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A REFINEMENT OF ANALYTIC CHARACTERIZATIONS
OF GAUGEABILITY FOR GENERALIZED

FEYNMAN–KAC FUNCTIONALS

DAEHONG KIM, MILA KURNIAWATY AND KAZUHIRO KUWAE

Abstract. We relax the conditions for measures in our previous
paper [Analytic characterizations of gaugeability for generalized

Feynman–Kac functionals (2016) Preprint] on analytic character-
izations of (conditional) gaugeability for generalized Feynman–
Kac functionals in the framework of symmetric Markov processes.

The analytic characterization is also equivalent to the maximum

principle for generalized Feynman–Kac semigroups, extending

the result by Takeda [The bottom of the spectrum of time-
changed processes and the maximum principle of Schrödinger
operators (2015) Preprint].

1. Introduction

In this paper, we relax the conditions for measures in [26, Theorems 1.1
and 1.2] on analytic characterizations of gaugeability or conditional gaugeabil-
ity for generalized Feynman–Kac functionals in the framework of symmetric
Markov processes. For this, let us state the framework of this paper. Let E
be a locally compact separable metric space and m a positive Radon measure
on E with full topological support. Let X= (Ω,F∞,Ft,Xt,Px, x ∈E∂) be an
m-symmetric transient Hunt process on E with lifetime ζ := inf{t > 0|Xt = ∂}.
We assume that X satisfies the irreducibility condition (I) and the abso-
lute continuity condition (AC) (see Section 2 for the definitions). Then
we can consider the Green function R(x, y) of X defined on E × E. We
set d := {(x, y) ∈ E × E|R(x, y) = 0 or ∞} the diagonal set with respect
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to X and Ex := {y ∈ E|(x, y) ∈ (E × E) \ d}. Given an additive functional
A of X, the expectation gA(x) := Ex[eA(ζ)] (resp. conditional expectation
gyA(x) :=Ey

x[eA(ζ
y)]) of the Feynman–Kac transform eA(t) := exp(At) is called

the gauge function (resp. the conditional gauge function, where Py
x denotes

the probability of Doob’s R(·, y)-transformed process starting from x ∈E).
In a series of papers, Chen and Song [9], [10] and Chen [4] have made re-

markable progress in establishing the gauge and conditional gauge theorems
for A under quite general hypotheses on X and A (in their papers, X is not
necessarily symmetric). The gauge theorem asserts that under suitable con-
ditions on X and A, the gauge function gA is either identically infinite or
bounded on E. If the latter happens, (X,A) is said to be gaugeable. It is
known that the conditional gauge theorem is related to the gauge theorem
but is much deeper. The conditional gauge theorem asserts that under suit-
able conditions on X and A, the conditional gauge function (x, y) �→ gyA(x)
is either identically infinite or bounded between two positive constants. If
the latter happens, (X,A) is said to be conditionally gaugeable and in this
case, the Green function RA(x, y) of the Feynman–Kac transformed process
XA of X by eA(t) and R(x, y) are comparable. So the infinitesimal genera-
tors of XA and X share many potential theoretic properties. In this sense,
it is important to know when (X,A) is conditionally gaugeable. Chen [4]
introduced new classes of Kato class measures as genuine extensions of the
Green-tight measure introduced by Zhao [45] and established various equiva-
lent conditions for gaugeability and conditional gaugeability for a large class
of processes and additive functionals related to possibly singular measures.
In [26], the first and third authors introduced more natural (extended) Kato
classes of (semi-)Green-tight measures including the (semi-)Green-tight mea-
sures of (extended) Kato class introduced by Chen [4]. These classes are
stable under Girsanov transforms in some sense, which enables us to prove
[26, Theorem 1.1]. In this paper, we also prove that the new class of Green-
tight measures of Kato class coincides with the class given by Chen [4] under
the doubly resolvent Feller property (see Proposition 4.1).

Analytic characterizations of the gaugeability and conditional gaugeability
for (X,A) have been studied by several authors. In the case of Brownian
motion in R

d, Zhao [45] introduced a so-called shuttle operator and showed
that (X,A) is conditionally gaugeable if and only if the spectral bound of
the shuttle operator is less than one. For more general symmetric Markov
processes, Takeda [37] (resp. Chen [4]) gave an analytic characterization for
a positive continuous additive functional (resp. a continuous additive func-
tional) A associated with a positive smooth measure (resp. a signed smooth
measure) by using the Lp-independence of the spectral bound of X based on
a large deviation principle (resp. a conditional gauge theorem) and later, this
characterization was extended to non-local cases by Chen [5]. These analytic
characterizations are not only useful in confirming whether (X,A) is gaugeable
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or conditionally gaugeable in many concrete cases, they are also applicable in
studying subcriticality of Schrödinger operators, differentiability of spectral
functions, stability of heat kernels under Feynman–Kac perturbations and
certain penalization problems (see [37], [38], [40], [39], [43], [44]).

Now we give a detailed description of the results with necessary notations.
Let μ1 (resp. μ2) be smooth measures in the strict sense corresponding to a
positive continuous additive functional Aμ1 (resp. Aμ2) in the strict sense with
respect to X and let μ := μ1 − μ2 be the signed smooth measure in the strict
sense. We denote A by Aμ := Aμ1 − Aμ2 to emphasize the correspondence
between μ and A. Let (E ,F) be the Dirichlet form of X on L2(E;m). For
a bounded finely continuous (nearly) Borel function u on E which is strictly
E -quasi-continuous on E∂ and locally in F , let Nu be the continuous additive
functional of zero quadratic variation appeared in the Fukushima decomposi-
tion of u(Xt)−u(X0) (see (2.2)). Note that Nu is not necessarily of bounded
variation in general. Let F1, F2 be non-negative bounded functions on E×E∂

which are symmetric on E×E. F1 and F2 are extended to E∂ ×E∂ by setting
Fi(∂,x) = Fi(x,∂) = Fi(x,x) = 0 for x ∈E∂ for each i= 1,2 (actually there is
no need to define the value Fi(∂,x) for x ∈E, i= 1,2). We set F := F1 −F2.
Then AF

t :=
∑

0<s≤tF (Xs−,Xs) (whenever it is summable) is an additive
functional of X. It is natural to consider the following generalized non-local
Feynman–Kac transforms by the additive functionals A :=Nu +Aμ +AF of
the form

eA(t) := exp(At), t≥ 0,(1.1)

because the process X admits many continuous additive functionals which
do not have bounded variations, and many discontinuous additive function-
als. The purpose of this paper is to give analytic characterizations of the
gaugeability and (semi-)conditional gaugeability for the generalized Feynman–
Kac transforms (1.1) which extend almost all the results in [5], [37], [44]. In
particular, our result improves the previous work due to Chen [5] even if
we restrict ourselves to deal with only non-local perturbations. More pre-
cisely, let Q be the quadratic form associated with the symmetric semigroup
PA
t f(x) :=Ex[eA(t)f(Xt)] (see [13]), which is defined by

Q(f, g) := E(f, g) + E(u, fg)−H(f, g),(1.2)

where

E(u, fg) := 1

2

∫
E

f dμ〈u,g〉 +
1

2

∫
E

g dμ〈u,f〉,

H(f, g) :=

∫
E

f(x)g(x)μ(dx) +

∫
E

∫
E

f(x)g(y)
(
eF (x,y) − 1

)
N(x,dy)μH(dx).

Q(f, g) is well-defined for f, g ∈ F provided μ1+N(F1)μH+μ〈u〉 ∈ S1
D(X) and

μ2 + N(F2)μH ∈ S1
D(X) and is bounded from below on L2(E;m) provided

μ1 + N(eF1 − 1)μH ∈ S1
EK(X), μ〈u〉 ∈ S1

K(X) and μ2 + N(F2)μH ∈ S1
D(X).
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Here S1
EK(X) (resp. S1

K(X)) denotes the class of smooth measures in the
strict sense of extended Kato class (resp. Kato class) with respect to X.

For a positive Radon measure η on E, let λQ(η) be the bottom of the
spectrum for Q on L2(E;η) defined by

λQ(η) := inf

{
Q(f, f)

∣∣∣f ∈ C,
∫
E

f2 dη = 1

}
,(1.3)

where C is the special standard core of (E ,F) (see [19]). Let S1
NK∞

(X)

(resp. S1
NK1

(X)) be the family of natural Green-tight measures of Kato class
(resp. natural semi-Green-tight measures of extended Kato class) with re-
spect to X and S1

D0
(X) the family of Green-bounded smooth measures with

respect to X (see Section 4 for the definitions of these families). Let (N,H)
be the Lévy system of X. We set μ̄1 := μ1+N(eF

u −Fu− 1+F1)μH + 1
2μ

c
〈u〉

and μ̄∗
1 := μ1 +N(eF

u
1 −Fu

1 − 1+F1)μH + 1
2μ

c
〈u〉, where Fu(x, y) := F (x, y)+

U(x, y), Fu
1 (x, y) := F1(x, y)+U(x, y) and U(x, y) = u(x)−u(y) for x, y ∈E∂ ,

and μc
〈u〉 is the continuous part of the energy measure of u.

The first main result of this paper is the following:

Theorem 1.1. Suppose that μ̄∗
1 ∈ S1

NK1
(X), μ〈u〉 ∈ S1

NK∞
(X) and μ2 +

N(F2)μH ∈ S1
D0

(X) hold. Then λQ(μ̄1)> 0 if and only if the functional (1.1)
is gaugeable, i.e., supx∈E Ex[eA(ζ)]<∞.

Remark 1.1. Note that the condition μ̄∗
1 ∈ S1

NK1
(X) is equivalent to μ1 +

N(eU (eF1 − 1))μH ∈ S1
NK1

(X) under μ〈u〉 ∈ S1
NK∞

(X). In [26, Theorem 1.1],
we obtain the same conclusion of our Theorem 1.1 under the conditions μ1 ∈
S1
NK1

(X), μ〈u〉 + N(F1)μH ∈ S1
NK∞

(X) and μ2 + N(F2)μH ∈ S1
D0

(X). Our
conditions for measures in Theorem 1.1 are milder than them.

Let us denote by S1
CK∞

(X) (resp. S1
CK1

(X)) the family of Green-tight
measures of Kato class (resp. semi-Green-tight measures of extended Kato
class) in the sense of [4] with respect to X. Since S1

CK∞
(X)⊂ S1

NK∞
(X) and

S1
CK1

(X)⊂ S1
NK1

(X) (see the remark after Definition 4.2 below), Theorem 1.1
extends [37, Theorem 2.4] (resp. [4, Theorem 5.2] and [5, Theorem 3.4]), in
which the case u= 0 on E and F = 0 on E×E (resp. u= 0 on E) was treated.

As an application of Theorem 1.1, we prove that the analytic characteriza-
tion of gaugeability is equivalent to the maximum principle for the generalized
Feynman–Kac semigroup under suitable conditions for measures in the frame-
work of resolvent strong Feller symmetric Hunt processes (see Theorems 7.2
and 7.1).

