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EMBEDDING OF GROUPS AND QUADRATIC EQUATIONS
OVER GROUPS

D. F. CUMMINS AND S. V. IVANOV

Abstract. We prove that, for every integer n ≥ 2, a finite or
infinite countable group G can be embedded into a 2-generated

group H in such a way that the solvability of quadratic equations

of length at most n is preserved, that is, every quadratic equation

over G of length at most n has a solution in G if and only if this
equation, considered as an equation over H, has a solution in H.

1. Introduction

It is a classical result of Higman, B. Neumann, and H. Neumann [6] that
every finite or infinite countable group can be embedded into a 2-generated
group. In this note, we are concerned with such an emdedding that would
preserve the solvability of every quadratic equation of bounded length.

We start with definitions. Let G be a finite or infinite countable group and
let

(1.1) G= 〈a1, a2, . . . ‖R1 = 1,R2 = 1, . . . 〉
be a presentation for G by means of generators a1, a2, . . . and defining relations
R1 = 1,R2 = 1, . . . , where R1,R2, . . . are nonempty cyclically reduced words
over the alphabet A±1 := {a±1

1 , a±1
2 , . . .}. If U is a word over A±1 and the

image of U in G is trivial, we write U
G
= 1 or say that U = 1 in G.

Let X be a finite or infinite countable set, called a set of variables, X−1 :=
{x−1 | x ∈ X}, and X±1 := X ∪ X−1. Let F(X ) denote the free group with
the free base X and let G ∗ F(X ) denote the free product of G and F(X ).
Elements of G∗F(X ) can be regarded as words over the alphabet Y±1, where
Y :=A∪X .
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A word W = y1 . . . y� over Y±1, where y1, . . . , y� ∈ Y±1, is called reduced
if � > 0, that is, W is not empty, and W contains no subwords of the form
yy−1 or y−1y, where y ∈ Y . A word W over Y±1 is cyclically reduced if W
is reduced and every cyclic permutation of W is reduced. The length of a
word W = y1 . . . y� over Y±1 is � = |W | and the X -length |W |X of W is the
number of all occurrences of letters of X±1 in the word W . For example,
|a1x1x2a

−1
2 x−1

1 |X = 3 if a1, a2 ∈A and x1, x2 ∈ X .
An equation over G is a formal expression W = 1, where W is a cyclically

reduced word over Y±1 with |W |X > 0. The length of an equation W = 1 over
G is the number |W |X . The total length of an equation W = 1 over G is |W |.
An equation W = 1 over G is called quadratic if, for every letter x ∈ X , the
sum of the number of occurrences of x in W and the number of occurrences
of x−1 in W is either 2 or 0.

We say that an equation W = 1 over G has a solution if there exists a
homomorphism ψW :G ∗ F(X )→G which is identical on G and which takes
the word W ∈G ∗F(X ) to the identity, that is, ψW |G = idG and ψW (W ) = 1
in G. Let x1, . . . , xk be all letters of X that occur in W or in W−1. A solution
tuple to the equation W = 1, defined by a homomorphism ψW :G ∗ F(X )→
G, is a tuple (U1, . . . ,Uk), where U1, . . . ,Uk are some words over A±1, such
that ψW (xj) = Uj in G for every j = 1, . . . , k. The length of a solution tuple

(U1, . . . ,Uk) to the equation W = 1 is the sum
∑k

j=1 |Uj |.
If μ : G → H is a group monomorphism and W = 1 is an equation over

G, then we can use μ and W = 1 to obtain an equation over H by replacing
every letter aεi ∈ A±1, ε=±1, that appears in W = 1 with μ(aεi ). This new
equation over H is denoted by μ(W ) = 1.

Theorem 1.1. Let n ≥ 2 be an integer and let G be a finite or infinite
countable group. Then there exists an embedding μn :G→H of G into a 2-
generated group H = 〈h1, h2〉, that preserves the solvability of every quadratic
equation W = 1 over G of length |W |X ≤ n, that is, for every equation W = 1
over G of length at most n, the equation W = 1 has a solution in G if and
only if μn(W ) = 1 has a solution in H .

We remark that the embedding μn :G→H of Theorem 1.1 has additional
properties that are of interest even in the case when G is already a 2-generated
group. For example, a solution tuple to a quadratic equation W = 1 over G
such that |W |X ≤ n may be arbitrarily long relative to the original alphabet
A whereas the equation μn(W ) = 1 has a relatively short solution tuple in H
with respect to the alphabet {h1, h2}. This and other technical properties of
the embedding μn, that could be useful for potential future applications, are
recorded in the following.

Theorem 1.2. The embedding μn : G → H of Theorem 1.1 can be con-
structed in such a way that μn has the following properties.
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(a) Fix an enumeration W1 = 1, W2 = 1, . . . of all quadratic equations over G
such that, for every i≥ 1, |Wi|X ≤ n and Wi = 1 has a solution in G. Then
there is a constant C > 0 such that, for every i≥ 1, there exists a solution
tuple to the equation μn(Wi) = 1 over H whose length, in generators h1, h2

of H , does not exceed Cn4i.
(b) Assume that the presentation (1.1) for G is recursively enumerable. Then

defining relations of the 2-generated group H = 〈h1, h2〉 can be recursively
enumerated.

(c) Assume that the presentation (1.1) for G is decidable and there is an
algorithm that detects whether a quadratic equation over G of length at
most n has a solution in G. Then the 2-generated group H = 〈h1, h2〉 has
a decidable set of defining relations and the embedding μn :G→H can be
effectively constructed.

As an example of a quadratic equation, consider the equation xU1x
εU2 = 1,

where ε=±1 and U1,U2 are some reduced (or possibly empty if ε= 1) words
over A±1. Note that if ε=−1 then this equation has a solution if and only
if the elements of G, represented by the words U1,U

−1
2 , are conjugate in G.

If ε = 1, then this equation has a solution if and only if the element of G,
represented by the word U−1

1 U2, is a square in G, that is, there is a word T

over A±1 with U−1
1 U2

G
= T 2. According to Theorem 1.1 applied with n= 2,

if G is a finite or infinite countable group, then G embeds into a 2-generated
group H , μ2 : G→H , in which two elements of μ2(G) are conjugate if and
only if they are conjugate in G and every element of μ2(G) is a square in H if
and only if it is a square in G. This is reminiscent of an embedding result of
Ol’shanskii and Sapir [13] that states that a finitely generated group G with
the solvable conjugacy problem can be embedded into a finitely presented
group K with the solvable conjugacy problem, σ :G→K, in such a way that
two elements of σ(G) are conjugate in K if and only if they are conjugate
in G.

