Zar(K|D) =: Zar(D). Elements of Over(D) are called overrings of D, ele-
ments of Zar(D) are the valuation overrings of D and elements of Zary, (D)
are the minimal valuation overrings of D.
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The center map is the application
v: Zar(K|D) — Spec(D),
Vi—mynD,

where my is the maximal ideal of V. When Zar(K|D) and Spec(D) are en-
dowed with the respective Zariski topologies, the map v is continuous ([33,
Chapter VI, §17, Lemma 1] or [4, Lemma 2.1]), surjective (this follows, for
example, from [1, Theorem 5.21] or [15, Theorem 19.6]) and closed [4, Theo-
rem 2.5].

2.4. Semistar operations. Let D be a domain with quotient field K. Let
F(D) be the set of D-submodules of K, F(D) be the set of fractional ideals
of D, and Fy(D) be the set of finitely generated fractional ideals of D.

A semistar operation on D is a map «: F(D) — F(D), I — I*, such that,
for every I,J € F(D) and every x € K,

1C I

if I CJ, then I* C J*;
([*)*=1I%;

x-I* = (xl)*.

Given a semistar operation *, the map % is defined on every E € F(D) by
E* = J{F*|F e F4(D),F C E}.

The map x5 is always a semistar operation; if * = ¢, then x is said to be
of finite type. Two semistar operations of finite type x1,*o are equal if and
only if I** = I** for every I € F;(D). See [25] for general information about
semistar operations.

If A CZar(D), then Aa is defined as the semistar operation on D such
that

" =1V |V eA}

for every D-submodule I of K; a semistar operation of type Aa is said to
be a wvaluative semistar operation. By [11, Proposition 4.5], Aa is of finite
type if and only if A is compact (in the Zariski topology of Zar(D)). If
A, A CZar(D), then Aa = Ay if and only if A% = A&? [10, Lemma 5.8(1)],
while (Aa) ¢ = (Aa)y if and only if A and A have the same closure with respect
to the inverse topology [8, Theorem 4.9]. The semistar operation Az..(p) is
usually denoted by b and called the b-operation.

3. The use of minimal valuation domains

The starting point of this paper is the following well-known result.
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PROPOSITION 3.1 (see, e.g., [19, Proposition 6.8.2]). Let I be an ideal of
an integral domain D; let x € D. Then, x € IV for every V € Zar(D) if and
only if there are n > 1 and a1,...,a, € D such that a; € I'* and

(1) "+ a "+ 4 an_1z +a, =0.

An inspection of the proof of the previous proposition given in [19] shows
that this result does not really rely on the fact that I is an ideal of D, or on
the fact that « € D; indeed, it applies to every D-submodule I of the quotient
field K, and to every x € K. In the terminology of semistar operations, this
means that, for each I € F(D), I? = ["#() is exactly the set of elements
r € K that verify an equation like (1), with a; € I'. We are interested in
generalizing that proof in a different way; we need the following definitions.

DEFINITION 3.2. Let D be an integral domain and let A, A C Over(D). We
say that A dominates A if, for every T' € A and every M € Max(T), there is
a A€ Asuchthat TC Aand 1¢ MA.

For example, Zar(D) dominates every subset of Over(D), while the set of
localizations of D dominates {D}.

DEeFINITION 3.3. Let D be an integral domain domain. We denote by
D[F¥] the set of finitely generated D-algebras of Over(D), or equivalently

D[Fy|:={DII]: T € F§(R)}.

Even if the proof of the following result essentially repeats the proof of [19,
Proposition 6.8.2], we replay it here for clarity.

PROPOSITION 3.4. Let D be an integral domain, and suppose that A C
Zar(D) dominates D[Fy). Then, for every finitely generated ideal I of D,
Ma=r

Proof. Clearly, I® C I"2. Suppose thus that z € I"2, z # 0, and
let I = (i1,...,ix)D. Define J:=z7'I € F¢(D), and let A:= D[J] =
D[z~ Yiy,...,27i}]; by definition, J C A.

If JA # A, then there is a maximal ideal M of A containing J, and thus, by
domination, there is a valuation domain V' € A containing A whose maximal
ideal my is such that JV C my, and thus IV C amy . However, z € I C IV,
which implies x € xmy , a contradiction.