Now let us state the second main result. Let S1
CS∞

(X) (resp. S1
CS1

(X))
be the family of conditionally Green-tight measures of Kato class (resp. con-
ditionally semi-Green-tight measures of extended Kato class) in the sense
of [4] with respect to X, S1

DS0
(X) (resp. A1

DS0
(X)) the family of condition-

ally Green-bounded smooth measures in the sense of [4] with respect to X
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(resp. the family of conditionally Green-bounded jump functions with respect
to X), B1

DS0
(X) := S1

DS0
(X) × A1

DS0
(X) the family of the pairs of elements

in S1
DS0

(X) and A1
DS0

(X), and B1
CS∞

(X) (resp. B1
CS1

(X)) the family of the
pairs of conditionally Green-tight measures of Kato class and conditionally
Green-tight jump functions (resp. the family of the pair of conditionally semi-
Green-tight measures of extended Kato class and conditionally semi-Green-
tight jump functions) with respect to X (see Section 6 for the definitions).
Let RA(x, y) be the Green kernel of PA

t defined by RA(x, y) =
∫∞
0

PA
t (x, y)dt,

where PA
t (x, y) is the integral kernel of PA

t .
The second main result of this paper is the following theorem.

Theorem 1.2. Assume μ̄∗
1 ∈ S1

CS1
(X), μ〈u〉 ∈ S1

CS∞
(X) and μ2 +

N(F2)μH ∈ S1
DS0

(X). Then the following are equivalent:

(1) The functional (1.1) is semi-conditionally gaugeable, that is, for each
y ∈E

sup
x∈Ey

Ey
x

[
eA
(
ζy
)]

<∞.

(2) For each x ∈E, RA(x, y)<∞ for m-a.e. y ∈Ex.
(3) RA(x, y)<∞ for any (x, y) ∈ (E ×E) \ d.
(4) For each y ∈E, there exists C > 0 depending only on y such that for any

x ∈Ey C−1R(x, y)≤RA(x, y)≤CR(x, y).
(5) λQ(μ̄1)> 0.
(6) The functional (1.1) is gaugeable, that is, supx∈E Ex[eA(ζ)]<∞.

Furthermore, if u = 0 and (μ1, e
F1 − 1) ∈ B1

CS1
(X), or (μ1 + μ〈u〉, F1) ∈

B1
CS∞

(X) and there exists C > 0 such that

C−1R(x, y)≤RU (x, y)≤CR(x, y) for all (x, y) ∈ (E ×E) \ d,(1.4)

then (1)–(6) are equivalent to (7):

(7) The functional (1.1) is conditionally gaugeable, that is,

sup
(x,y)∈(E×E)\d

Ey
x

[
eA
(
ζy
)]

<∞.

Suppose further (μ2, F2) ∈ B1
DS0

(X). Moreover, if u = 0 and (μ1, e
F1 − 1) ∈

B1
CS1

(X), or (μ1 + μ〈u〉, F1) ∈ B1
CS∞

(X) with (1.4) holding for some C > 0,
then (1)–(7) are equivalent to (8):

(8) There exists C > 0 independent of x, y such that

C−1R(x, y)≤RA(x, y)≤CR(x, y)(1.5)

holds for all (x, y) ∈ (E ×E) \ d.
Here RU (x, y) is the Green kernel of the Girsanov transformed process by a
multiplicative functional Ut defined in (3.5) below.
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Remark 1.2. Note that the condition μ̄∗
1 ∈ S1

CS1
(X) is equivalent to μ1 +

N(eU (eF1 − 1))μH ∈ S1
CS1

(X) under μ〈u〉 ∈ S1
CS∞

(X). In [26, Theorem 1.2],
we obtain the same conclusion of our Theorem 1.2 under the conditions μ1 ∈
S1
CS1

(X), μ〈u〉 + N(F1)μH ∈ S1
CS∞

(X) and μ2 + N(F2)μH ∈ S1
DS0

(X). Our
conditions in Theorem 1.2 are milder than them.

If u= 0 on E and F1 = 0 on E ×E, then (1.4) is satisfied with RU (x, y) =
R(x, y) for x, y ∈ E and (μ1, e

F1 − 1) ∈ B1
CS1

(X) (resp. (μ1, F1) ∈ B1
CS∞

(X))

for μ1 ∈ S1
CS1

(X) (resp. μ1 ∈ S1
CS∞

(X)). Thus, Theorem 1.2 covers [4, Theo-

rem 5.3] and [37, Theorem 3.9]. If u= 0 on E and F1 ∈ A1
CS∞

(X) (see Def-

inition 6.2 below for the definition on A1
CS∞

(X), and Proposition 6.1), then

(μ1, e
F1 − 1) ∈B1

CS1
(X) for μ1 ∈ S1

CS1
(X). So Theorem 1.2 under u= 0 with

(μ1, e
F1 − 1) ∈ B1

CS1
(X) extends [4, Theorem 3.10] and [5, Theorems 2.1(3)

and 3.4]. For general bounded u and F satisfying the conditions in Theo-
rem 1.2, (1.4) is satisfied provided X is a symmetric diffusion process on R

d

with uniform elliptic condition, symmetric stable-like process, or symmetric
relativistic stable-like process.

We emphasize that the relaxation of the conditions for measures of the non-
local part in the creation is significant even in the case u= 0. This relaxation
has not been treated in the previous literature. Theorem 1.1 will be applied
to prove the stability of heat kernel estimates for generalized Feynman–Kac
semigroup in [25, Theorem 1.1]. The relaxation of the conditions for measures
of the non-local part in the creation in Theorem 1.1 is effectively used in the
proof of [25, Theorem 1.1(1)].

The basic strategy in obtaining Theorem 1.1 is to decompose the proce-
dure into several steps which is similar to the proof of [26, Theorem 1.1].
However, due to the relaxed conditions for measures, we need to modify the
proof of [26, Theorem 1.1]: First, we extend the results on the analytic char-
acterization for local Feynman–Kac transforms developed by [4], [37] in terms
of natural Green-tight measures of Kato class and natural semi-Green-tight
measures of extended Kato class introduced in Definition 4.2 extending the
notion introduced by Chen [4] (Lemmas 4.2, 4.3 and Theorem 4.2). We con-
sider a Girsanov transformed process U originally introduced by [12] and
the analytic characterization for Feynman–Kac functional over the Girsanov
transformed process extending [4]. We prove that our analytic characteriza-
tion implies the gaugeability for (1.1) (Proposition 5.1). Here we use that any
ν ∈ S1

NK1
(X(1)) implies e−2uν ∈ S1

NK1
(U(1)), where X(1) (resp. U(1)) is the

1-subprocess of X (resp. U) (see Lemma 4.1(7) below). This plays a crucial
role in our arguments, because S1

CK1
(X), the family of semi-Green-tight mea-

sures of extended Kato class in the sense of [4], may not be stable under the
Girsanov transform even if we consider the 1-subprocess of the transformed
process. As a consequence of Proposition 5.1, we have a super gauge theorem
for our Feynman–Kac functional (Proposition 5.2), which yields the stability
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of natural (semi-)Green-tightness of (extended) Kato class under the Girsanov
transform (Lemma 5.2 and Corollary 5.1). Second, using Corollary 5.1, we
prove the assertion of Theorem 1.1

As a consequence of Theorem 1.1, we can obtain the equivalence among
gaugeability, semi-conditional gaugeability and subcriticality (the first part of
Theorem 1.2). The equivalence between gaugeability and subcriticality has
been shown to hold by way of the conditional gaugeability of Feynman–Kac
functionals. The first part of Theorem 1.2 shows that there is no need to use
the conditional gaugeability to deduce the subcriticality. We also give the
equivalence among gaugeability, conditional gaugeability and comparison of
Green kernel under (1.4) (the second part of Theorem 1.2). Theorems 1.1
and 1.2 generalize most of the previous known results developed by Chen–
Song [9], [10], Chen [4], [5] and Takeda [37] for symmetric Markov processes.
We remark that the result in [24] together with Theorems 1.1 and 1.2 com-
pletely generalizes their results in the framework of symmetric Markov pro-
cesses.

The remainder of the paper is organized as follows. In Section 2, we ex-
plain some basic assumptions on X and give the definitions of Dynkin and
(extended) Kato classes, including a review of several facts from [4], [9], [10],
[44]. In Section 3, we study the Girsanov transform induced by the Doléans-
Dade exponential martingale relative to u and F , and identify the Dirichlet
form associated with the transformed process. In Section 4, we give the defini-
tions of Green-bounded measures, (semi-)Green-tight measures of (extended)
Kato class in the sense of [4] and the classes of smooth measures of natural
(semi-)Green-tight measures of (extended) Kato class and review several re-
sults from [26]. We prove that the family of Green-tight measures of Kato class
in the sense of [4] coincides with the family of natural Green-tight measures
of Kato class under the doubly Feller property of resolvent (Proposition 4.1).
For later use in Section 7, we prove that several preliminary results for gauge-
ability in [4, Lemmas 2.7, 2.14, Theorems 2.8, 2.15, Corollaries 2.9, 2.16 and
Theorems 2.10, 2.11] can be extended under more relaxed conditions for mea-
sures when u = 0. In Section 5, we prove Theorem 1.1. In Section 6, we
give the definitions of semi-conditionally Green-bounded measures and semi-
conditionally (semi-)Green-tight measures of (extended) Kato class and prove
Theorem 1.2, the equivalence among gaugeability, semi-conditional (or con-
ditional) gaugeability and subcriticality under the conditional (semi-)Green-
tightness of the related measures with some condition. In Section 7, we prove
that the analytic characterization of gaugeability is equivalent to the maxi-
mum principle for the generalized Feynman–Kac functional under mild condi-
tions for measures and the resolvent strong Feller property, in particular, the
analytic characterization of gaugeability yields the Liouville property (Theo-
rem 7.1 and Corollary 7.1). Moreover, under the transience of X, the same
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assertion remains valid (Theorem 7.2 and Corollary 7.2). These generalize the
recent results by Takeda [42].

We use the following notations: For a, b ∈ R, a ∨ b := max{a, b}, a ∧ b :=
min{a, b}.

2. Preliminary

Let E be a locally compact separable metric space and m a positive Radon
measure on E with full topological support. Let ∂ be a point added to E so
that E∂ :=E ∪ {∂} is the one-point compactification of E. The point ∂ also
serves as the cemetery point for E. Let X= (Ω,F∞,Ft,Xt,Px, x ∈E∂) be an
m-symmetric transient Hunt process on E with lifetime ζ := inf{t > 0|Xt =
∂} and (E ,F) the associated symmetric Dirichlet form which is regular on
L2(E;m). We say that (E ,F) (or X) is irreducible ((I) in abbreviation) if
any (Tt)t>0-invariant set B satisfies m(B) = 0 or m(Bc) = 0. Here (Tt)t>0 is
the strongly continuous semigroup on L2(E;m) associated with (E ,F). The
transition kernel of X is denoted by Pt(x,dy), t > 0. The correspondence
between X and (E ,F) is given by

Ttf(x) =Ex

[
f(Xt) : t < ζ

]
:=

∫
E

f(y)Pt(x,dy) m-a.e. x ∈E, t > 0.