It would be of interest to find out whether Theorem 1.1 generalizes to
arbitrary equations of bounded length and whether one could drop the upper
bound on the length of quadratic equations in Theorem 1.1. The first question
seems to be technically relevant to the following interesting problem.

Problem 1.3. For given integer n > 0, does there exist a real number λ > 0
such that if a presentation (1.1) satisfies the small cancelation condition C ′(λ),
for every relation R= 1 of (1.1), |R|> λ−1 and R is not a proper power, then
every equation W = 1 over G of total length |W | ≤ n has a solution in G if
and only if the equation W = 1, considered as an equation over the free group
F (A), has a solution in F (A)?

We remark that for quadratic equations of total length ≤ n this problem
would likely have a positive solution and a proof would be analogous to the
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proof of Theorem 1.1 with additional consideration of contiguity subdiagrams
between boundary paths of faces of type F3 and boundary paths of a surface
diagram Δ. We also mention that the arguments of Frenkel and Klyachko
[5], which are used to prove that a nontrivial commutator cannot be a proper
power in a torsion-free group G that satisfies the small cancelation condition
C ′(λ) with λ� 1, might be useful for making some progress in nonquadratic
case.

At the suggestion of the referee, we mention that connections between com-
pact surfaces and solutions of quadratic equations in free groups, free products
and in hyperbolic groups were first studied by Culler [2] and Ol’shanskii [11].
Earlier work on quadratic equations in free groups and in free products was
done by Edmunds [3], [4], Comerford and Edmunds [1], see also articles cited
in [3], [4], [1]. The bound of Theorem 1.2(a) is reminiscent of bounds on the
length of a minimal solution of quadratic equations in free groups obtained
by Lysenok and Myasnikov [10] and by Kharlampovich and Vdovina [8].

2. Group presentations and diagrams

Fix an even integer n ≥ 2. Since we consider quadratic equations W = 1
of length |W |X ≤ n, we may assume that the cardinality of X is n, |X |= n.
Since G is finite or countably infinite, we can choose an enumeration

(2.1) W1 = 1,W2 = 1, . . . ,

of all quadratic equations over G such that, for every i ≥ 1, |Wi|X ≤ n and
Wi = 1 has a solution in G. Let

⋃∞
i=1Xi be an infinite countable alphabet

consisting of disjoint copies Xi, i= 1,2, . . . , of X . Let Wi(Xi) denote the word
over the alphabet A±1 ∪ X±1

i obtained by rewriting Wi so that every letter
b ∈ A±1 of Wi is unchanged and every letter y of Wi, such that y ∈ X±1,
is replaced with βi(y) ∈ X±1

i , where βi : X±1 →X±1
i is a bijection such that

βi(X ) =Xi and βi(x
−1) = βi(x)

−1 for every x ∈ X .
Consider the following group presentation

(2.2) G1 =

〈 ∞⋃
i=1

Xi ∪A
∥∥∥R1 = 1,R2 = 1, . . . ,W1(X1) = 1,W2(X2) = 1, . . .

〉
whose generating set is

⋃∞
i=1Xi ∪A and whose defining relations are those of

(1.1) and Wi(Xi) = 1, i= 1,2, . . . .

Lemma 2.1. There is a natural embedding of the group G into the group
G1 given by presentation (2.2), denoted ν1 :G→G1. Furthermore, if W = 1 is
an equation over G then W = 1 has a solution in G if and only if the equation
ν1(W ) = 1 has a solution in the group G1.

Proof. Denote Xi = {xi,1, . . . , xi,n} for i = 1,2, . . . . Since the equation
Wi(Xi) = 1 has a solution in G, there exists a homomorphism ψi :G∗F(Xi)→
G such that ψi is identical on G and ψi(Wi(Xi)) = 1. Let Ui,1, . . . ,Ui,n be
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words over A±1 such that ψi(xi,j) = Ui,j in G, j = 1, . . . , n. Then the map
ψ∞(xi,j) := Ui,j , where 1 ≤ j ≤ n, i = 1,2, . . . , and ψ∞(a) := a for all a ∈ A
induces a homomorphism ψ∞ : G1 → G which is identical on G. Hence, the
group G embeds in G1. The existence of this homomorphism ψ∞ : G1 →G also
implies that, for an arbitrary equation W = 1 over G, the equation W = 1 has
a solution in G if and only if the equation ν1(W ) = 1 over G1 has a solution
in G1. �

Denote M := 24n. For every i ≥ 1, consider a word Vi over the alphabet
{h1, h2} defined by the formula

Vi = Vi(h1, h2) := h1h
Mi+1
2 h1h

Mi+2
2 . . . h1h

M(i+1)−1
2 h1h

M(i+1)
2 h1.(2.3)

The literal (or letter-by-letter) equality of two words U,V is denoted U ≡ V .
In the following lemma, we establish a small cancelation condition for the
words Vi, i= 1,2 . . . .

Lemma 2.2. Let U be a subword of both words Vi and Vj , defined by (2.3),

so Vi ≡ Vi,1UVi,2 and Vj ≡ Vj,1UVj,2. Then either |U |< 4
M min{|Vi|, |Vj |} or

i= j and Vi,1 ≡ Vj,1.

Proof. Suppose that U is a subword of the word Vi, where i= 1,2, . . . , and

|U | ≥ 4
M |Vi|. Then

|U | ≥ 4

M
|Vi|> 4(Mi+ 2)> 2M(i+ 1) + 2.(2.4)

Since every maximal power of h2 in Vi is no longer than M(i+ 1), it follows
from (2.4) that U contains a subword of the form h1h

k
2h1, where Mi+ 1 ≤

k ≤M(i+ 1). Now our claim follows from the fact that each word V1, V2, . . .
contains a unique subword of the form h1h

k
2h1, where Mi+1≤ k ≤M(i+ 1).

�

Let
⋃∞

i=1Xi = {x1, x2, . . .} be an enumeration of elements of
⋃∞

i=1Xi com-
patible with the enumeration of sets Xi, that is, if xj ∈ Xk, xj′ ∈ Xk′ and
k < k′, then j < j′. Using this enumeration, new generators h1, h2 and the
words Vi(h1, h2), we extend the presentation (2.2) as follows

G2 =

〈 ∞⋃
i=1

Xi ∪A∪ {h1, h2}
∥∥∥R1 = 1,R2 = 1, . . . ,W1(X1) = 1,(2.5)

W2(X2) = 1, . . . , xiV
−1
2i = 1, aiV

−1
2i+1 = 1, i= 1,2, . . .