Hence, JA=A, ie., 1 =jia1 + - + jna, for some j; € J, a; € A; writing
explicitly the elements of A as elements of D[J] and using J = x~'I, we find
that there must be an N € N and elements i; € I'* such that z¥ =i,V "1 +
---4iny_12 +ix, which gives an equation of integral dependence of x over I.
Therefore, x € I°, as requested. O

We can now use the properties of valuative semistar operations to study
compactness.
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PROPOSITION 3.5. Let D be an integral domain, and let A C Zar(D) be
a set that dominates D[Fy]. Then, A is compact if and only if it contains
Zarmin(D).

Proof. If A contains Zary,, (D), then U is an open cover of A if and only
if it is an open cover of Zar(D); thus, A is compact since Zar(D) is.

Conversely, suppose A is compact. By Proposition 3.4, I"4 = I® for every
finitely generated ideal I; hence, (Aa)f =bs =0b. By [10, Lemma 5.8(1)], it
follows that the closure of A with respect to the inverse topology of Zar(D) is
the whole Zar(D); however, since A is compact, its closure in the inverse topol-
ogy is exactly A8 = AT = {W € Zar(D) | W DV for some V € A}. Hence,
A must contain Zarmi, (D). O

Thus, to find a subset of Zar(D) that is not compact, it is enough to find
a A that dominates D[F] but that does not contain Zary,i, (D). The easiest
case where this criterion can be applied is when A = Zar(D) \ {V} for some
V € Zarmin (D)

THEOREM 3.6. Let D be an integral domain and let V € Zary,, (D). If
Zar(D)\{V'} is compact, then V is the integral closure of D[xy,...,xn]|pm for
some x1,...,x, € K and some M € Max(D[z1,...,Zp]).

Proof. If A :=Zar(D)\ {V} is compact, then by Proposition 3.5 it cannot
dominate D[F/]. Hence, there is a finitely generated fractional ideal I such
that A does not dominate A := D[I], and so a maximal ideal M of A such
that 1 € MW for every W € A. In particular, A # K (otherwise M would be
(0)).

However, there must be a valuation ring containing Aj; whose center (on
Apr) is M Ay, and the unique possibility for this valuation ring is V: it follows
that V' is the unique valuation ring centered on M Aj,;. However, the integral
closure of Ay is the intersection of the valuation rings with center M Ay,
(since every valuation ring containing Ajs; contains a valuation ring centered
on M Ay [15, Corollary 19.7]); thus, V is the integral closure of Aj;. O

4. The dimension of V

Before embarking on using Theorem 3.6, we prove a simple yet general
result.

PROPOSITION 4.1. Let D be an integral domain. If Zar(D) is a Noetherian
space, so is Spec(D).

Proof. The claim follows from the fact that Spec(D) is the continuous
image of Zar(D) through the center map 7, and that the image of a Noetherian
space is still Noetherian. O
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Note that the converse of this proposition is far from being true (this is,
for example, a consequence of Proposition 5.4 or of Proposition 7.1).

The problem in using Theorem 3.6 is that it is usually difficult to control
the behaviour of finitely generated algebras over D. We can, however, control
the behaviour of the prime spectrum of D.

LEMMA 4.2. Let D be an integral domain, and let V € Zar(D) be the integral
closure of Dy, for some M € Spec(D). Then, the set of prime ideals of D
contained in M 1is linearly ordered.

Proof. Let P,Q be two prime ideals of D contained in M; then,
PDy, QD € Spec(Dyy). Since Dyy CV is an integral extension, PDys =
P'N Dy and QDyr = Q' N Dy for some P’ Q" € Spec(V); however, V is
a valuation domain, and thus (without loss of generality) P’ C Q’. Hence,
PDy CQDy; and P C (@, as requested. O

PROPOSITION 4.3. Let D be an integral domain, let V € Zarmin(D) and
suppose that Zar(D) \ {V'} is compact. Let vy : Spec(V) — Spec(D) be the
canonical spectral map associated to the inclusion D — V. For every P €
Spec(D), |t,' (P)| <2; in particular, dim(V) < 2dim(D).

Proof. Suppose |L‘71(P)| > 2: then, there are prime ideals Q1 C Q2 C Q3 of
V such that 1y (Q1) =ty (Q2) =ty (Q3) =: P. If Zar(D) \ {V'} is compact, by
Theorem 3.6 there is a finitely generated D-algebra A := Dlaq,...,a,] such
that V is the integral closure of Aj;, for some maximal ideal M of A. We
can write Ay; as a quotient M, where X1,...,X,, are independent
indeterminates and a,b € Spec(D[X1,...,X,]). Since Ay CV is an integral
extension, Q; NA#Q; NAif i#j.