(Here and in the sequel, unless mentioned otherwise, we use the convention
that a function defined on E takes the value 0 at ∂.) The process X is
said to satisfy the absolute continuity condition with respect to m ((AC) in
abbreviation) if for any x ∈E and t > 0, m(A) = 0 implies Pt(x,A) = 0 for all
A ∈B(E). Throughout this paper, X is assumed to satisfy both (I) and (AC).
For α > 0, there exists an α-order resolvent kernel Rα(x, y) which is defined
for all x, y ∈E (see Lemma 4.2.4 in [19]). Since α �→Rα(x, y) is decreasing for
each x, y ∈E, we can define the 0-order resolvent kernel R(x, y) :=R0(x, y) :=
limα→0Rα(x, y). R(x, y) is called the Green function of X. For a non-negative
Borel measure ν, we write Rαν(x) :=

∫
E
Rα(x, y)ν(dy) and Rν(x) :=R0ν(x).

Note that Rαf(x) =Rα(fm)(x) for any f ∈B+(E) or f ∈Bb(E). The space of
bounded continuous functions on E will be denoted as Cb(E). The process X
is said to satisfy the resolvent strong Feller property ((RSF) in abbreviation)
if Rα(Bb(E))⊂Cb(E) for any α > 0.

Let S1(X) be the family of positive smooth measures in the strict sense [19].
A measure ν ∈ S1(X) is said to be in the Dynkin class (resp. Green-bounded)
of X if supx∈E Rαν(x)<∞ for some α > 0 (resp. supx∈E Rν(x)<∞). A mea-
sure ν ∈ S1(X) is said to be in the Kato class (resp. extended Kato class) with
respect to X if limα→∞ supx∈E Rαν(x) = 0 (resp. < 1). A measure ν ∈ S1(X)
is said to be in the local Kato class if for any compact subset K of E, 1Kν is of
Kato class. Denote by S1

D(X) (resp. S1
D0

(X)) the family of measures of Dynkin

class (resp. Green-bounded), and by S1
K(X) (resp. S1

EK(X), S1
LK(X)) the fam-

ily of measures of Kato class (resp. extended Kato class, local Kato class).
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Clearly, S1
K(X)⊂ S1

EK(X)⊂ S1
D(X), S1

K(X)⊂ S1
LK(X) and S1

D0
(X)⊂ S1

D(X).

In view of Theorem 3.1 in [36], any ν ∈ S1
D(X), in particular any ν ∈ S1

D0
(X),

is a Radon measure on E, because of the regularity of the Dirichlet form. We
say that a positive continuous additive functional (PCAF in abbreviation) in
the strict sense Aν of X and a positive measure ν ∈ S1(X) are in the Revuz
correspondence if they satisfy for any t > 0, f ∈B+(E),∫

E

f(x)ν(dx) =↑ lim
t↓0

1

t
Em

[∫ t

0

f(Xs)dA
ν
s

]
.

It is known that the family of equivalence classes of the set of PCAFs in the
strict sense and the family of positive measures belonging to S1(X) are in one
to one correspondence under the Revuz correspondence ([19, Theorem 5.1.4]).

An increasing sequence {Fk} of closed sets is said to be an E-nest if

Px

(
lim
k→∞

σE\Fk
≥ ζ
)
= 1 m-a.e. x ∈E.

A function f on E is said to be E -quasi-continuous if there exists an E-nest
such that f |Fk

is continuous for each k ∈ N. Let (E ,Fe) be the extended
Dirichlet space of (E ,F) (see [19] for the definition). Any element f ∈ Fe

admits an E -quasi-continuous m-version f̃ (see [19]). Throughout this paper,
we always take an E -quasi-continuous m-version of the element of Fe, that
is, we omit tilde from f̃ for f ∈ Fe. Let (N(x,dy),Ht) be a Lévy system
for X, that is, N(x,dy) is a kernel on (E∂ ,B(E∂)) and Ht is a PCAF with
bounded 1-potential such that for any nonnegative Borel function φ on E∂ ×
E∂ vanishing on the diagonal and any x ∈ E∂ , nonnegative Borel function g
on [0,∞[ and (Ft)-stopping time T ,

Ex

[∑
s≤T

g(s)φ(Xs−,Xs)

]
=Ex

[∫ T

0

∫
E∂

g(s)φ(Xs, y)N(Xs,dy)dHs

]
(2.1)

(see [7, A.3.33]). To simplify notation, we will write

Nφ(x) :=

∫
E∂

φ(x, y)N(x,dy).

Let μH be the Revuz measure of the PCAF H . Then the jumping measure
J and the killing measure κ of X are given by

J(dxdy) =
1

2
N(x,dy)μH(dx) and κ(dx) =N

(
x,{∂}

)
μH(dx).

These measures feature in the Beurling–Deny decomposition of E :

E(f, g) = Ec(f, g) +

∫
(E×E)\diag

(
f(x)− f(y)

)(
g(x)− g(y)

)
J(dxdy)

+

∫
E

f(x)g(x)κ(dx)

for f, g ∈ Fe. Here Ec is the strongly local part of E .
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A function f on E is said to be locally in F in the broad sense if there
exists a nest {Gn} of finely open (nearly) Borel sets and a sequence {fn}
of elements in F such that f = fn m-a.e. on Gn. Let Ḟloc be the family of
functions on E locally in F in the broad sense. It is known that any f ∈ Ḟloc

admits E -quasi-continuous m-version.
An increasing sequence {Fk} of closed sets is said to be a strict E-nest

if Px(limk→∞ σE\Fk
= ∞) = 1 m-a.e. x ∈ E. A function f defined on E∂

is said to be strictly E-quasi-continuous if there exists a strict E -nest {Fk}
of closed sets such that f |Fk∪{∂} is continuous for each k ∈ N. Denote by
QC (E∂) the totality of strictly E -quasi-continuous functions on E∂ . To the
end of this section, we consider a bounded finely continuous (nearly) Borel

function u ∈ Ḟloc ∩QC (E∂) satisfying μ〈u〉 ∈ S1
D(X). In [27, Theorem 6.2(2)],

we proved that the additive functional u(Xt) − u(X0) admits the following
strict decomposition:

u(Xt)− u(X0) =Mu
t +Nu

t , t ∈ [0,∞[ Px-a.s. for all x ∈E,(2.2)

where Mu is a square integrable martingale additive functional in the strict
sense, and Nu is a continuous additive functional (CAF in abbreviation) in
the strict sense which is locally of zero energy. Mu can be decomposed as

Mu
t =Mu,c

t +Mu,j
t +Mu,κ

t ,(2.3)

where Mu,j
t , Mu,κ

t and Mu,c
t are the jumping, killing and continuous part

of Mu, respectively. Those are defined Px-a.s. for all x ∈ E by [27, Theo-
rem 6.2(2)]. The strict decompositions (2.2) and (2.3) on [0,∞[ guarantee the
extension of the supermartingale multiplicative functional Yt on [[0, ζ[[ up to

[0,∞[ (see Proposition 3.1 below). Let μ〈u〉, μ
c
〈u〉, μ

j
〈u〉 and μκ

〈u〉 be the smooth

Revuz measures in the strict sense associated with the quadratic variational
processes (or the sharp bracket PCAFs in the strict sense) 〈Mu〉, 〈Mu,c〉,
〈Mu,j〉 and 〈Mu,κ〉, respectively. Then

μ〈u〉(dx) = μc
〈u〉(dx) + μj

〈u〉(dx) + μκ
〈u〉(dx).

Note that E(f, f) = 1
2ν〈f〉(E) with ν〈f〉 := μc

〈f〉+μj
〈f〉+2μκ

〈f〉 provided f ∈ Fe.

Let ν1 (resp. ν2) be a positive (resp. signed) Radon measure on E. Let
(A,D(A)) be a lower bounded closed symmetric form on L2(E;m) having core
C satisfying (C,1), (C,2) in [19] such that the perturbed form (Aν2 ,C) defined
by Aν2(f, g) =A(f, g) +

∫
E
fg dν2, f, g ∈ C is also lower bounded. We set

λ(ν2, ν1) := inf

{
Aν2(f, f)

∣∣∣f ∈ C,
∫
E

f2 dν1 = 1

}
.

Then we have the following lemma due to Takeda–Uemura [44].
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Lemma 2.1 (cf. Lemma 3.1 in [44]). Let ν be another positive Radon mea-
sure on E. Then λ(ν2 + ν, ν1 + ν) > 1 implies λ(ν2, ν1) > 1. Suppose that
λ(ν2, ν)> 0. Then the converse assertion holds.

Remark 2.1. Lemma 3.1 in [44] is stated in the framework of rotationally
symmetric α-stable processes, and ν2 = μ− and ν1 = μ+ are the negative and
positive parts in the Jordan–Hahn decomposition of the signed smooth Radon
measure μ. However, its proof remains valid in this generality.

3. Girsanov transforms

Let F be a bounded symmetric function on E ×E, which is extended to a
function F defined on E∂ ×E∂ by setting F (x,∂) = F (∂,x) = F (x,x) = 0 for
x ∈ E∂ (actually there is no need to define the value F (∂, y) for y ∈ E). Set
F+ := F ∨ 0 and F− := (−F ) ∨ 0. We say that F := F+ − F− is in the class
J1(X) (resp. J1

D(X) and J1
D0

(X)) if N(|F |)μH belongs to S1(X) (resp. S1
D(X)

and S1
D0

(X)), where |F | = F+ + F−. Any such an F has an expression of
the form F = F1 − F2, where each Fi (i = 1,2) is a symmetric nonnegative
bounded function on E∂ × E∂ vanishing on the diagonal set of E∂ × E∂ .
Indeed, for any nonnegative symmetric bounded φ having the same property
as F , F1 := F+ + φ and F2 := F− + φ have these properties. Note that if
F1 + F2 ∈ J1(X) (resp. J1

D(X) and J1
D0

(X)), then F ∈ J1(X) (resp. J1
D(X)

and J1
D0

(X)). In this case, the following AF can be defined as an additive
functional in the strict sense:

AF
t =AF1

t −AF2
t , AFi

t :=
∑

0<s≤t

Fi(Xs−,Xs) (i= 1,2).