〉
.

To study this group presentation and quadratic equations over G2, we will
use diagrams over the presentation (2.5). We start with basic definitions.

Let Δ be a finite 2-complex and let Δ(i) denote the set of closures of i-cells
of Δ, i = 0,1,2. The elements of Δ(i) are called vertices, edges, faces of Δ
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if i= 0,1,2, resp. We also consider the set 	Δ(1) of oriented 1-cells of Δ. If

e ∈ 	Δ(1), then e−1 denotes e with opposite orientation. For every e ∈ 	Δ(1),
let e−, e+ denote the initial, terminal, resp., vertices of e. In particular,
(e−1)− = e+ and (e−1)+ = e−. Note that e = e−1.

A path p = e1 . . . e� in Δ is a sequence of oriented edges e1, . . . , e� of Δ
with (ei)+ = (ei+1)−, i = 1, . . . , � − 1. The length of a path p = e1 . . . e� is
|p|= �. The initial vertex of p is p− := (e1)− and the terminal vertex of p is
p+ := (e�)+. A path p is called closed if p− = p+. A path p is called reduced if
|p|> 0 and p contains no subpath of the form ee−1, where e is an edge. A cyclic
path is a closed path with no distinguished initial vertex. A path p= e1 . . . e�
is called simple if the vertices (e1)−, . . . , (e�)−, (e�)+ are all distinct. A closed
path is simple if the vertices (e1)−, . . . , (e�)− are all distinct.

A diagram Δ over presentation (2.5) is a connected finite 2-complex which
is equipped with a labeling function

ϕ : 	Δ(1)→
∞⋃
i=1

X±1
i ∪A±1 ∪

{
h±1
1 , h±1

2 ,1
}

such that, for every e ∈ 	Δ(1), one has ϕ(e−1) = ϕ(e)−1, where 1−1 := 1,
and, for every face Π of Δ, if ∂Π = e1 . . . e� is a boundary path of Π, where

e1, . . . , e� ∈ 	Δ(1), then the label ϕ(∂Π) := ϕ(e1) . . . ϕ(e�) of ∂Π has one of the
following three forms.

(F1) ϕ(∂Π) = 1�.
(F2) � = 4 and ϕ(∂Π) is a cyclic permutation of a word y1y−11, where y ∈⋃∞

i=1Xi ∪A∪ {h1, h2}.
(F3) ϕ(∂Π) is a cyclic permutation of one of the words R±1, where R= 1 is

a relation of the presentation (2.5).

A face Π of Δ is said to have type F1, F2, F3 if ϕ(∂Π) has the form (F1),
(F2), (F3), resp. The set of faces of type Fj is denoted Δj(2), j = 1,2,3.

An edge e ∈ 	Δ(1) is called an a-edge, x-edge, h-edge, 1-edge if ϕ(e) ∈A±1,

ϕ(e) ∈
⋃∞

i=1X±1
i , ϕ(e) ∈ {h±1

1 , h±1
2 }, ϕ(e) = 1, resp. An edge e ∈ 	Δ(1) is

termed essential if e is not a 1-edge.
We will say that Δ is a surface diagram of type (k, k′) over (2.5) if Δ is

a diagram over (2.5) and Δ, as a topological space, is homeomorphic to a
compact (orientable or nonorientable) surface that has Euler characteristic
k and contains k′ punctures. This surface is called the underlying surface
for Δ. In particular, Δ is called a disk diagram if Δ is a surface diagram of
type (1,1), hence, the underlying surface for Δ is a disk.

If Δ is a surface diagram and the underlying surface is orientable, then a
fixed orientation of the underlying surface makes it possible to define positive
(=counterclockwise) and negative (=clockwise) orientation for boundaries of
faces of Δ and for connected components of ∂Δ. Regardless of whether the
underlying surface is orientable or not, we always consider the boundary ∂Π
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of a face Π of Δ or a connected component c of the boundary ∂Δ of Δ as
a cyclic path which is called a boundary path of Π or a boundary path of Δ,
resp. Note that (∂Π)−1 or c−1 are also boundary paths of Π or Δ, resp., with
the opposite orientation.

Suppose that Δ is a surface diagram over (2.5). Making refinements of Δ
by using faces of type F1, F2 if necessary (informally, we “thicken” boundary
paths of faces of type F3 and ∂Δ, this should be evident; more formal details
can be found in [12]), we may assume that the following property holds for Δ.

(A) Suppose that each of c1, c2 is either a boundary path of a face of type
F3 in Δ or a boundary path of Δ. Then c1, c2 are closed simple paths
and either c1 is a cyclic permutation of one of c2, c

−1
2 or c1, c2 have no

common vertices.

Note that the property (A) implies that if an essential edge e of Δ belongs
to a boundary path of a face of type F3 or e belongs to a boundary path of
Δ, then e also belongs to a boundary path of a face of type F2.

From now on we always assume, unless stated otherwise, that a diagram is
a surface diagram over (2.5) with the property (A).

Recall that the literal (or letter-by-letter) equality of the words U,V is
denoted U ≡ V .

Lemma 2.3. Let W be a nonempty word over the alphabet
∞⋃
i=1

X±1
i ∪A±1 ∪

{
h±1
1 , h±1

2 ,1
}

and let G2 be the group defined by presentation (2.5). Then W
G2= 1 if and

only if there is a surface diagram Δ of type (1,1), called a disk diagram, over
presentation (2.5) such that ϕ(∂Δ)≡W .

Proof. The proof is straightforward, for details the reader is referred to [12],
[7], see also [9]. As in [12], faces of type F1, F2 make it possible to “thicken”
the diagram and turn its underlying topological space into a disk. �

Suppose that Ψ is a finite graph on a compact surface S. Consider the
following property of Ψ in which m≥ 2 is an integer parameter.

(B) If f is an oriented edge of Ψ with f− = f+, then the edge f does not
bound a disk on S whose interior contains no vertices of Ψ. Further-
more, if f1, . . . , fm are oriented edges of Ψ such that (fi)− = (fj)− and
(fi)+ = (fj)+ for all i, j = 1, . . . ,m, then it is not true that each path

f1f
−1
2 , f2f

−1
3 , . . . , fm−1f

−1
m bounds a disk on S whose interior contains

no vertices of Ψ.

We finish this section with a lemma about graphs on surfaces.