For i € {1,2,3}, let q; be the prime ideal of D[Xj,...,X,] whose image in
A is Q;; then, q1, q2 and q3 are distinct, q; N D = P for each i, and the set
of ideals between ¢; and qs is linearly ordered (by Lemma 4.2). However, the
prime ideals of D[Xy,...,X,] contracting to P are in a bijective and order-
preserving correspondence with the prime ideals of F[X;,..., X, ], where F is
the quotient field of D/P; since F[Xy,...,X,] is a Noetherian ring, there are
an infinite number of prime ideals between the ideals corresponding to q; and
qs. This is a contradiction, and [¢y,! (P)| < 2.

For the “in particular” statement, take a chain (0) C Q1 C - C Qf in
Spec(V). Then, the corresponding chain of the P;:= @Q; N D has length at
most dim(D), and moreover :~1((0)) = {(0)}. Hence, k + 1 < 2dim(D) + 1
and dim(V) < 2dim(D). O

The wvaluative dimension of D, indicated by dim, (D), is defined as the
supremum of the dimensions of the valuation overrings of D; we have always
dim(D) < dim, (D), and dim,(D) can be arbitrarily large with respect to
dim(D) [15, Section 30, Exercises 16 and 17]. In particular, with the notation
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D[Xy,..., X, —— D[X1,..., Xu]a

e |

D —— A= Dlay,...,a,] Ay >~

FIGUurE 1. Rings involved in the proof of Proposition 4.3.

of the previous proposition, the cardinality of L;l(P) can be arbitrarily large:
for example, if (D, m) is local and one-dimensional, then [¢};' (m)| = dim, (D).

COROLLARY 4.4. Let D be an integral domain such that Zar(D) is Noe-
therian. Then, dim, (D) < 2dim(D).

Proof. 1f Zar(D) is Noetherian, then in particular Zar(D)\ {V'} is compact
for every V' € Zarp,n (D). Hence, dim(V) < 2dim(D) for every V' € Zarmi, (D),
by Proposition 4.3; since, if W 2 V are valuation domain, dim(W) < dim(V),
the claim follows. O

PROPOSITION 4.5. Let D be an integral domain, and let V € Zaryn(D)
be such that Zar(D)\ {V'} is compact; let (0) C Py C --- C Py be the chain of
prime ideals of V and let Q; := P; N D. Denote by ht(P) the height of the
prime ideal P. Then:

(a) for every 0 <t <dim(D), we have
dim(V) < dim, (Dg,) + 2(dim(D) — ht(Q;));
(b) if Dq, is a valuation domain, then
dim(V) < 2dim(D) — ht(Q,).

Proof. (a) Let (0) € QMW € Q® C---CQ® be the chain (0)CQ; C---C
Q. without the repetitions, and let a be the index such that Q(®) = Q. For
every b > a, by the proof of Proposition 4.3 there can be at most two prime
ideals of V over Q®: on the other hand, Vp, is a valuation overring of Dg,,
and thus ¢t = dim(Vp,) <dim,(Dg,). Therefore,

dim(V) < t+2(s — a) < dim,(Dg,) + 2(dim(D) — ht(Q;))

since each ascending chain of prime ideals starting from @Q; has length at most
dim(D) — ht(Q¢).

Point (b) follows, since dim(V') = dim, (V') for every valuation domain V.

O

EXAMPLE 4.6. A class of integral domain whose Zariski space is Noetherian
is constituted by the class of Priifer domains with Noetherian spectrum. In-
deed, if D is a Priifer domain then the valuation overrings of D are exactly the
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localizations of D at prime ideals; thus, the center map -y establishes a home-
omorphism between Zar(D) and Spec(D). Thus, if the latter is Noetherian
also the former is Noetherian.

In this case, dim(D) = dim, (D).

ExAMPLE 4.7. Tt is also possible to construct domains whose Zariski
space is Noetherian but with dim(D) # dim, (D). For example, let L be a
field, and consider the ring A := L + Y L(X)[[Y]], where X and Y are in-
dependent indeterminates. Then, the valuation overrings of A different from
F:=L(X)((Y)) are the rings in the form V 4+ Y L(X)[[Y]], as V ranges among
the valuation rings containing L and having quotient field L(X); that is,
Zar(A) \ {F} ~ Zar(L(X)|L). By the following Corollary 5.5, Zar(A) is a
Noetherian space.