Note that AF
t =

∑
0<s≤t 1{s<ζ}F (Xs−,Xs), since F (x,∂) = 0 for x ∈E∂ . For

a bounded finely continuous (nearly) Borel function u ∈ Floc ∩QC (E∂) satis-
fying μ〈u〉 ∈ S1(X) and such F ∈ J1(X), we set

Fu(x, y) := F (x, y) +
{
−u(y)−

(
−u(x)

)}
= F (x, y) + u(x)− u(y)

and Gu = eF
u − 1 with identifying F 0 = F and G0 =G := eF − 1. Since

(3.1)
∣∣Fu(x, y)

∣∣2 ≤ 2‖F‖∞
∣∣F (x, y)

∣∣+ 2
(
u(x)− u(y)

)2
,

one can see that the relation N(|Fu|2)μH ≤ 2‖F‖∞N(|F |)μH + μ〈u〉 implies

(Fu)2 ∈ J1(X). So there exists a purely discontinuous locally square inte-
grable local martingale additive functional MFu

on [[0, ζ[[ such that ΔMFu

t =
Fu(Xt−,Xt), t ∈ [0, ζ[ Px-a.s. for all x ∈ E (see the proof of Lemma 3.2(i)
in [13]). Moreover, MFu

t is given by

(3.2) MFu

t =MF
t +M−u,j

t +M−u,κ
t ,
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where

MF
t =

∑
0<s≤t

F (Xs−,Xs)−
∫ t

0

N(F )(Xs)dHs, t < ζ.

On the other hand, since |ez − z − 1| ≤ 1
2e

|z||z|2, the relations

(3.3)
∣∣Gu(x, y)− Fu(x, y)

∣∣≤ 1

2
e‖F

u‖∞
∣∣Fu(x, y)

∣∣2
and ∣∣Gu(x, y)

∣∣2 ≤ (‖Fu‖∞e|F
u(x,y)|

2

∣∣Fu(x, y)
∣∣+ ∣∣Fu(x, y)

∣∣)2

≤
(
‖Fu‖∞e‖F

u‖∞

2
+ 1

)2∣∣Fu(x, y)
∣∣2

imply Gu − Fu ∈ J1(X) and (Gu)2 ∈ J1(X) respectively, because (Fu)2 ∈
J1(X). Similarly, we have G− F ∈ J1(X) and G2 ∈ J1(X). Therefore, there
also exists a purely discontinuous locally square integrable local martingale
additive functional MGu

such that ΔMGu

t =Gu(Xt−,Xt), t ∈ [0, ζ[ Px-a.s. for
all x ∈E. MGu

t is given by

MGu

t =MFu

t +
∑

0<s≤t

(
Gu − Fu

)
(Xs−,Xs)

−
∫ t

0

N
(
Gu − Fu

)
(Xs)dHs, t < ζ.

Put Mt :=MGu

t +M−u,c
t and let

Yt := Exp(M)t, t < ζ

be the solution of the SDE

Yt = 1+

∫ t

0

Ys− dMs, t < ζ,Px-a.s.

Note that Yt is positive and a local martingale on [[0, ζ[[. Therefore it is a
supermartingale on [[0, ζ[[. In particular, Yt1{t<ζ} is a supermartingale with
Ex[Yt1{t<ζ}]≤ 1 for all x ∈E. It is inconvenient to treat additive functionals
on [[0, ζ[[ for our purpose. We need a sufficient condition for Yt to be defined
for all t ∈ [0,∞[.

Proposition 3.1 (Proposition 3.1 in [26]). Assume that F ∈ J1
D(X) and

u ∈ Ḟloc ∩QC (E∂) is a bounded finely continuous (nearly) Borel function sat-
isfying μ〈u〉 ∈ S1

D(X). Then Yt can be regarded to be a supermartingale mul-
tiplicative functional defined for all t ∈ [0,∞[ Px-a.s. for all x ∈E.
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Let Y = (Ω, F̃∞, F̃t, X̃t,P
Y
x , ζ) be the transformed process of X by Yt. The

transition semigroup {PY
t }t≥0 of Y is defined by

PY
t f(x) :=EY

x

[
f(X̃t)

]
=Ex

[
Ytf(Xt)

]
.

Theorem 3.1 (Theorem 3.1 in [26]). Assume that F ∈ J1(X) and u ∈
Ḟloc ∩QC (E∂) is a bounded finely continuous (nearly) Borel function satisfy-
ing μ〈u〉 ∈ S1(X). Then the following hold.

(1) Yt can be represented as follows:

Yt = exp

(
MFu

t +M−u,c
t −

∫ t

0

N
(
Gu − Fu

)
(Xs)dHs(3.4)

− 1

2

〈
Mu,c

〉
t

)
, t < ζ.

(2) Y is an e−2um-symmetric Hunt process on E.

When F2 = 0, we write the Girsanov transformed process Y1 by Y 1
t instead

of Y. When F1 = F2, we write the Girsanov transformed process U by

Ut := Exp
(
MeU−1 +M−u,c

)
t

(3.5)

instead of Y. Let Z= (Ω, F̃∞, F̃t, X̃t,P
Z
x , ζ) be the transformed process of X

by the supermartingale multiplicative functional

Zt := Y 1
t exp

(
−AF2

t

)
(3.6)

and (EZ ,FZ) the Dirichlet form on L2(E; e−2um) associated with Z. In a
similar way as in the proof of Theorem 3.1(1), we see that

Zt = Yt exp

(
−
∫ t

0

N
(
Gu

1 −Gu
)
(Xs)dHs

)
, t ∈ [0,∞[.(3.7)

Theorem 3.2 (Theorem 3.2 in [26]). Suppose F ∈ J1(X) and u is a bounded

strictly E-quasi-continuous function defined on E∂ such that u ∈ Ḟloc admits
Fukushima’s decomposition holding up to infinity under Px-a.s. for q.e. start-
ing point x ∈ E. Let (EY ,FY ) be the Dirichlet form of Y on L2(E; e−2um).
Then F =FY and

EY (f, f) =
1

2

∫
E

e−2u(x)μc
〈f〉(dx)

+

∫
(E×E)\diag

(
f(x)− f(y)

)2
eF (x,y)−u(x)−u(y)J(dxdy)

+ e−u(∂)

∫
E

f(x)2e−u(x)κ(dx)

for any f ∈ FY . In particular, we have FY
e =Fe and there is C =C(u,F )> 0

such that C−1μc
〈f〉 ≤ μY,c

〈f〉 ≤ Cμc
〈f〉 for all f ∈ F , C−1J ≤ JY ≤ CJ on
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(E ×E) \ diag and C−1κ ≤ κY ≤ Cκ, hence (EY ,FY ) is a transient Dirich-

let form on L2(E; e−2um). Here μY,c
〈f〉(dx) := e−2u(x)μc

〈f〉(dx), JY (dxdy) :=

eF (x,y)−u(x)−u(y)J(dxdy) and κY (dx) := e−u(x)−u(∂)κ(dx). Moreover, if
κ= 0, then the conclusion remains valid under that Fukushima’s decompo-
sition holds up to ζ under Px for q.e. x ∈E.

We need the coincidence of the fine topologies of Y and X:

Lemma 3.1. Let u ∈ Floc∩QC (E∂) be a bounded finely continuous (nearly)
Borel function satisfying μ〈u〉 ∈ S1

D(X) and assume F ∈ J1
D(X). Then the fine

topology of Y equals that of X.

Proof. By Proposition 3.1, (Yt)t∈[0,+∞[ is a Px-supermartingale multiplica-
tive functional on [0,+∞[ for all x ∈ E. It suffices to prove that the family
of all finely open Borel sets for Y coincides with that for X, because any
α-excessive functions of X (also of Y) is Borel measurable under (AC). Let
f be a finely continuous Borel function with respect to X. First, we prove
the fine continuity of f with respect to Y. It is known that the fine conti-
nuity of f is equivalent to the right continuity of [0,+∞[� s �→ f(Xs) under
Px for all x ∈ E and the right continuity of s �→ f(Xs) at s = 0 under Px

implies the fine continuity of f with respect to X (see [3, the proof of (4.8)
Theorem], [19, Theorem A.2.7]). The event A := {ω ∈ Ω|s �→ f(Xs) is right
continuous at s= 0} belongs to F0

t := σ{Xs : s≤ t} ⊂ Ft for any t > 0. So we
have PY

x (A
c) =PY

x (A
c∩{t≥ ζ})+PY

x (A
c∩{t < ζ})≤PY

x (t≥ ζ)+Ex[Yt1Ac :
t < ζ] = PY

x (t ≥ ζ)→ 0 as t→ 0. Therefore, f is finely continuous with re-
spect to Y. Conversely suppose that f is a finely continuous Borel function
with respect to Y. Then the event A := {ω ∈ Ω|s �→ f(Xs) is right contin-
uous at s = 0} also belongs to FY

t for t > 0 and it satisfies PY
x (A

c) = 0 for
all x ∈ E. Then Ex[Yt1Ac : t < ζ] = PY

x (A
c ∩ {t < ζ}) = 0 for all t > 0 and

x ∈E. Thus Px(A
c ∩ {t < ζ}) = 0 for all t > 0 and x ∈E, because Px(Yt > 0

for t ∈ [0, ζ[) = 1 for all x ∈E. Letting t→ 0, we have Px(A) = 1 for all x ∈E.
Therefore, we obtain the fine continuity of f with respect to X. �

4. (Semi-)Green-tight measures of (extended) Kato classes
and gaugeability

Let μ = μ1 − μ2 be a signed smooth measure in the strict sense whose
associated CAF of X is Aμ :=Aμ1 −Aμ2 . Here Aμ1 and Aμ2 are the PCAFs
of X with Revuz measures μ1 ∈ S1(X) and μ2 ∈ S1(X), respectively. Now we
start with the notion of Green-tight measures of (extended) Kato class in the
strict sense given in [4, Definition 2.2].

Definition 4.1 (Green-tight Kato class measures). Let ν ∈ S1(X) and
α≥ 0.
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(1) ν is said to be an α-order Green-tight measure of Kato class with respect to
X if ν ∈ S1

K(X) and for any ε > 0 there exists a compact subset K =K(ε)
of E such that

sup
x∈E

Rα(1Kcν)(x) = sup
x∈E

∫
Kc

Rα(x, y)ν(dy)< ε.

(2) ν is said to be an α-order semi-Green-tight measure of extended Kato class
with respect to X if ν ∈ S1

EK(X) and there exists a compact subset K of
E such that

sup
x∈E

Rα(1Kcν)(x) = sup
x∈E

∫
Kc

Rα(x, y)ν(dy)< 1.