Lemma 2.4. Let S be a compact surface whose Euler characteristic is
χ(S) = k and let Ψ be a finite graph on S that has the property (B) with
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parameter m = 2. If VΨ and EΨ denote the number of vertices and nonori-
ented edges of Ψ, resp., then EΨ ≤ 3(VΨ − k).

Proof. Note that the property (B) with parameter m = 2 can be stated
less formally by saying that the partial cell decomposition of S, defined by
the graph Ψ, contains no 1- and 2-gons whose interiors contain no vertices
of Ψ. Preserving this condition, that is, preserving the property (B) with
parameter m= 2, we will draw as many new edges in Ψ as possible and obtain
a graph Ψ′ with VΨ′ = VΨ, EΨ′ ≥ EΨ. Note that Ψ′ is connected and if c is
a connected component of ∂Δ then there is a closed simple path ec,1 . . . ec,kc ,
where ec,1, . . . , ec,kc are edges of Ψ′, such that ec,1 . . . ec,kc and c bound an
annulus Ac whose interior contains no vertices of Ψ′. Hence, taking Ac out
of S and adding back the cycle ec,1 . . . ec,kc for every connected component
c of ∂Δ, we obtain a surface S′ such that χ(S′) = χ(S) = k. In addition, it
follows from definitions that S′ \Ψ′ is a collection of open disks. Indeed, if
a connected component of S′ \Ψ′ were different from a disk, then one could
draw an additional edge in Ψ′ without creating a 1- or 2-gon, contrary to the
maximality of Ψ′. Hence, the graph Ψ′ defines a cell decomposition of S′ and

(2.6) VΨ′ −EΨ′ + FΨ′ = χ
(
S′)= k,

where FΨ′ is the number of faces of the cell decomposition of S′ defined by Ψ′.
Since there are no 1- and 2-gons in this decomposition, every face has 3 edges
in its boundary path which implies that 3FΨ′ ≤ 2EΨ′ or FΨ′ ≤ 2

3EΨ′ . Hence,

it follows from (2.6) that VΨ′ − 1
3EΨ′ ≥ k or EΨ′ ≤ 3(VΨ′ −k). Since VΨ′ = VΨ,

EΨ′ ≥EΨ, our claim is proved. �

3. Contiguity subdiagrams

As in Section 2, let Δ be a surface diagram over presentation (2.5) with
property (A). Consider a relation ∼2 on the set Δ2(2) of faces of type F2 so
that Π1 ∼2 Π2 if and only if there is an essential edge e such that e belongs
to (∂Π1)

±1 := ∂Π1 ∪ ∂Π−1
1 and e belongs to (∂Π2)

±1. It is easy to see that
this relation is reflexive and symmetric on Δ2(2). The transitive closure of
this relation ∼2 is an equivalence relation on Δ2(2) which we denote by ∼.
Let [Π]∼ denote the equivalence class of a face Π of type F2 relative to this
equivalence relation. For every Π ∈Δ2(2), we consider a minimal subcomplex
BΠ =B([Π]∼) of Δ that contains all faces of [Π]∼. It follows from definitions
that there exists a surface diagram AΠ of type (1,1) (meaning that AΠ is
a disk) or of type (0,1) (meaning that AΠ is an annulus) and a continuous
cellular map μΠ : AΠ →BΠ such that μΠ preserves dimension of cells, ϕ-labels
of edges, and μΠ(AΠ) = BΠ. We also require that AΠ consists of faces of type
F2 and their number |AΠ(2)| equals the number |BΠ(2)| of faces in BΠ. Note
that μΠ need not be injective and this is the reason we consider an “ideal”
preimage AΠ of the subcomplex BΠ.
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s1 s2

f1

f2

(a) (b)

s1

s2
AΠ

AΠ

Figure 1

If AΠ is a disk, then ∂AΠ = s1f1s2f2, where f1, f2 are essential edges with
ϕ(f1) = ϕ(f2)

−1 = 1, and s1, s2 are simple paths consisting of 1-edges with
|s1|= |s2|= |AΠ(2)|, see Figure 1(a). In this case, we say that BΠ is a band
between the edges e1, e2 and that ∂BΠ = u1e1u2e2, where ei = μΠ(fi), ui =
μΠ(si), i= 1,2, is a standard boundary path of the band BΠ. Clearly, e1, e2
are essential edges with ϕ(e1) = ϕ(f1) = ϕ(e2)

−1 = 1 and |u1|= |s1|= |u2| but
u1, u2 need not be simple paths. If ϕ(e1)

±1 = y, where y ∈
⋃∞

i=1Xi ∪ A ∪
{h1, h2}, then we may also specify that BΠ is a y-band.

Since we neither fix a base vertex for ∂BΠ, nor fix an orientation for BΠ, it
follows that if ∂BΠ = u1e1u2e2 is a standard boundary path for a band BΠ,
then u2e2u1e1 and u−1

2 e−1
1 u−1

1 e−1
2 are also standard boundary paths for BΠ.

We also observe that a standard boundary path of a band B need not be the
topological boundary of B but it can be turned into the topological boundary
(of a deformed space) by an arbitrarily small deformation of B which pushes
B into its interior.

On the other hand, if AΠ is an annulus, then ∂AΠ = s1∪s2, where s1, s2 are
cyclic simple paths consisting of 1-edges, |s1|= |s2|= |AΠ(2)|, see Figure 1(b).
In this case, we say that BΠ is an annulus and that ∂BΠ = u1 ∪ u2, where
ui = μΠ(si), i= 1,2, are boundary paths of the annulus BΠ.

Note that if B is a band and ∂B= u1e1u2e2 is a standard boundary path
of B, then each of the essential edges e1, e2 belongs either to a boundary path
of Δ or to a boundary path of a face of type F3. If, say, ei belongs to ci,
where i= 1,2 and ci is a boundary path of Δ or is a boundary path of a face
of type F3, then we say that B([Π]∼) is a band between c1 and c2.

Let B be a band between edges e1 and e2. Let o1 ∈ e1, o2 ∈ e2 be interior
points of edges e1, e2 and let �(B) be a simple arc such that �(B) is contained
in B, the boundary points of �(B) are o1, o2 and the intersection of �(B) with
every face Π of B consists of a single arc which is properly embedded in Π
and the boundary points of the arc are interior points of essential edges of ∂Π.
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Figure 2

Such an arc �(B) is called a connecting line for B. It follows from definitions
that if B is a band between edges e1 and e2, then a connecting line �(B) for
B connects interior points of e1, e2 through faces of B of type F2.