From this, we can construct analogous examples of arbitrarily large di-
mension. Indeed, if R is an integral domain with quotient field K, and
T := R+ XK|[[X]], then as above Zar(T) is composed by K((X)) and
by rings of the form V + XK][[X]], as V ranges in Zar(R); in particular,
Zar(T) ={K((X))} UX, where X ~ Zar(R). Thus, Zar(T) is Noetherian if
Zar(R) is. Moreover, dim(7') = dim(R) + 1 and dim,(T") = dim,(R) + 1.

Consider now the sequence of rings Ry := L + YL(X)[[Y]], R2 := R1 +
Y2Q(Ry)[[Y2]], - -y Rn:i=Ru—1 +YnQ(Rn—1)[[Yn]], where Q(R) indicates the
quotient field of R and each Y; is an indeterminate over Q(R;—1)((Yi—1)).
Recursively, we see that each Zar(R,) is Noetherian, while dim(R,,) =n #
n+1=dim,(R,).

5. Intersections of prime ideals

The results of the previous sections, while very general, are often difficult
to apply, because it is usually not easy to determine the valuative dimension
of a domain D. More applicable criteria, based on the prime spectrum of D,
are the ones that we will prove next.

THEOREM b5.1. Let D be a local integral domain, and suppose there is a set
A C Spec(D) and a prime ideal Q such that:

QEA;
no two members of A are comparable;
({P|PeA}=0;

Dg is a valuation domain.
Then, for any minimal valuation overring V. of D contained in Dg, Zar(D) \
{V'} is not compact; in particular, Zar(D) is not Noetherian.

Proof. Note first that, since V' is a minimal valuation overring, its center
M on D must be the maximal ideal of D [15, Corollary 19.7]. Suppose that
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Zar(D) \ {V} is compact: by Theorem 3.6, there is a finitely generated D-
algebra A := D[z1,...,x,] such that V is the integral closure of A,; for some
M € Max(A).

Let [:==a'DN---Na;'DND=(D:pay)N---N(D:px,). IfICQ,
then (D :p z) C Q for some z; := z; then, since D¢ is flat over D,

(DQ ‘Do .%') = (D ‘D .%')DQ - QDQ,

and in particular x ¢ Dg. However, V C Dg, and thus x ¢ V, a contradiction.
Hence, we must have I Z Q.

In this case, there must be a prime ideal P; € A not containing I. More-
over, IN Py ¢ Q too, and thus there is another prime P> € A, P, # Ps,
not containing I. By Lemma 4.2, the prime ideals of A inside M are lin-
early ordered; in particular, we can suppose without loss of generality that
rad(PyA) Crad(P A).

Let now t € Py \ Py; then, t € rad(Py A), and thus there are p1,...,p; € Py,

ai,...,an € A such that t¢ =pja; + - - - + pray for some positive integer e. For
each i, a; = B;(x1,...,%,), where B; is a polynomial over D of total degree
d;; let d:=sup{dy,...,dy}, and take an r € I \ Py (recall that I ¢ Py). Then,
r¢B;(x1,...,1,) € D for each i; therefore,

7,dte:p1,rda1 +~~+kade epiD+---+ppDCPy.

However, by construction, both r and ¢t are out of Pj; since P; is prime,
this is impossible. Hence, Zar(D) \ {V'} is not compact, and Zar(D) is not
Noetherian. (|

The first corollaries of this result can be obtained simply by putting Q =
(0). Recall that a G-domain (or Goldman domain) is an integral domain
such that the intersection of all nonzero prime ideals is nonzero. They were
introduced by Kaplansky for giving a new proof of Hilbert’s Nullstellensatz
(see for example [21, Section 1.3]).

COROLLARY 5.2. Let D be a local domain of finite dimension, and suppose
that D is not a G-domain. Then, Zar(D)\ {V} is not compact for every
V € Zarnin (D)

Proof. Since D is finite-dimensional, every prime ideal of D contains a
prime ideal of height 1; since D is not a G-domain, it follows that the in-
tersection of the set Spec'(D) of the height-1 prime ideals of D is (0). The
localization D(gy is the quotient field of D, and thus a valuation domain;
therefore, we can apply Theorem 5.1 to A := Spec! (D). O

COROLLARY 5.3. Let D be a local domain. If D has infinitely many height-
1 primes, then Zar(D) is not Noetherian.
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Proof. Let I be the intersection of all height-1 prime ideals. If I # (0),
every height-one prime of D would be minimal over [; since there is an infinite
number of them, Spec(D) would not be Noetherian, and by Proposition 4.1
neither Zar(D) would be Noetherian. Hence, I = (0). But then we can apply
Theorem 5.1 (for Q@ =1). O

Note that the hypothesis that D is local is needed in Theorem 5.1 and
in Corollary 5.3: for example, Z has infinitely many height-1 primes, and
({P | P € Spec' (D)} = (0), but Zar(Z) ~ Spec(Z) is a Noetherian space.