(3) ν is said to be an α-order Green-tight measure of Kato class with respect
to X in the sense of Chen if for any ε > 0 there exist a Borel subset
K = K(ε) of E with ν(K) < ∞ and a constant δ > 0 such that for all
ν-measurable set B ⊂K with ν(B)< δ,

sup
x∈E

Rα(1B∪Kcν)(x) = sup
x∈E

∫
B∪Kc

Rα(x, y)ν(dy)< ε.(4.1)

(4) ν is said to be an α-order semi-Green-tight measure of extended Kato class
with respect to X in the sense of Chen if there exist a Borel subset K of
E with ν(K)<∞ and a constant δ > 0 such that for all ν-measurable set
B ⊂K with ν(B)< δ,

sup
x∈E

Rα(1B∪Kcν)(x) = sup
x∈E

∫
B∪Kc

Rα(x, y)ν(dy)< 1.(4.2)

In view of the resolvent equation, for positive α, the α-order Green-
tightness of Kato class is independent of the choice of α > 0. Let us denote
by S1

K+
∞
(X) (resp. S1

CK+
∞
(X)) the family of positive order Green-tight mea-

sures of Kato class (resp. the family of positive order Green-tight measures
of Kato class in the sense of Chen) with respect to X. The class S1

K∞
(X)

(resp. S1
K1

(X)) is then used to denote the family of 0-order Green-tight mea-
sures of Kato class (resp. 0-order semi-Green-tight measures of extended Kato
class), and the class S1

CK∞
(X) (resp. S1

CK1
(X)) is then used to denote the fam-

ily of 0-order Green-tight measures of Kato class in the sense of Chen (resp. the
family of 0-order semi-Green-tight measures of extended Kato class in the
sense of Chen) with respect to X. Note that since a Green kernel is invariant
under time change by the PCAF associated to a non-negative smooth measure
with full quasi support, the definitions of S1

CK∞
(X) and S1

CK1
(X) are invariant

under such time change in contrast to the Kato class S1
K(X). It is proved in

[4] that S1
CK∞

(X) ⊂ S1
CK1

(X) ⊂ S1
D0

(X) ∩ S1
EK(X), S1

CK+
∞
(X) ⊂ S1

K(X) and

S1
CK∞

(X)⊂ S1
K(X). Since any measure ν in Definition 4.1 belongs to S1

D0
(X),

it is a Radon measure. The Borel set K in Definition 4.1(3), (4) can be taken
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to be a closed set or an open set (see [4, remark after Definition 2.2]). More-
over, such closed set K can be taken to be compact, in particular, we always
have S1

CK+
∞
(X)⊂ S1

K+
∞
(X), S1

CK∞
(X)⊂ S1

K∞
(X) and S1

CK1
(X)⊂ S1

K1
(X). In-

deed, take ν ∈ S1
CK+

∞
(X), ε > 0, and a closed set K such that (4.1) holds.

Then there exists a compact subset C ⊂ K with ν(K \ C) < δ for a given
δ > 0, because ν ∈ S1

D0
(X) is a Radon measure. Since ν ∈ S1

CK+
∞
(X), we have

supx∈E Rα1Ccν(x) = supx∈E Rα1Kc∪(K\C)ν(x)< ε.
Let ν ∈ S1(X) and denote by Aν

t PCAF in the strict sense associated to
ν in Revuz correspondence. Denote by Sνo the support of Aν defined by
Sνo := {x ∈ E|Px(R = 0) = 1}, where R(ω) := inf{t > 0|Aν

t (ω) > 0}. Sνo is
nothing but the fine support of ν, i.e., the topological support of ν with
respect to the fine topology of X. Let (X̌, ν) be the time changed process of
X by Aν

t and (Ě , F̌) the associated Dirichlet form on L2(Sν ;ν), where Sν is
the support of ν. It is known that (Ě , F̌) is a regular Dirichlet form having
C|Sν as its core and Sν \ Sνo is Ě -polar, that is, 1-capacity 0 set with respect
to (Ě , F̌). The life time of (X̌, ν) is given by Aν

ζ . Let Cν : 2E → [0,+∞] be

the weighted 1-capacity with respect to (Ě , F̌), that is, for an open subset G
of E, we define

Cν(G) := inf
{
Ě1(f, f)|f ∈ F̌ , f ≥ Ř1ϕ ν-a.e. on G

}
and for arbitrary subset A of E

Cν(A) := inf
{
Cν(G)|A⊂G,G is an open subset of E

}
,

where Ř1ϕ(x) := Ex[
∫∞
0

e−Aν
t ϕ(Xt)dA

ν
t ] is the 1-order resolvent of a ν-a.e.

strictly positive bounded function ϕ ∈ L1(E;ν) under (X̌, ν) and Ě1(f, f) :=
Ě(f, f) +

∫
E
f2 dν. We emphasize that Cν is defined to be an outer capacity

on E. By definition, Cν(E \ Sν) = 0. Note that Cν(E) ≤ Ě1(Ř1ϕ, Ř1ϕ) =∫
E
ϕ(x)Ř1ϕ(x)ν(dx) < ∞ always holds and Cν is tight in the sense that

there exists an increasing sequence {Kn} of compact subsets of Sν such that
limn→∞ Cν(Sν \Kn) = 0 equivalently limn→∞Cν(E \Kn) = 0. Hence, any
quasi closed set with respect to Cν is quasi compact in the sense of Fuglede
[18, Lemma 2.2]. By [18, Theorem 2.10], any decreasing sequence {An} of
quasi closed subsets of E with respect to Cν satisfies

Cν

( ∞⋂
n=1

An

)
= inf

n∈N

Cν(An).(4.3)

Now we introduce some new classes of (semi-)Green-tight measures of (ex-
tended) Kato class:

Definition 4.2 (Natural (semi-)Green-tight measures of (extended) Kato
class). Let α≥ 0 and ν ∈ S1(X).
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(1) ν is said to be an α-order natural Green-tight measure of Kato class with
respect to X if ν ∈ S1

D(X) (ν ∈ S1
D0

(X) for α= 0) and for any ε > 0 there
exist a closed subset K =K(ε) of E and a constant δ > 0 such that for
all ν-measurable subset B ⊂K with Cν(B)< δ,

sup
x∈E

Ex

[∫ τB∪Kc

0

e−αt dAν
t

]
< ε.

(2) ν is said to be a 0-order natural semi-Green-tight measure of extended
Kato class with respect to X if ν ∈ S1

D0
(X) and there exist a closed subset

K of E and a constant δ > 0 such that for all ν-measurable subset B ⊂K
with Cν(B)< δ,

sup
x∈E

Ex

[
Aν

τB∪Kc

]
< 1.

In view of the resolvent equation, for positive α, the α-order natural Green-
tightness is independent of the choice of α > 0. Let us denote by S1

NK+
∞
(X)

the family of positive order natural Green-tight measures of Kato class with
respect to X. The class S1

NK∞
(X) (resp. S1

NK1
(X)) is then used to denote

the family of 0-order natural Green-tight measures of Kato class (resp. the
family of 0-order natural semi-Green-tight measures of extended Kato class)
with respect to X. Similarly, as we remarked after Definition 4.1, the closed
set K appeared in Definition 4.2 can be taken to be compact, because the
weighted 1-capacity Cν is tight.

Since
∫
B
g dν ≤ Cν(B) holds for the ν-a.e. strictly positive bounded func-

tion g := (Ř1ϕ)
2 ∈ L1(E;ν), by [26, Lemma 4.2], we have S1

CK∞
(X) ⊂

S1
NK∞

(X) and S1
CK1

(X)⊂ S1
NK1

(X), hence S1
CK+

∞
(X)⊂ S1

NK+
∞
(X).

X is said to be a Feller process or to have the Feller property if
Pt(C∞(E)) ⊂ C∞(E) for each t > 0 and limt→0 ‖Ptf − f‖∞ = 0 for f ∈
C∞(E). The next proposition asserts that S1

NK∞
(X) is not so wide.

Proposition 4.1. Suppose that (RSF) and the Feller property hold for X.
Then we have S1

K∞
(X) = S1

CK∞
(X) = S1

NK∞
(X) and S1

K+
∞
(X) = S1

CK+
∞
(X) =

S1
NK+

∞
(X).

Proof. By [26, Lemma 4.1], we know S1
K∞

(X) = S1
CK∞

(X), so it suffices

to prove S1
NK∞

(X)⊂ S1
K∞

(X) (S1
NK+

∞
(X)⊂ S1

K+
∞
(X) can be similarly proved

without transience). Since X is transient, there exists an m-a.e. strictly pos-
itive bounded g ∈ L1(E;m) such that Rg ∈ Bb(E). Let Xgm be the sub-

process killed by exp(−
∫ t

0
g(Xs)ds). Then Xgm enjoys (RSF) and it is

a transient Feller process by Corollary 5.1 in [28], that is, Rgm
α f ∈ C∞(E)

for α > 0 and f ∈ C∞(E). Let ‖Rgm
α ‖L(C∞(E)) be the operator norm for

Rgm
α :C∞(E)→C∞(E) defined by∥∥Rgm

α

∥∥
L(C∞(E))

:= sup
f∈C∞(E),‖f‖∞=1

sup
x∈E

∣∣Rgm
α f(x)

∣∣.
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Then one can prove ‖αRgm
α ‖L(C∞(E)) < 1 as in the proof of [28, Theorem 7.1],

which implies

Rgm1K =

∞∑
n=0

(
αRgm

α

)n
Rgm

α 1K ∈C∞(E).

Let ‖Rgm ◦ g‖L(C∞(E)) be the operator norm of Rgm ◦ g : C∞(E)→ C∞(E)
defined by (Rgm ◦ g)(f) :=Rgm(gf) for f ∈C∞(E). Then∥∥Rgm ◦ g

∥∥
L(C∞(E))

= sup
f∈C∞(E),‖f‖∞=1

sup
x∈E

∣∣Rgmgf(x)
∣∣

≤ sup
x∈E

Ex

[∫ ∞

0

e−
∫ t
0
g(Xs) dsg(Xt)dt

]
= 1− inf

x∈E
Ex

[
e−

∫∞
0

g(Xs) ds
]
≤ 1− e−‖Rg‖∞ < 1,

where we use Jensen’s inequality. Consequently

R1K =

∞∑
n=0

(
Rgm ◦ g

)n
Rgm1K ∈C∞(E)

holds in view of the following resolvent equation

R1K(x) =Rgm1K(x) +Rgm(gR1K)(x),

which is a special case of [30, Lemma 4.1.1]. By [1, Proposition 3.4], under
R1K ∈C∞(E), we can obtain

lim
x→∂

Px(σK <∞) = 0 for any compact subset K of E.(4.4)

Though the underlying process in [1] is assumed to be a diffusion, the proof for
(4.4) in [1] remains valid for general Feller processes. Suppose ν ∈ S1

NK∞
(X).

Let ε > 0 and take a closed set K with

sup
x∈E

Ex

[
Aν

τKc

]
< ε.(4.5)

We may assume that K is compact by taking a smaller compact subset in a
similar way to the last remark after Definition 4.1. By definition, ν ∈ S1

D0
(X)

and ν ∈ S1
K(X) by [26, Lemma 4.3], in particular 1Kν ∈ S1

K∞
(X). Owing to

(RSF) of X, we can get R1Kν ∈ C∞(E) by [17, Lemma 2.3(5)]. Note that
the assertion of [17, Lemma 2.3(5)] remains valid under (RSF) and the Feller
property of X. From this and (4.5),

lim
x→∂

Rν(x) = lim
x→∂

R1Kcν(x)

= lim
x→∂

(
Ex

[
Aν

τKc

]
+Ex

[
R1Kcν(XσK

) : σK <∞
])

≤ ε+ ‖Rν‖∞ lim
x→∂

Px(σK <∞) = ε.