Let s be either a subpath of ∂Π (where Π is a face of type F3 in Δ) or a
subpath of ∂Δ such that s consists of h-edges and s is maximal with respect
to this property. Such s is called an h-section of Δ.

Suppose that s1, s2 are h-sections of Δ, not necessarily distinct, and B1,B2

are bands between s1, s2, perhaps B1 = B2, whose standard boundary paths
are ∂Bi = ui1ei1ui2ei2, i= 1,2, where ei1, ei2 are essential edges of ∂Bi. Also,
assume that e11, e21 are edges of s1 so that s1 = s11e11s12e21s13 and e22, e12
are edges of s2 so that s2 = s21e22s22e12s23, see Figure 2.

Note that the path p = u11e11s12e21u22e22s22e12 is closed. Furthermore,
assume that there exists a connected subcomplex Γ′ of Δ such that Γ′ con-
tains B1,B2, p, Γ

′ has no faces of type F3 with h-edges, and the path p is
nullhomotopic in Γ′. Then we consider a minimal (relative to the inclusion
relation) such subcomplex Γ whose boundary path ∂Γ (up to arbitrarily small
deformation; this time we skip introduction of an “ideal” disk diagram whose
image is Γ) can be written in the form ∂Γ = u11(e11s12e21)u22(e22s22e12).
Note that if B1 = B2, then Γ := B1 and ∂Γ = ∂B1 = u11e11u12e12. Such a
subcomplex Γ of Δ is unique and is called a contiguity subdiagram between
h-sections s1 and s2 defined by the bands B1, B2. Denote Γ∧ s1 := e11s12e21
and Γ∧ s2 := e22s22e12 and call these paths contiguity arcs of Γ. If B1 =B2,
then Γ∧ s1 := e11 and Γ∧ s2 := e12. Since Γ contains no faces of type F3 with
h-edges, s1, s2 are h-sections and u11, u12 consist of 1-edges, it follows that
ϕ(e11s12e21)≡ ϕ(e22s22e12)

−1 and, by definitions and property (A), there ex-
ists a simple path t, |t| > 0, that connects (u11)− ∈ s2 with (u11)+ ∈ s1 and
consists of 1-edges. A factorization of ∂Γ of the form

∂Γ= u11(e11s12e21)u22(e22s22e12)

is called a standard boundary path of the contiguity subdiagram Γ.
A contiguity subdiagram Γ between h-sections s1, s2 is called maximal

if there is no contiguity subdiagram Γ′ between s1, s2 such that Γ ∧ si is a
subpath of Γ′∧si, for both i= 1,2, and |Γ∧s1|+ |Γ∧s2|< |Γ′∧s1|+ |Γ′∧s2|.
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In the following lemma, we record simple facts about bands and contiguity
subdiagrams.

Lemma 3.1. Suppose that e is an edge of an h-section of a surface diagram
Δ and B is an h-band in Δ. Then the following are true.

(a) There is an h-band one of whose essential edges is e.
(b) There is a unique maximal contiguity subdiagram Γ that contains B.
(c) There is a unique maximal contiguity subdiagram one of whose contiguity

arcs contains e.

Proof. (a) Suppose that e belongs to a boundary path of Π, where Π is
a face of type F3 in Δ. Then it follows from property (A) that if o is an
interior point of e then a regular neighborhood N of o in Δ consists of two
parts separated by the arc N ∩ e, one of which is in Π and the other of which
is in a face Π′ of type F2. Then BΠ′ is a desired h-band. If e is on ∂Δ then,
again by property (A), there is a face Π′′ of type F2 whose boundary path
contains e. Then BΠ′′ is a desired h-band.

(b) Let B be a band between h-sections s1, s2. Then there exists a conti-
guity subdiagram Γ between s1 and s2 that contains B. For example, Γ = B.
If Γ1, Γ2 are two contiguity subdiagrams between s1 and s2 that contain B,
then it is easy to check that there is also a contiguity subdiagram Γ0 that con-
tains both Γ1 and Γ2. This implies the uniqueness of a maximal contiguity
subdiagram that contains B.

(c) This follows from parts (a)–(b). �

Let Δ be a surface diagram over presentation (2.5) of type (k, k′). Consider
the set Ch of all maximal contiguity subdiagrams between h-sections in Δ. It
follows from Lemma 3.1 that, for every edge e of an h-section s of Δ, there is a
unique maximal contiguity subdiagram Γ ∈ Ch whose contiguity arc contains
e, that is, e belongs to Γ∧ s.

For every Γ ∈ Ch, we pick a connecting line �(B), where B = B(Γ) is a
band that defines Γ. Denote �(Γ) := �(B) and call �(Γ) a connecting line
of Γ. For every face Π of type F3, whose boundary path ∂Π contains h-
edges, we pick a vertex vΠ in the interior of Π. Then we connect each point
in (

⋃
Γ∈Ch

�(Γ)) ∩ ∂Π to vΠ by drawing simple arcs in Π such that the arcs’

pairwise intersections are {vΠ} and each arc intersects ∂Π only at its endpoint
different from vΠ. The union of all such arcs and connecting lines �(Γ), Γ ∈ Ch,
is a graph on Δ, denoted Ψh, whose vertex set is the union of the set {vΠ |Π ∈
Δ3(2), ∂Π has h-edges} and the set of those boundary points of connecting
lines �(Γ), Γ ∈ Ch, that belong to ∂Δ. Note that the set of nonoriented edges
of Ψh is in bijective correspondence with the set Ch of maximal contiguity
subdiagrams and that each edge of Ψh is obtained from �(Γ), where Γ ∈ Ch,
by extending �(Γ) into a face Π of type F3 whenever a point of ∂�(Γ) belongs
to ∂Π.
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Π1 Π2

t

Figure 3

Now we will define reduced diagrams over the presentation (2.5). We say
that a pair of distinct faces Π1,Π2 of type F3 with h-edges in a surface diagram
Δ over (2.5) forms a reducible pair if there is a simple path t such that t
connects some vertices t− ∈ ∂Π1, t+ ∈ ∂Π2, t consists of 1-edges, |t|> 0, and
the label ϕ(∂Γ) of the boundary path ∂Γ = t∂Π2t

−1∂Π1 of the subdiagram
Γ, consisting of t,Π1,Π2, is equal to 1 in the free group whose free base is the
alphabet

⋃∞
i=1Xi ∪A∪ {h1, h2}, see Figure 3.