PRrROPOSITION 5.4. Let D be an integral domain. If D is not a field, then
Zar(D[X]) is a not a Noetherian space.

Proof. Since D is not a field, there exist a nonzero prime ideal P of D. For
any a € P, let p, be the ideal of D[X] generated by X — a; then, each p, is a
prime ideal of height 1, p, # pp if a #b, and ({p. | a € P} = (0).

The prime ideal m := PD[X]+ X D[X] contains every p,; by Corollary 5.3,
Zar(D[X]) is not Noetherian. Therefore, neither Zar(D[X]) is Noetherian.

O

COROLLARY 5.5. Let F C L be a transcendental field extension.

(a) If trdegp(L) =1 and L is finitely generated over F then Zar(L|F) is
Noetherian.
(b) If trdegpr(L) > 1 then Zar(L|F) is not Noetherian.

Proof. (a) Let L= F(ay,...,q,); without loss of generality we can suppose
that «y is transcendental over F'. Then, the extension F'(«;) C L is algebraic
and finitely generated, and thus finite.

Each V € Zar(L|F) must contain either o or a'; therefore, Zar(L|F) =
Zar(L|F[aq]) U Zar(L|F[a;']). However, Zar(L|A) = Zar(A’) for every do-
main A, where we denote by A’ is the integral closure of A in L; since Floy]
(respectively, Flag']) is a principal ideal domain and F(a;) C L is finite,
the integral closure of F[aq] (resp., Fla;?']) is a Dedekind domain, and thus
Zar(L|F[ay]) = Zar(F[ay]’) ~ Spec(F[ay]’) is Noetherian. Being the union of
two Noetherian spaces, Zar(L|F) is itself Noetherian.

(b) Suppose trdegpr(L) > 1. Then, there are X,Y € L such that {X,Y}
is an algebraically independent set over F'; in particular, we have a continu-
ous surjective map Zar(L|F) — Zar(F(X,Y)|F) given by V= VNF(X,Y).
However, Zar(F(X,Y)|F) contains Zar(F[X,Y]); by Proposition 5.4, the lat-
ter is not Noetherian, since F[X,Y] is the polynomial ring over F[X], a do-
main of dimension 1. Thus, Zar(L|F) is not Noetherian. O

The condition that ({P | P € A} = Q of Theorem 5.1 can be slightly gener-
alized, requiring only that the intersection is contained in (). However, doing
so we can only prove that Zar(D) is not Noetherian, without always finding
a specific V' such that Zar(D) \ {V'} is not compact.
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PROPOSITION 5.6. Let D be a local integral domain, and suppose there is
a set A C Spec(D) and a prime ideal Q such that:

QEA;

no two members of A are comparable;

({P|PeA}CQ;

Dg is a valuation domain.
Then, Zar(D) is not Noetherian.

Proof. 1f Spec(D) is not Noetherian, by Proposition 4.1 neither is Zar(D);
suppose that Spec(D) is Noetherian.

Let I:=(){P|P € A}; since an overring of a valuation domain is still a
valuation domain, we can suppose that @ is a minimal prime of I. Since
D has Noetherian spectrum, the radical ideal I has only a finite number of
minimal primes, say Q =: Q1,Qa,...,Qn; let A;:={p e A|Q; Cp} and [; :=
{p|p € A;}. By standard properties of minimal primes, A=A U---UA,
and I=1;N---N1I,.

In particular, IyN---N1I, C Q; hence, I, C @ for some k. However, Qy, C Iy,
and thus Qp C @Q); since different minimal primes of the same ideal are not
comparable, k=1 and Q CI; CQ, i.e., [1 =Q. Then, A; is a family of
primes satisfying the hypothesis of Theorem 5.1; in particular, Zar(D) is not
Noetherian. O

An essential prime of a domain D is a P € Spec(D) such that Dp is a
valuation domain. D is an essential domain if it is equal to the intersection of
the localizations of D at the essential primes. If, moreover, the family of the
essential primes is compact, then D can be called a Priifer v-multiplication
domain (PvMD for short) [12, Corollary 2.7]; note that the original definition
of PuMDs was given through star operations (more precisely, D is a PoMD if
and only if Dp is a valuation ring for every t-maximal ideal P [16], [20]).