Since ε > 0 is arbitrary, we obtain Rν ∈ C∞(E). Therefore, we have ν ∈
S1
K∞

(X). �
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Recall that Sνo is the fine support of Aν
t for a smooth measure ν ∈ S1(X).

As a special case of Lemma 4.5 in [26], we have the following lemma.

Lemma 4.1 (cf. [26, Lemma 4.5]). Assume μ〈u〉 ∈ S1
K(X). Then the fol-

lowing hold:

(1) For ν ∈ S1
D(X), e−2uν ∈ S1

D(U).
(2) For ν ∈ S1

K(X), e−2uν ∈ S1
K(U).

(3) For ν ∈ S1
EK(X), e−2uν ∈ S1

EK(U).
(4) For ν ∈ S1

K+
∞
(X), e−2uν ∈ S1

K+
∞
(U).

(5) For ν ∈ S1
CK+

∞
(X), e−2uν ∈ S1

CK+
∞
(U).

(6) Assume μ〈u〉 ∈ S1
NK∞

(X). Suppose that Sνo ⊃ S
μc
〈u〉+N(eU−U−1)μH

o or there

exists a measure η ∈ S1
NK+

∞
(X) such that supp[Aη] = E. Then, for ν ∈

S1
NK+

∞
(X) we have e−2uν ∈ S1

NK+
∞
(U).

(7) Assume μ〈u〉 ∈ S1
NK∞

(X). Then, for ν ∈ S1
NK1

(X(1)) we have e−2uν ∈
S1
NK1

(U(1)).

Proof. We only prove (7), because an extra assumption is imposed in [26,
Lemma 4.5(7)] as for (6). Since X is transient, there exists a strictly pos-
itive bounded g ∈ L1(E;m) such that gm ∈ S1

D0
(X) by [21]. Suppose ν ∈

S1
NK1

(X(1)). By taking small β > 0, we see η = ν + βgm ∈ S1
NK1

(X(1)), whose

fine support coincides with E. Then Sη0 ⊃ S
μc
〈u〉+N(eU−U−1)μH

0 is automatically

satisfied. Thus we have e−2uη ∈ S1
NK1

(U(1)), hence e−2uν ∈ S1
NK1

(U(1)). �

Let μ be a signed measure such that μ= μ1 − μ2 with μ1 ∈ S1
NK1

(X) and
μ2 ∈ S1(X). Note that for such μ= μ1 − μ2 we know μ+ ∈ S1(X) and μ− ∈
S1(X), because of μ+ ≤ μ1 and μ− ≤ μ2. Let τt be the right continuous
inverse of Aμ1

t , τt := inf{s > 0|Aμ1
s > t} with the convention that inf ∅ =∞.

Let F1, F2 be nonnegative bounded symmetric functions on E ×E described
as in Section 1 satisfying N(F1 + F2)μH ∈ S1(X). We set F := F1 − F2 and
AF

t :=
∑

s≤tF (Xs−,Xs), the purely discontinuous additive functional with

jump ΔAF
t = F (Xt−,Xt), t ∈ [0,∞[.

For an AF A, we say that (X,A) is gaugeable if

sup
x∈E

Ex

[
exp(Aζ)

]
<∞.

Let X∗ = (Ω,Xt,P
∗
x) be the subprocess killed by e−A

μ2
t −A

F2
t for μ2 +

N(F2)μH ∈ S1(X). By [33, Section 62], we have that for any stopping time T ,

E∗
x

[
eA

μ1
T +A

F1
T
]

(4.6)

=Ex

[∫ T

0

eA
μ1
s +AF1

s d
(
−e−Aμ2

s −AF2
s
)
+ eA

μ1
T +A

F1
T −A

μ2
T −A

F2
T

]
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=Ex

[∫ T

0

eA
μ1
s +AF1

s e−Aμ2
s −AF2

s d
(
−A−μ2

s +AeF2−1
s

)]
+Ex

[
eA

μ
T+AF

T
]

=Ex

[∫ T

0

eA
μ
s+AF

s d
(
Aμ2

s +AeF2−1
s

)]
+Ex

[
eA

μ
T+AF

T
]

≥Ex

[
eA

μ
T+AF

T
]
.

Note here that for any stopping time T , T ∧ ζ is the reduced time for

e−A
μ2
t −A

F2
t in the sense of [33, Section 62]. The following gauge theorem

can be similarly proved in this generality (see Theorem 5.1 below).

Theorem 4.1 (Gauge Theorem). Suppose that μ1 + N(eF1 − 1)μH ∈
S1
NK1

(X) and μ2 + N(F2)μH ∈ S1(X) hold. Then the following are equiva-
lent.

(1) (X,Aμ +AF ) is gaugeable.
(2) Ex[exp(A

μ
ζ +AF

ζ )]<∞ for some x ∈E.

Proof. It suffices to prove that g(x) := Ex[exp(A
μ
ζ + AF

ζ )] satisfies

supx∈E g(x) < ∞ or g ≡ ∞. The proof is quite similar with the proofs of
[4, Theorem 2.13], [10, Theorem 2.6]. The fine continuity of x �→ g(x) and
the absorbing property of the set O := {g <∞} under Px can be proved in a
similar way as in [4], [10]. So, it suffices to confirm that there are N > 0 and
C > 0 such that

O = {g <∞}=
{
g ≤C(1 +N)

}
.(4.7)

Then O is finely open and finely closed. Since E is connected with respect
to the fine topology under (I) and (AC), we have O = E or O = ∅, which
means the assertion. From now on, we prove (4.7) for some C,N . Since η1 :=
μ1+N(eF1 − 1)μH ∈ S1

NK1
(X), there exist a closed subset K of Sη1 and δ > 0

such that for any subset B ⊂K with Cη1(B)< δ, supx∈E Ex[A
η1
τB∪Kc ]< 1− c

for some c ∈ ]0,1[. Here Cη1 is the weighted 1-capacity with respect to the

Dirichlet form (Ě , F̌) associated to the time changed process (X̌, η1) from X
and Sη1 is the topological support of η1. Note that any finely closed subset of
Sη1 is quasi closed with respect to Cη1 . By applying [18, Theorem 2.10] to the
decreasing sequence {Bn} of quasi closed sets defined by Bn := {x ∈K|n ≤
g(x) < ∞}, we can take large N ∈ N so that Cη1(BN ) < δ. Khasminskii’s
lemma tells us that

C := sup
x∈E

Ex

[
exp
(
Aμ1

τBN∪Kc +AF1
τBN∪Kc

)]
= sup

x∈E
Ex

[
Exp

(
Aμ1 +AeF1−1

)
τBN∪Kc

]
≤ 1

1− supx∈E Ex[A
η1
τBN∪Kc ]

<
1

c
,
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where τB := inf{t > 0|Xt /∈B}. By the formula

g(x) = Ex

[
exp
(
Aμ

τBN∪Kc +AF
τBN∪Kc

)
: τBN∪Kc = ζ

]
+Ex

[
exp
(
Aμ

τBN∪Kc +AF
τBN∪Kc

)
g(XτBN∪Kc ) : τBN∪Kc < ζ

]
,

we have g(x)≤ C +CN for x ∈O ∩BN in view of XτBN∪Kc ∈O ∩ (K \BN )

Px-a.s. on {τBN∪Kc < ζ} for x ∈O, where we use the absorbing property of O.
Moreover, g(x)≤N for x ∈O \BN . Thus we obtain (4.7). �

Let μ be a signed measure such that μ= μ1 − μ2 with μ1, μ2 ∈ S1(X) and
let F1, F2 be a function on E × E vanishing on the diagonal diag satisfy-
ing N(F1 + F2)μH ∈ S1(X). The following lemmas and theorem are modi-
fications of Lemmas 2.7, 2.14, Theorems 2.8, 2.15, Corollaries 2.9, 2.16 and
Theorems 2.10, 2.11 in [4]. The proofs are quite similar to those in [4].

Lemma 4.2 (cf. [4, Lemmas 2.7, 2.14, Theorems 2.8, 2.15, Corollaries 2.9,
2.16 and Theorem 2.10]). Set A := Aμ +AF and eA(t) := exp(At). Suppose
that μ1 +N(eF1 − 1)μH ∈ S1

NK1
(X) and μ2 +N(F2)μH ∈ S1

D0
(X) hold. Then

we have the following:

(1) If (X,A) is gaugeable, then for any δ > 0 there is a constant c(δ)> 0 such
that

‖gA‖−1
∞ gA(x)≤

∞∑
n=0

Ex

[
eA(τnδ) : τnδ < ζ

]
≤ c(δ)<∞ for all x ∈E.

Here τt := inf{s > 0|Aη
s > t} is the right continuous inverse of Aη

t with
η = μ1 +N(F1)μH and gA(x) :=Ex[eA(ζ)] is the gauge function for A=
Aμ +AF .

(2) The following are equivalent:
(a) (X,A) is gaugeable.

(b) Ex[
∫ ζ

0
eA(t)d(A

μ1

t +AF1
t )]<∞ for some x ∈E.

(c) supx∈E Ex[
∫ ζ

0
eA(t)d(A

μ1

t +AF1
t )]<∞.

(d) Ex[supt∈[0,ζ] eA(t)]<∞ for some x ∈E.

(e) supx∈E Ex[supt∈[0,ζ] eA(t)]<∞.

(f) (X∗,Aμ1 +AF1) is gaugeable. Here X∗ is the killed process of X by

e−A
μ2
t −A

F2
t .