It is easy to see that if Π1,Π2 form a reducible pair in Δ, then one can
perform a surgery on Δ that replaces the subdiagram Γ, whose boundary path
is ∂Γ= t∂Π2t

−1∂Π1, by a subdiagram that consists of faces of type F1–F2. If
Δ′ is obtained from Δ by this surgery, then ϕ(∂Δ′) is identical to ϕ(∂Δ) (in
fact, the surgery does not affect the boundary of Δ) and |Δ′

3(2)|= |Δ3(2)|−2.
Hence, by induction on the number |Δ3(2)| of faces of type F3, every diagram
Δ can be turned into a diagram Δ̄ without reducible pairs and with no change
in ϕ(∂D). A diagram Δ will be called reduced if Δ contains no reducible pairs.

Lemma 3.2. Suppose that Δ is a reduced surface diagram of type (k, k′),
there are no h-edges contained in ∂Δ, Δ contains a face of type F3 whose
boundary path has h-edges, and the graph Ψh is defined as above. Then there
exists a vertex in Ψh whose degree is positive and is at most

max
{
12(1− k),12

}
.

Proof. Let vΠ be a vertex of Ψh, let f be an oriented edge of Ψh such that
f− = f+ = vΠ and f bounds a disk on Δ. It follows from the definition of
relations in (2.5) that if e1, e2 are h-edges of ∂Π, then either ϕ(e1), ϕ(e2) ∈
{h1, h2} or ϕ(e1), ϕ(e2) ∈ {h−1

1 , h−1
2 }. On the other hand, let Γ ∈ Ch be the

contiguity subdiagram that f passes through and let B denote the bond that
contains the connecting line �(Γ). If e3, e4 are h-edges of ∂B, then it follows
from the fact that f bounds a disk on Δ that ϕ(e3) = ϕ(e2)

−1, hence, the
inclusions e3, e4 ∈ ∂Π are impossible. Thus, there is no 1-gon in the partial
cell decomposition of Δ defined by Ψh.

Now assume that the property (B) fails for Ψh with parameter m= 3. This
means that there are three distinct edges f1, f2, f3 in Ψh such that

(f1)− = (f2)− = (f3)− = vΠ, (f1)+ = (f2)+ = (f3)+ = vΠ′ ,

where Π,Π′ are some faces of type F3 with h-edges, such that both paths
f1f

−1
2 , f2f

−1
3 bound disks on Δ whose interiors contain no vertices of Ψh.

Let fi be the extension of the connecting line �(Γi), where Γi ∈ Ch, i= 1,2,3,
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and s, s′ be h-sections of the faces Π,Π′, resp. Then it is not difficult to
check that either Γ1,Γ2 or Γ2,Γ3 are contained in a contiguity subdiagram
Γ between s and s′, contrary to the maximality of contiguity subdiagrams
Γ1,Γ2,Γ3. This contradiction proves that the property (B) holds for Ψh with
m= 3.

Consider those pairs {f, f ′} of oriented edges of Ψh for which the property
(B) with m= 2 fails. Note that the property (B) with m= 3 for Ψh implies
that every oriented edge e of Ψh is contained in at most one such pair {f, f ′}.
For each such pair {f, f ′}, we remove edges (f ′)±1 (or f±1) from Ψh. Doing

this results in a graph Ψ̂h which, as follows from definitions, has the property

(B) with m= 2. Therefore, Lemma 2.4 applies to Ψ̂h and yields that EΨ̂h
≤

3(VΨ̂h
−k), where VΨ̂h

,EΨ̂h
denote the number of vertices, nonoriented edges,

resp., in Ψ̂h. Note that VΨh
= VΨ̂h

and EΨh
≤ 2EΨ̂h

. Hence, EΨh
≤ 6(VΨh

−
k). If d is the minimal positive degree of a vertex in VΨh

, then it is easy to
see from definitions that d > 0 and dVΨh

≤ 2EΨh
. Thus, dVΨh

≤ 12(VΨh
− k)

and

d≤ 12

(
1− k

VΨh

)
≤max

{
12(1− k),12

}
,

as desired. �

4. Proofs of theorems

Proof of Theorem 1.1. First, we observe that the group G2, given by pre-
sentation (2.5), can also be presented by generators and relations in the fol-
lowing form

〈h1, h2 ‖ R̂1 = 1, R̂2 = 1, . . . , Ŵ1 = 1, Ŵ2 = 1, . . . 〉,(4.1)

where, for every possible i = 1,2, . . . , the defining words R̂i, Ŵi result from
rewriting of the words Ri, Wi(Xi), resp., of presentation (2.5) so that letters
aε1j1 , x

ε2
j2
, where aj1 ∈ A, xj2 ∈

⋃∞
i′=1Xi′ , ε1, ε2 = ±1, are replaced with the

words V ε1
2j1+1, V

ε2
2j2

over {h±1
1 , h±1

2 }, see (2.3).

Now we will show that the group G given by the presentation (1.1) naturally
embeds into the group G2 given by (2.5). Assume that U0 is a cyclically
reduced word over A±1 and U0 = 1 in G2. By Lemma 2.3, there is a disk
diagram Δ0 over (2.5) such that ϕ(∂Δ0)≡ U0. Without loss of generality, we
may assume that Δ0 is reduced. Note that a boundary path of Δ0 contains
no h-edges. If Δ0 contains no face of type F3 whose boundary path has h-
edges then, turning h-edges into 1-edges by relabeling, we may assume that
Δ0 contains no h-edges. Hence, we may suppose that Δ0 is a disk diagram
over the presentation (2.2). Then it follows from Lemmas 2.1, 2.3 that U0 = 1
in G. Thus, if U0 is not trivial in G, then Δ0 must contain a face of type F3
with h-edges. Therefore, Lemma 3.2 applies to Δ0 and yields the existence of
a vertex vΠ, where Π is a face of type F3 with h-edges, whose degree d in the
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graph Ψh is positive and is at most max{12(1−k),12}= 12 as k = χ(Δ0) = 1.
It follows from the definition of the graph Ψh and Lemmas 2.4, 3.1 that there
are d≤ 12 maximal contiguity subdiagrams Γ1, . . . ,Γd between an h-section q
of Π and some h-sections of Δ0 so that every edge of q is contained in exactly
one of the contiguity arcs Γi ∧ q, i= 1, . . . , d. Therefore, there is an index i∗

such that |Γi∗ ∧ q| ≥ 1
12 |q|. Since ∂Δ0 contains no h-edges, it follows that Γi∗

is a contiguity subdiagram between q and q′, where q′ is an h-section of a
face Π′. Denote qΠ := Γi∗ ∧ q and qΠ′ := Γi∗ ∧ q′. Since ϕ(qΠ)≡ ϕ(qΠ′)−1 and
|qΠ| ≥ 1

12 |q| >
4
M |q| as n ≥ 2 and M = 24n ≥ 48, it follows from Lemma 2.2

that ϕ(q)≡ ϕ(q′)−1. Hence, by the definition of relations in (2.5) and by the
definition of a contiguity subdiagram, we have that ϕ(∂Π) ≡ ϕ(∂Π′)−1 and
the faces Π, Π′ form a reducible pair. This contradiction to the fact that Δ0

is reduced proves that U0
G
= 1 and, therefore, G naturally embeds in G2, as

claimed. Let ν2 :G→G2 denote this embedding.
Consider a quadratic equation W = 1 over G of length �≤ n. We need to

prove that the equation W = 1 has a solution in the group G given by (1.1)
if and only if the equation ν2(W ) = 1 has a solution in the group G2 given by
(2.5).