PROPOSITION 5.7. Let D be an essential domain. Then, Zar(D) is Noe-
therian if and only if D is a Prifer domain with Noetherian spectrum.

Proof. If D is a Priifer domain with Noetherian spectrum, then Zar(D) ~
Spec(D) is Noetherian (see Example 4.6). Conversely, suppose Zar(D) is
Noetherian: by Proposition 4.1, Spec(D) is Noetherian. Let £ be the set of
essential prime ideals of D: since Spec(D) is Noetherian, £ is compact, and
thus D is a PoMD.

Suppose by contradiction that D is not a Priifer domain. Then, there is
a maximal ideal M of D such that Dj; is not a valuation domain; since the
localization of a PoMD is a PoMD [20, Theorem 3.11], and Zar(Dj) is a
subspace of Zar(D), without loss of generality we can suppose D = D), that
is, we can suppose that D is local.

Since £ is compact, every P € £ is contained in a maximal element of &;
let A be the set of such maximal elements. Clearly, D =({Dp| P € A}. If
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A were finite, D would be an intersection of finitely many valuation domains,
and thus it would be a Priifer domain [15, Theorem 22.8]; hence, we can
suppose that A is infinite. Let I:=({P|P € A}.

Each P € A contains a minimal prime of I; however, since Spec(D) is
Noetherian, I has only finitely many minimal primes. It follows that there
is a minimal prime @ of I that is not contained in A; in particular, ({P |
P e A} CQ, and thus we can apply Proposition 5.6. Hence, Zar(D) is not
Noetherian, which is a contradiction. O

REMARK 5.8. The previous proof can be interpreted using the terminol-
ogy of the theory of star operations. Indeed, any essential prime P is a
t-ideal, i.e., P = P!, where (for any ideal J of D) Jt:=J{(D:(D:1I))|IC
J is finitely generated} [20, Lemma 3.17] and if D is a PvMD then the set
A of the maximal elements of £ is exactly the set of t-maximal ideals, that
is, the set of the ideals I such that I =I' and J # J! for every proper ideal
I1CJ.

COROLLARY 5.9. Let D be a Krull domain. Then, Zar(D) is Noetherian
if and only if dim(D) =1, that is, if and only if D is a Dedekind domain.

Proof. 1f dim(D) =1, then D is Noetherian and so is Zar(D). If dim(D) >
1, then D is not a Priifer domain; since each Krull domain is a PvMD, we
can apply Proposition 5.7. ([

Note that this corollary can also be proved directly from Corollary 5.3 since,
if D is Krull, and P € Spec(D) has height 2 or more, then Dp has infinitely
many height-1 primes.

6. An application: Kronecker function rings

Let D be an integrally closed integral domain with quotient field K. For
every V € Zar(D), let V(X) := V[X]n, x] € K(X), where my is the maximal
ideal of V. If A C Zar(D), the Kronecker function ring of D with respect to
A s

Kr(D,A):=[{V(X)|V eA};
equivalently,

Kr(D,A)={f/g| f.g € DIX],g#0,c(f) C (c(9))"* },
where c(f) is the content of f and Aa is the semistar operation defined in
Section 2.4. See [15, Chapter 32] or [13] for general properties of Kronecker
function rings.

The set of Kronecker function rings it exactly the set of overrings of the
basic Kronecker function ring Kr(D,Zar(D)); this set is in bijective corre-
spondence with the set of finite-type valuative semistar operations [15, Re-
mark 32.9], or equivalently with the set of nonempty subsets of Zar(D) that
are closed in the inverse topology [8, Theorem 4.9].
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Let (D) be the set of Kronecker function rings 7' of D such that T'N
K = D. Then, K(D) is in bijective correspondence with the set of finite-
type valuative star operations, or equivalently with the set of inverse-closed
representation of D through valuation rings, that is, the sets A C Zar(D)
that are closed in the inverse topology and such that (\{V |V € A} =D [27,
Proposition 5.10].

It has been conjectured [23] that (D) is either a singleton (in which case
D is said to be a vacant domain; see [6]) or infinite, and this has been proved
to be the case for a wide class of pseudo-valuation domains [6, Theorem 4.10].
As a consequence of the following proposition, we will prove this conjecture
for another class of domains.