Proof. (1): The proof is similar to the proofs of [4, Lemma 2.14, Theo-
rem 2.15 and Corollary 2.16] with some modifications under the conditions.
We provide the proof for readers’ convenience. Since the proof is the same for
any δ > 0, we take δ = 1. Since μ1 +N(eF1 − 1)μH ∈ S1

NK1
(X), there is p > 1

such that pμ1 +N(epF1 − 1)μH ∈ S1
NK1

(X). Indeed, let {Dn} be a decreasing

sequence such that Px(limn→∞ σDn ≥ ζ) = 1 E -q.e. x ∈ S
(p−1)μ1+N(epF1−1)μH
o ,
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which is equivalent to E-q.e. x ∈ S
μ1+N(eF1−1)μH
o , because Sμ1+μ2

o = Sμ1
o ∪

Sμ2
o , and F1 ≤ eF1 − 1 ≤ F1e

‖F1‖∞ and pF1 ≤ epF1 − 1 ≤ pF1e
p‖F1‖∞ imply

S
N(F1)μH
o = S

N(eF1−1)μH
o = S

N(epF1−1)μH
o . Since

pμ1 +N
(
epF1 − 1

)
μH − μ1 −N

(
eF1 − 1

)
μH

= (p− 1)μ1 +N
((
e(p−1)F1 − 1

)
eF1
)
μH

≤ (p− 1)μ1 + (p− 1)e(p−1)‖F1‖∞N(F1)μH ,

we have

lim
n→∞

sup
x∈E

Ex

[
Apμ1+N(epF1−1)μH

τDn

]
≤ lim

n→∞
sup
x∈E

Ex

[
(p− 1)Aμ1

τDn
+ (p− 1)e(p−1)‖F1‖∞AN(eF1−1)μH

τDn

]
+ lim

n→∞
sup
x∈E

Ex

[
Aμ1+N(eF1−1)μH

τDn

]
≤ (p− 1)

(
sup
x∈E

Ex

[
Aμ1

ζ

]
+ e(p−1)‖F1‖∞ sup

x∈E
Ex

[
A

N(eF1−1)μH

ζ

])
+ lim

n→∞
sup
x∈E

Ex

[
Aμ1+N(eF1−1)μH

τDn

]
< 1

for p sufficiently close to 1. For such p > 1 satisfying pμ1 +N(epF1 − 1)μH ∈
S1
NK1

(X), there exist a Borel set K1 and a constant δ > 0 such that

sup
B⊂K1,Cpμ1+N(epF1−1)μH (B)<δ

sup
x∈E

Ex

[
pAμ1

τB∪Kc
1
+AN(epF1−1)μH

τB∪Kc
1

]
:= β1 < 1.

Since (X,A) is gaugeable, gA(x) :=Ex[eA(ζ)] is bounded and so

lim
n→∞

Ex

[
eA(ζ) : τn < ζ

]
= 0 for x ∈E.

Thus for any given small ε > 0 one can find an integer N large enough and a
closed subset K ⊂K1 such that

sup
x∈K

Ex

[
eA(ζ) : τN < ζ

]
< ε,

and Cpμ1+N(epF1−1)μH (K1 \K)< δ. Using Khasminskii’s lemma,

sup
x∈E

Ex

[
eAμ1+AF1 (σK)p

]
≤ sup

x∈E
Ex

[
exp
(
pAμ1

σK
+ pAF1

σK

)]
= sup

x∈E
Ex

[
Exp

(
Apμ1 +AepF1−1

)
σK

]
≤ 1

1− supx∈E Ex[A
pμ1
σK +AepF1−1

σK ]

≤ (1− β1)
−1,
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where σK is the first hitting time of K under X. Now

Ex

[
eA(ζ) : τ2N < σK

]
≤Ex

[
eA(ζ) : τN < σK

]
+Ex

[
eA(ζ) : σK ≤ τN < τ2N < ζ

]
≤ ‖gA‖∞Ex

[
eA(σK) : τN < σK

]
+Ex

[
eA(σK)EXσK

[
eA(ζ) : τN < ζ

]
: σK < ζ

]
:= I + II.

Denote by P̌η
x the probability law for the time-changed process (X̌, η) and let

σ̌η
K be the first hitting time of K by (X̌, η). Then

Ěη
x

[
σ̌η
K ∧ ζ̌η

]
=Ex

[
Aη

σK

]
.

By (4.6), we have

Ex

[
eA(σK)p

]
=Ex

[
epA(σK)

]
≤Ex

[
eApμ1+ApF1 (σK)

]
=Ex

[
eAμ1+AF1 (σK)p

]
for each x ∈E. Let q > 1 be such that 1

p + 1
q = 1 and use Hölder’s inequality,

I≤ ‖gA‖∞
(
Ex

[
eAμ1+AF1 (σK)p

]) 1
pPx(τN < σK)

1
q

≤ (1− β1)
− 1

p ‖gA‖∞P̌η
x

(
N < σ̌η

K

) 1
q

≤ ‖gA‖∞Ěη
x[σ̌

η
K ∧ ζ̌η]

1
q

(1− β1)
1
pN

1
q

≤
‖gA‖∞Ex[A

η
σK

]
1
q

(1− β1)
1
pN

1
q

≤
‖gA‖∞Ex[A

η
ζ ]

1
q

(1− β1)
1
pN

1
q

.

So I→ 0 uniformly as N →∞. On the set {σK < ζ}, XσK
∈K and so

II≤ εEx

[
eA(σK) : σK < ζ

]
≤ εEx

[
eA(σK)

]
≤ εEx

[
eAμ1+AF1 (σK)

]
≤ ε

1− supx∈E Ex[A
μ1
σK +AeF1−1

σK ]

≤ ε

1− β1
,

where we use (4.6). Thus for large N , supx∈E Ex[eA(ζ) : τN < ζ] is small.
By Jensen’s inequality, the gauge function gA is bounded below by a positive

constant c1 := e− supx∈E Ex[A
μ2
ζ +A

F2
ζ ]. So

Ex

[
eA(τN ) : τN < ζ

]
≤ c−1

1 Ex

[
eA(τN )gA(XτN ) : τN < ζ

]
≤ c−1

1 Ex

[
eA(ζ) : τN < ζ

]
.

Therefore, when N is large enough,

sup
x∈E

Ex

[
eA(τN ) : τN < ζ

]
:= λ < 1.

By the strong Markov property of X,

sup
x∈E

Ex

[
eA(τkN ) : τkN < ζ

]
:= λk, for k ≥ 0.
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By Schwarz inequality

Ex

[
eA(τj) : τj < ζ

]
≤ Ex

[
eAμ1+AF1 (τj) : τj < ζ

]
≤ Ex

[
exp

(
2Aμ1

τj + 2

∫ τj

0

N(F1)(Xs)dHs

)
: τj < ζ

] 1
2

×Ex

[
exp

(
2AF1

τj − 2

∫ τj

0

N(F1)(Xs)dHs

)] 1
2

≤ ej ,

where we use Aμ1
τj +

∫ τj
0

N(F1)(Xs)dHs = j and the supermartingale property
of

t �→ exp

(
2AF1

t − 2

∫ t

0

N(F1)(Xs)dHs

)
under Px. Then for 0≤ j < N ,

Ex

[
eA(τj+kN ) : τj+kN < ζ

]
=Ex

[
eA(τj)EXτj

[
eA(τkN ) : τkN < ζ

]
: τj < ζ

]
≤ λk max

0≤j<N
Ex

[
eA(τj) : τj < ζ

]
≤ λkeN−1.

All these inequalities lead to

∞∑
n=0

Ex

[
eA(τn) : τn < ζ

]
=

∞∑
k=0

N−1∑
j=0

Ex

[
eA(τj+kN ) : τj+kN < ζ

]
=NeN−1

∞∑
k=0

λk =
NeN−1

1− λ
<∞.

Finally, we have, by the strong Markov property of X,

gA(x) =

∞∑
n=0

Ex

[
eA(ζ) : τn < ζ ≤ τn+1

]
≤

∞∑
n=0

Ex

[
eA(τn)gA(Xτn) : τn < ζ

]
≤ ‖gA‖∞

∞∑
k=0

Ex

[
eA(τn) : τn < ζ

]
.

(2): The proof for the equivalences among (a)–(e) of (2) through (1) is quite
similar to the proof of [4, Theorem 2.15 and Corollary 2.16]. We only prove
the equivalence (c)⇐⇒(f). By [33, Section 62], we have

E∗
x

[
eA

μ1
ζ +A

F1
ζ
]
=Ex

[∫ ζ

0

eA
μ1
s +AF1

s d
(
−e−Aμ2

s −AF2
s
)]

+Ex

[
eA

μ
ζ+AF

ζ
]
.(4.8)
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Using Itô’s formula for semimartingale, we see

eA
μ
t +AF

t − 1 =

∫ t

0

eA
μ1
s +AF1

s d
(
e−Aμ2

s −AF2
s
)
+

∫ t

0

e−Aμ2
s −AF2

s d
(
eA

μ1
s +AF1

s
)

+
∑
s≤t

ΔeA
μ1
s +AF1

s Δe−Aμ2
s −AF2

s

=

∫ t

0

eA
μ1
s +AF1

s d
(
e−Aμ2

s −AF2
s
)
+

∫ t

0

e−Aμ2
s −AF2

s d
(
eA

μ1
s +AF1

s
)

+
∑
s≤t

eA
F
s−
(
eF1(Xs−,Xs) − 1

)(
e−F2(Xs−,Xs) − 1

)
≤
∫ t

0

eA
μ1
s +AF1

s d
(
e−Aμ2

s −AF2
s
)
+

∫ t

0

e−Aμ2
s −AF2

s d
(
eA

μ1
s +AF1

s
)
.

From (4.8), we have

E∗
x

[
eA

μ1
ζ +A

F1
ζ
]
≤ Ex

[∫ ζ

0

e−Aμ2
s −AF2

s d
(
eA

μ1
s +AF1

s
)]

+ 1

= 1+Ex

[∫ ζ

0

eA(s)d
(
Aμ1

s +A1−e−F1

s

)]
≤ 1 +Ex

[∫ ζ

0

eA(s)d
(
Aμ1

s +AF1
s

)]
.

If (X,A) is gaugeable, then (X∗,Aμ1 + AF1) is gaugeable by (c), and the
converse is clear from (4.8). �

Remark 4.1. If m ∈ S1
D0

(X), under the same condition as in Lemma 4.2,
without using time change, we have the following: Suppose that (X,A) is
gaugeable with A = Aμ + AF and eA(t) := exp(At). Then, for any δ > 0,
there is a constant c(δ)> 0 such that

‖gA‖−1
∞ gA(x)≤

∞∑
n=0

Ex

[
eA(nδ) : nδ < ζ

]
≤ c(δ)<∞ for all x ∈E.

The proof is very similar to the proof of Lemma 4.2(1) by changing τk
to k and replacing the estimate max0≤j<N Ex[eA(τj) : τj < ζ] ≤ eN−1 with
max0≤j<N Ex[eA(j) : j < ζ] ≤ supx∈E Ex[supt∈[0,ζ] eA(t)] < ∞ (cf. the proof

of Lemma 9 in [16]).

By Remark 4.1, we can prove the following lemma.

Lemma 4.3 (cf. [4, Theorem 2.11], [16, Lemma 9]). Suppose m ∈ S1
D0

(X),

μ1 +N(eF1 − 1)μH ∈ S1
NK1

(X) and μ2 +N(F2)μH ∈ S1
D0

(X). Set A :=Aμ +

AF and eA(t) := exp(At). Then the following are equivalent:
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(1) (X,A) is gaugeable.
(2) For some δ > 0 and some x ∈E,

∞∑
n=0

Ex

[
eA(nδ) : nδ < ζ

]
<∞.(4.9)

(3) For all δ > 0 and all x ∈E, (4.9) is true.

(4) For some x ∈E, Ex[
∫ ζ

0
eA(t)dt]<∞.

(5) supx∈E Ex[
∫ ζ

0
eA(t)dt]<∞.