First, assume that W = 1 has a solution in G. By Lemma 2.1, the equation
ν1(W ) = 1 has a solution in the group G1 given by (2.2). Since G naturally
embeds in G2, it follows from the definition of presentations (2.2), (2.5) that
there is a homomorphism G1 →G2 which is identical on G. Hence, we may
conclude that the equation ν2(W ) = 1 has a solution in the group G2, as
desired.

Conversely, suppose that the equation ν2(W ) = 1 has a solution in the
group G2. Our goal is to show that W = 1 has a solution in G. Let

W ≡ tε11 U1t
ε2
2 U2 . . . t

ε�
� U�,

where t1, . . . , t� ∈
⋃∞

i=1Xi, ε1, . . . , ε� ∈ {±1}, and U1, . . . ,U� are some reduced
or empty words over A±1. Since ν2(W ) = 1 has a solution in G2, there are
nonempty words T1, . . . , T� over the alphabet

⋃∞
i=1X±1

i ∪A±1 ∪{h±1
1 , h±1

2 ,1}
such that

T ε1
1 U1T

ε2
2 U2 . . . T

ε�
� U�

G2= 1.

Note that we would use the letter 1 for the trivial element of G2. By
Lemma 2.3, there is a disk diagram Δ over presentation (2.5) such that

ϕ(∂Δ)≡ T ε1
1 U1T

ε2
2 U2 . . . T

ε�
� U�.

Since W = 1 is a quadratic equation, there is a permutation

τ : {1, . . . , �}→ {1, . . . , �}
such that τ2 = 1, τ(i) = i and ti = tτ(i) for every i ∈ {1, . . . , �}. Hence, we may
assume that Ti ≡ Tτ(i) for every i ∈ {1, . . . , �}. Denote

∂Δ= rε11 u1r
ε2
2 u2 . . . r

ε�
� u�,
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where ri, ui are paths of ∂Δ±1 such that ϕ(ri) ≡ Ti, ϕ(ui) ≡ Ui for every

i= 1, . . . , �. Now we construct a surface diagram Δ̃ from Δ by attaching the

path ri to rτ(i) for every i= 1, . . . , �. Note that χ(Δ̃) = 1− �
2 and Δ̃ has k′

connected components in its boundary ∂Δ̃, 1≤ k′ ≤ �. Thus, Δ̃ is a surface
diagram of type (1− �

2 , k
′).

Let c1, . . . ck′ be connected components of ∂Δ̃. Note that each cj is a

product of some paths in the set {uδ1
1 , . . . , uδ�

� }, where δ1, . . . , δ� ∈ {±1}, and
each u

δj
j occurs in one of c1, . . . ck′ exactly once. If Δ̃ contains a reducible pair

of faces, then we remove this pair by the surgery described above and obtain a

surface diagram Δ̃′ with unchanged boundary paths and |Δ̃′
3(2)|= |Δ̃3(2)|−2,

where |Δ̃3(2)| is the number of faces of type F3 in Δ. It is not difficult to
check that there exists a disk diagram Δ′ such that

∂Δ′ =
(
r′1
)ε1

u′
1

(
r′2
)ε2

u′
2 . . .

(
r′�
)ε�u′

�,

where r′i, u
′
i are paths of ∂(Δ′)±1 such that ϕ(r′i) ≡ ϕ(r′τ(i)) ≡ T ′

i , ϕ(u′
i) ≡

ϕ(ui) for every i= 1, . . . , �. Moreover, the diagram Δ̃′ can be obtained from

Δ′ in the same manner as Δ̃ was obtained from Δ, in particular, |Δ̃′
3(2)| =

|Δ′
3(2)|. Hence, by induction on the number |Δ3(2)| of faces of type F3 in Δ,

we may assume that the surface diagram Δ̃ is reduced.

Suppose that Δ̃ contains no faces of type F3 with h-edges. Then Δ also has
this property, hence we can turn h-edges of Δ into 1-edges by relabeling and
obtain thereby a disk diagram Δ̄ from Δ with no h-edges. Such a diagram Δ̄
could be regarded as a diagram over presentation (2.2). The existence of such
Δ̄ over (2.2) means that the equation ν1(W ) = 1 has a solution in the group
G1 given by (2.2). By Lemma 2.1, the equation W = 1 has a solution in G, as
required.

Hence, we may assume that Δ contains faces of type F3 with h-edges.

Clearly, Δ̃ also has this property and we may consider the graph Ψh =Ψh(Δ̃)

on Δ̃ as defined before. Since ∂Δ̃ contains no h-edges, Lemma 3.2 applies to

the graph Ψh on Δ̃ and yields the existence of a vertex vΠ, where Π is a face

of Δ̃, whose positive degree is at most

max
{
12(1− k),12

}
=max{6�,12}= 6�≤ 6n

as �≥ 2. As above, it follows from the definition of the graph Ψh and Lem-
mas 2.4, 3.1 that there are d≤ 6n maximal contiguity subdiagrams Γ1, . . . ,Γd

between an h-section q of Π and some h-sections of Δ̃ so that every edge of
q is contained in exactly one of the contiguity arcs Γi ∧ q, i= 1, . . . , d. There-
fore, there is an index i∗ such that |Γi∗ ∧ q| ≥ 1

6n |q|. Let Γi∗ be a contiguity
subdiagram between q and q′, where q′ is an h-section of a face Π′. Denote
qΠ := Γi∗ ∧ q and qΠ′ := Γi∗ ∧ q′. Since ϕ(qΠ)≡ ϕ(qΠ′)−1 and |qΠ| ≥ 1

6n |q|=
4
M |q| as M = 24n, it follows from Lemma 2.2 that ϕ(q)≡ ϕ(q′)−1. Hence, by
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the definition of relations in (2.5) and by the definition of a contiguity subdi-
agram, we have that ϕ(∂Π)≡ ϕ(∂Π′)−1 and the faces Π, Π′ form a reducible

pair in Δ̃. This contradiction to the fact that Δ̃ is reduced proves that it is
impossible that Δ contains faces of type F3 with h-edges. Hence, the equation
W = 1 has a solution in G, as desired.