PROPOSITION 6.1. Let D be an integrally closed integral domain such that
1 <|K(D)| < oo. Then, there is a minimal valuation overring V. of D such
that Zar(D) \ {V'} is compact.

Proof. Suppose [K(D)| > 1. Then, there is an inverse-closed representation
A of D different from Zar(D); let A :=Zar(D)\ A. For each W € A, let
A(W) := AU{W}T; then, every A(W) is an inverse-closed representation of
D, and A(W) # A(W') it W # W' (since, without loss of generality, W 2 W,
and thus W ¢ A(W")). Hence, each W € A give rise to a different member of
K(D); since |K(D)] < oo, it follows that A is finite.

If now V is minimal in A, then Zar(D)\ {V} =AU (A\{V}) is closed by
generalizations; since A is finite, it follows that Zar(D)\ {V'} is the union of
two compact subspaces, and thus it is itself compact. O

COROLLARY 6.2. Let D be an integrally closed local integral domain, and

suppose there exist a set A C Spec(D) of incomparable nonzero prime ideals
such that {P| P € A} =(0). Then, |K(D)| € {1,00}.

Proof. By Theorem 5.1, each Zar(D) \ {V'} is noncompact. The claim now
follows from Proposition 6.1. O

7. Overrings of Noetherian domains

If D is a Noetherian domain, Theorem 3.6 admits a direct application,
without using any of the results proved in Sections 4 and 5. Indeed, if D
is Noetherian with quotient field K, then it is the same for any localization
of Dlxy,...,xy], for arbitrary z1,...,2, € K; thus, the integral closure of
Dlx1,...,2n]0 is a Krull domain for each maximal ideal M of D[zy,...,x,]
([24, (33.10)] or [19, Theorem 4.10.5]). Since a domain that is both Krull
and a valuation ring must be a field or a discrete valuation ring, Theorem 3.6
implies that Zar(D)\ {V'} is not compact as soon as V' is a minimal valuation
overring of dimension 2 or more.

We can actually say more than this; the following is a proof through Propo-
sition 3.5 of an observation already appeared in [9, Example 3.7].
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PROPOSITION 7.1. Let D be a Noetherian domain with quotient field K,
and let A be the set of valuation overrings of D that are Noetherian (i.e., A
is the union of { K} with the set of discrete valuation overrings of D). Then,
A is compact if and only if dim(D) = 1.

Proof. If dim(D) =1, then A =Zar(D), and thus it is compact.

On the other hand, for every ideal I of D, I"4 = I" [19, Proposition 6.8.4];
however, if dim(D) > 1, then Zar(D) contains elements of dimension 2, and
thus A cannot contain Zary,(D). The claim now follows from Proposi-
tion 3.5. O

REMARK 7.2.

(1) The equality I"*4 = I holds also if we restrict A to be the set of discrete
valuation overrings of D whose center is a maximal ideal of D [19, Propo-
sition 6.8.4]. For each prime ideal of height 2 or more, by passing to Dp,
we can thus prove that the set of discrete valuation overrings of D with
center P is not compact (and in particular it is infinite).

(2) The previous proposition also allows a proof of the second part of Corol-
lary 5.5 without using Theorem 5.1, since F'[X,Y] is a Noetherian domain
of dimension 2.

By Proposition 7.1, in particular, the space A of Noetherian valuation
overrings of D (where D is Noetherian and dim(D) > 2) is not a spectral
space, since it is not compact. Our next purpose is to see A as an intersection
X N Zar(D), for some subset X of Over(D), and use this representation to
prove facts about X. We start with using the inverse topology.

PRrROPOSITION 7.3. Let D be a Noetherian domain with quotient field K,
and let:

e X1 be the set of all overrings of D that are Noetherian and of dimension

at most 1;
o X be the set of all overrings of D that are Dedekind domains (K included).

For i€ {1,2}, the following are equivalent:
(i) X; is compact;

(il) X; is spectral;

(iii) X; is proconstructible in Over(D);

(iv) dim(D)=1.

Proof. (i) = (iii). In both cases, X = X&": for X; see [21, Theorem 93],
while for X5 see, for example, [15, Theorem 40.1] (or use the previous result
and [15, Corollary 36.3]). (iii) = (ii) = (i) always holds.