Thus, the group G2 has all of the required properties of the group H of the
statement of Theorem 1.1 and the proof of Theorem 1.1 is complete. �

Proof of Theorem 1.2. (a) Let W1 = 1,W2 = 1, . . . be the enumeration,
fixed in (2.1), of all quadratic equations over G such that, for every i ≥ 1,
|Wi|X ≤ n and Wi = 1 has a solution in G. Recall that the enumeration⋃∞

i=1Xi = {x1, x2, . . .} has the property that if xj ∈ Xk, xj′ ∈ Xk′ and k < k′

then j < j′. This property implies, for every Wi = 1, that if xk1 , . . . , xk�
are

the letters of
⋃∞

i=1Xi that appear in Wi(Xi)
±1, then k1, . . . , k� ≤ ni. Thus,

in view of the relations x−1
j V2j = 1 of the presentation (2.5), it follows that

(V2k1 , . . . , V2k�
) is a solution tuple to the equation ν2(Wi) = 1 over G2. Since

|Vk| ≤ (M(k+ 1) + 1)M and �≤ n, we further obtain that

�∑
j′=1

|V2kj′ | ≤ nM
(
M(2ni+ 1) + 1

)
≤ 3n2M2i=Cn4i,

where C = 3 · 242 as M = 24n.
(b) Since the presentation (1.1) of G is recursively enumerable, it follows

that the set of all words U over A±1 such that U
G
= 1 is also recursively

enumerable. More generally, we can analogously obtain that all quadratic
equations W = 1 over G of length ≤ n that have solutions in G can be recur-
sively enumerated. The last observation means that we can create a recursive
enumeration (2.1). Now we can use constructions of (2.5), (4.1) and see that
defining relations of the presentation (4.1) for G2 can be recursively enumer-
ated as well.

(c) The existence of an algorithm that detects whether a quadratic equation
W = 1 over G of length ≤ n has a solution enables us to effectively write down
all quadratic equations W = 1 over G of length ≤ n that have solutions in G.
Hence, we can effectively create an enumeration (2.1) and, using constructions

of (2.5), (4.1), write down all relations of the form Ŵ1 = 1, Ŵ2 = 1, . . . in the
presentation (4.1). Since the presentation (1.1) of G is decidable, we can

also effectively write down all relations of the form R̂1 = 1, R̂2 = 1, . . . in the
presentation (4.1). Hence, the presentation (4.1) is decidable. Since the map
ai → V2i+1, i= 1,2, . . . , extends to the embedding μn :G→H and the set of
defining relations of presentation (4.1) is recursive, we see that the embedding
μn :G→H can be effectively constructed. Theorem 1.2 is proven. �



EMBEDDING OF GROUPS AND QUADRATIC EQUATIONS OVER GROUPS 115

References

[1] L. P. Comerford and C. C. Edmunds, Quadratic equations over free groups and free

products, J. Algebra 68 (1981), 276–297. MR 0608536
[2] M. Culler, Using surfaces to solve equations in free groups, Topology 20 (1981), 133–

145. MR 0605653
[3] C. C. Edmunds, On the endomorphism problem for free groups, Comm. in Algebra 3

(1957), 1–20.
[4] C. C. Edmunds, On the endomorphism problem for free groups II, Proc. London Math.

Soc. 38 (1979), 153–168.
[5] E. V. Frenkel and A. A. Klyachko, Commutators cannot be proper powers in metric

small-cancellation torsion-free groups, http://arxiv.org/abs/1309.0571.
[6] G. Higman, B. H. Neumann and H. Neumann, Embedding theorems for groups, J.

London Math. Soc. 24 (1949), 247–254. MR 0032641
[7] S. V. Ivanov, The free Burnside groups of sufficiently large exponents, Internat. J.

Algebra Comp. 4 (1994), 1–308. MR 1283947
[8] O. Kharlampovich and A. Vdovina, Linear estimates for solutions of quadratic equa-

tions in free groups, Internat. J. Algebra Comp. 22 (2012), 1250004-1–1250004-16.

[9] R. C. Lyndon and P. E. Schupp, Combinatorial group theory, Springer-Verlag, 1977.
MR 0577064

[10] I. G. Lysenok and A. G. Myasnikov, A polynomial bound for solutions of quadratic
equations in free groups, Trud. Mat. Inst. Steklova 274 (2011), 148–190.

[11] A. Y. Ol’shanskii, Diagrams of homomorphisms of surface groups, Sibirsk. Mat. Zh.
30 (1989), 150–171. MR 1043443

[12] A. Y. Ol’shanskii, Geometry of defining relations in groups, Nauka, Moscow, 1989;
English translation: Math. and its applications, Soviet Series, vol. 70, Kluwer Acad.

Publ., 1991. MR 1191619
[13] A. Y. Ol’shanskii and M. V. Sapir, The conjugacy problem and Higman embeddings,

Memoirs Amer. Math. Soc. 170 (2004), 133 pp. MR 2052958

D. F. Cummins, Department of Mathematics, United States Military Academy,

West Point, NY 10996, USA

E-mail address: desmond.cummins@usma.edu

S. V. Ivanov, Department of Mathematics, University of Illinois, Urbana, IL

61801, USA

E-mail address: ivanov@illinois.edu

http://www.ams.org/mathscinet-getitem?mr=0608536
http://www.ams.org/mathscinet-getitem?mr=0605653
http://arxiv.org/abs/1309.0571
http://www.ams.org/mathscinet-getitem?mr=0032641
http://www.ams.org/mathscinet-getitem?mr=1283947
http://www.ams.org/mathscinet-getitem?mr=0577064
http://www.ams.org/mathscinet-getitem?mr=1043443
http://www.ams.org/mathscinet-getitem?mr=1191619
http://www.ams.org/mathscinet-getitem?mr=2052958
mailto:desmond.cummins@usma.edu
mailto:ivanov@illinois.edu

	Introduction
	Group presentations and diagrams
	Contiguity subdiagrams
	Proofs of theorems
	References
	Author's Addresses