(iv) = (). If dim(D) =1, then X; = Over(D), while X5 = Over(D’),
where D’ is the integral closure of D, and both are compact since they have
a minimum.
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(iii) = (iv). If X, is proconstructible, so is X; N Zar(D) (since Zar(D) is
also proconstructible), and in particular X; NZar(D) is compact. However, in
both cases, X; N Zar(D) is exactly the set of Noetherian valuation overrings
of D; by Proposition 7.1, dim(D) = 1. O

REMARK 7.4. The equivalence between the first three conditions of Propo-
sition 7.3 holds for every subset X C Over(D) such that X = X (and every
domain D). In particular, it holds if X is the set of overrings of D that are
principal ideal domains, and, with the same proof of the other cases, we can
show that if D is Noetherian and these conditions hold, then dim(D) = 1.
However, it is not clear if, when D is Noetherian and dim(D) = 1, this set is
actually compact.

Another immediate consequence of Proposition 7.1 is that the set
NoethOver(D) of Noetherian overrings of D is not proconstructible as soon
as D is Noetherian and dim(D) > 2: indeed, if it were, then NoethOver(D) N
Zar(D) = A would be proconstructible, against the fact that A is not com-
pact. However, this is also a consequence of a more general result. We need
a topological lemma.

LEMMA 7.5. Let Y C X be spectral spaces. Suppose that there is a subbasis
B of X such that, for every B € B, both B and BNY are compact. Then, Y
s a proconstructible subset of X.

Proof. The hypothesis on B implies that the inclusion map ¥ <— X is a
spectral map; by [3, 1.9.5(vii)], it follows that Y is a proconstructible subset
of X. O

PROPOSITION 7.6. Let D be an integral domain with quotient field K, and
let D[Fy] be the set of finitely generated D-algebras contained in K.

(a) D[Fy] is dense in Over(D), with respect to the constructible topology.
(b) Let X such that D[F;] C X C Over(D). Then, X is spectral in the Zariski
topology if and only if X = Over(D).

Proof. (a) A basis of the constructible topology is given by the sets of type
UN(X\V),as U and V ranges in the open and compact subsets of Over(D).
Such an U can be written as By U---U B,,, where each B; = B(gcgi)7 . ,xﬁf))
is a basic open set of Over(D); thus, we can suppose that U = B(x1,...,2Zy).
Suppose :=U N (X \ V) is nonempty; we claim that A := D[zy,...,z,] €
QN D[Fy]. Clearly A€ D[F¢] and A€ U; let T €. Then, T € U, and thus
A CT; therefore, A is in the closure CI(T") of T, with respect to the Zariski
topology. But X \ V is closed, and thus C1(T') C X \ V; that is, Ae X \ V.
Hence, A € QN D[Fy], which in particular is nonempty, and D[Fy] is dense.

(b) Suppose X is spectral. For every z1,...,x,, the set X N B(x1,...,2,)
has a minimum (i.e., D[z1...,2y]), so it is compact. Since the family of all
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B(x1,...,2,) is a basis, by Lemma 7.5 it follows that X is proconstructible.
By the previous point, we must have X = Over(D). O

COROLLARY 7.7. Let D be a Noetherian domain. The spaces

e NoethOver(D) :={T € Over(D) | T is Noetherian}, and
e KrullOver(D):={T € Over(D) | T is a Krull domain}

are spectral if and only if dim(D) = 1.

Proof. 1f dim(D) =1, then the claim follows by Proposition 7.3.

If dim(D) > 2, then NoethOver(D) is not spectral by Proposition 7.6(b)
and the Hilbert Basis Theorem; the case of KrullOver(D) follows in the same
way, since KrullOver(D) N B(x1,...,2,) has always a minimum (i.e., the in-
tegral closure of D[zq,...,x,]). O

More generally, consider a property P of Noetherian domains such that
every field and every discrete valuation ring satisfies P; for example, P may be
the property of being regular, Gorenstein or Cohen-Macaulay. Let Xp(D) be
the set of overrings of D satisfying P; then, Xp (D) N Zar(D) is not compact,
and thus Xp(D) is not proconstructible. On the other hand, if Xp(T) is
compact for every overring of D that is finitely generated as a D-algebra,
then by Lemma 7.5 it follows that Xp (D) cannot be a spectral space. Thus,
the assignment D — Xp (D) cannot be “too good”: either some Xp(T) is not
compact, or Xp(D) is not spectral.

QUESTION. Let P be the property of being regular, the property of being
Gorenstein or the property of being Cohen-Macaulay. Is it possible to char-
acterize for which Noetherian domains D there is a T' € Over(D) such that
Xp(T) is not compact and for which Xp (D) is not spectral?
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