(6) There exists some t > 0 such that supx∈E Ex[eA(t) : t < ζ]<∞.
(7) There are constants C > 0 and b > 0 such that supx∈E Ex[eA(t) : t < ζ]≤

Ce−bt for all t > 0.

Proof. We only show that under the gaugeability of (X,A) there exists
C > 0 such that

Ex

[∫ ζ

0

eA(t)dt

]
≤Cδ

∞∑
n=0

Ex

[
eA(nδ) : nδ < ζ

]
.

Note that the gaugeability (X,A) is equivalent to

C := sup
y∈E

Ey

[
sup

t∈[0,ζ]

eA(t)
]
<∞

by Lemma 4.2(2). Then

Ex

[∫ ζ

0

eA(t)dt

]
=Ex

[ ∞∑
n=0

∫ (n+1)δ∧ζ

nδ∧ζ

eA(t)dt

]

=

∞∑
n=0

Ex

[∫ (n+1)δ∧ζ

nδ

eA(t)dt : nδ < ζ

]

=

∞∑
n=0

Ex

[
eA(nδ)EXnδ

[∫ δ∧ζ

0

eA(t)dt

]
: nδ < ζ

]

≤Cδ

∞∑
n=0

Ex

[
eA(nδ) : nδ < ζ

]
.

�

Recall that the quadratic form (Q,F) defined in (1.2). We write the qua-
dratic form Q by Q∗ for the case u= 0. Using Lemma 4.3, we can prove the
following theorem, whose proof is similar to that in [4, Theorem 2.12].

Theorem 4.2 (cf. [4, Theorem 2.12]). Suppose that m ∈ S1
D0

(X) and

m(E) < ∞. Assume μ1 + N(eF1 − 1)μH ∈ S1
NK1

(X) and μ2 + N(F2)μH ∈
S1
D0

(X). Set A := Aμ +AF and eA(t) := exp(At). Then (X,A) is gaugeable
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if and only if

λQ∗
(m) := inf

{
Q∗(f, f)

∣∣∣f ∈ C,
∫
E

f2 dm= 1

}
> 0.

Consider the non-local Feynman–Kac transforms by the additive function-
als A :=Nu +Aμ +AF of the form (1.1). Moreover, by (3.4), we see for all
t ∈ [0,∞[,

eA(t) = Ute
u(Xt)−u(X0) exp

(
Aν̄

t +AF
t

)
,

where ν̄ = ν̄1 − ν̄2 and ν̄1 := μ1 + N(eU − U − 1)μH + 1
2μ

c
〈u〉 and ν̄2 := μ2.

Hence for x ∈E and f ∈B+(E),

Ex

[
eA(t)f(Xt)

]
= e−u(x)EU

x

[
exp
(
Aν̄

t +AF
t

)(
euf
)
(X̃t)

]
.(4.10)

Lemma 4.4 (cf. Lemma 4.9 in [26]). Suppose that μ〈u〉 ∈ S1
D0

(X). Then

EU
x

[
exp
(
Aν̄

ζ +AF
ζ

)]
= eu(x)Ex

[
e−u(Xζ−)eA(ζ)

]
.(4.11)

Proof. The proof is quite similar to that of [26, Lemma 4.9]. We omit the
detail. �

5. Analytic characterizations for gaugeability

In this section, we give several analytic characterizations of gaugeability
for our generalized Feynman–Kac transforms eA(t).

Define the signed measure μ̄ := μ̄1 − μ̄2 by

μ̄1 :=N(V )μH + μ1 +
1

2
μc
〈u〉, μ̄2 :=N(F2)μH + μ2

for the nonnegative function V (x, y) := (Gu−Fu+F1)(x, y). Similarly, define
the signed measure μ̄∗ := μ̄∗

1 − μ̄∗
2 by

μ̄∗
1 :=N

(
V ∗)μH + μ1 +

1

2
μc
〈u〉, μ̄∗

2 := μ2

for V ∗(x, y) := Vu,F1(x, y), that is, V
∗(x, y) = (Gu

1 − Fu
1 + F1)(x, y). Then we

see μ̄=N(V −F2)μH +μ+ 1
2μ

c
〈u〉, μ̄

∗ =N(V ∗)μH +μ+ 1
2μ

c
〈u〉 and V ∗ −V =

Gu
1 −Gu −F2, and thus μ̄∗ − μ̄=N(Gu

1 −Gu)μH ≥ 0. Note that μ̄i = μ̄∗
i = ν̄i

(i= 1,2) and V = V ∗ for the case F1 = F2 = 0.
Note that if ν ∈ S1

D(X) (resp. ν ∈ S1
D0

(X)), then
∫
E
f2 dν ≤ ‖R1ν‖∞E1(f, f)

for f ∈ F (resp.
∫
E
f2 dν ≤ ‖Rν‖∞E(f, f) for f ∈ Fe), hence F ⊂ L2(E;ν)

(resp. Fe ⊂ L2(E;ν)) from [36, Theorem 3.1]. The quadratic form Q on F
defined in (1.2) is extended to Fe × Fe with the same expression (1.2) pro-
vided μ1 +N(F1)μH + μ〈u〉 ∈ S1

D0
(X) and μ2 +N(F2)μH ∈ S1

D0
(X). In view

of (3.7), we have

EZ
(
feu, feu

)
= EY

(
feu, feu

)
+

∫
E

f2N
(
Gu

1 −Gu
)
dμH .



744 D. KIM, M. KURNIAWATY AND K. KUWAE

It follows from (3.4), Theorem 3.2 and the Feynman–Kac formula that for
f ∈ F ∩C0(E), we have

EY
(
feu, feu

)
=Q(f, f) +

∫
E

f2 d

(
1

2
μc
〈u〉 + μ

)
+

∫
E

f2N(V − F2)dμH

=Q(f, f) +

∫
E

f2 dμ̄,

hence

EZ
(
feu, feu

)
=Q(f, f) +

∫
E

f2 dμ̄+

∫
E

f2N
(
Gu

1 −Gu
)
dμH

=Q(f, f) +

∫
E

f2 dμ̄∗.

Since X is transient, there exists an m-a.e. strictly positive bounded mea-
surable function g satisfying gm ∈ S1

D0
(X) (see Getoor [21]). We fix such a

gm ∈ S1
D0

(X). Let {τgmt }t≥0 be the right continuous inverse of the PCAF

Agm
t :=

∫ t

0
g(Xs)ds, that is, τgmt := inf{s > 0|Agm

s > t}. Let (X̌, gm) be the

time changed process of X by Agm
t . Then (X̌, gm) is gm-symmetric Hunt

process on E satisfying (I) and (AC) (see [35, Theorems 8.2 and 8.5] for the
stability of (I)).

Lemma 5.1. We have the following:

(1) Any ν ∈ S1
NK∞

(X) (resp. ν ∈ S1
NK1

(X)) satisfies ν ∈ S1
NK∞

(X̌, gm)

(resp. ν ∈ S1
NK1

(X̌, gm)). Any ν ∈ S1
D0

(X) satisfies ν ∈ S1
D0

(X̌, gm).
(2) The gauge function gA(x) =Ex[eA(ζ)] is invariant under the time changed

process (X̌, gm) in the sense that

Ex

[
eA(ζ)

]
=Ex

[
eAτgm

(
Agm

ζ

)]
.

Here Aτgm
t

:=Aμ
τgm
t

+AF
τgm
t

+Nu
τgm
t

is the AF under (X̌, gm).

Proof. (2) is a trivial observation. So it suffices to prove (1). We prove only
ν ∈ S1

NK∞
(X) implies ν ∈ S1

NK∞
(X̌, gm). Let us denote by Ř(x, y) the 0-order

resolvent kernel with respect to (X̌, gm). Then we see Ř(x, y) = R(x, y) for
gm-a.e. y ∈ E. Moreover, we have Ř(x, y) = R(x, y) for x, y ∈ E because
Ř(x, ·) and R(x, ·) are finely continuous with respect to (X̌, gm). Take any
ε > 0 and any closed set K. If ν ∈ S1

NK∞
(X), then there exist δ > 0 and any

Borel set B ⊂K with Cν(B)< δ we have

sup
x∈E

Ex

[
Aν

τB∪Kc

]
< ε,

which implies ν ∈ S1
NK∞

(X̌, gm) where we use that the PCAF associated

to ν under (X̌, gm) is given by Aν
τgm
t

([30, Theorem 4.3.3]), the first exit

time from B ∪Kc under (X̌, gm) is given by Agm
τB∪Kc , and τAgm

t
= t ∧ ζ. In

particular, we have gm ∈ S1
D0

(X̌, gm), μ1 + N(eF1 − 1)μH ∈ S1
NK1

(X̌, gm),

μ〈u〉 ∈ S1
NK∞

(X̌, gm) and μ2 +N(F2)μH ∈ S1
D0

(X̌, gm). �
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For η ∈ S1
D(X), we set λQ(η) as defined in (1.3).

Proposition 5.1. Suppose that μ̄∗
1 ∈ S1

NK1
(X), μ〈u〉 ∈ S1

NK∞
(X) and μ2 +

N(F2)μH ∈ S1
D0

(X). Then λQ(μ̄1)> 0 implies that (1.1) is gaugeable.

Proof. It is proved in [26, Lemma 5.1] that λQ(μ̄1) > 0 is equivalent to
λQ(μ̄∗

1)> 0. So it suffices to prove that λQ(μ̄∗
1)> 0 implies the gaugeability

of (1.1). Moreover, we may assume m ∈ S1
D0

(X) and m(E) <∞ in view of

Lemma 5.1. Recall ν̄1 := μ1+N(eU −U−1)μH+ 1
2μ

c
〈u〉 and ν̄2 := μ2. Then we

easily see ν̄1+N(eU (eF1 − 1))μH ∈ S1
NK1

(X) and ν̄2+N(eUF2)μH ∈ S1
D0

(X).

By assumption m ∈ S1
D0

(X), we see that β supx∈E Ex[ζ]< 1 for small β > 0,

hence not only η1 = βm+ ν̄1 ∈ S1
NK1

(X) (resp. η2 = βm+ ν̄2 ∈ S1
D0

(X)) but

also η1 + N(eU (eF1 − 1))μH ∈ S1
NK1

(X) (resp. η2 + N(eUF2)μH ∈ S1
D0

(X))

holds for such β > 0. We have that e−2uη1 + e−uN(e−u(eF1 − 1))μH ∈
S1
NK1

(U(β)) and e−2uη2 + e−uN(e−uF2)μH ∈ S1
D0

(U(β)) hold by Lemma 4.1,

because η1 +N(eU (eF1 − 1))μH ∈ S1
NK1

(X), η2 +N(eUF2)μH ∈ S1
D0

(X) and

η1 has full fine support. Since e−2um ∈ S1
D(U) = S1

D0
(U(β)) by Lemma 4.1(1)

and e−2um(E)<∞, we can apply Theorem 4.2 to U(β). By (4.11), the gauge-

ability supx∈E Ex[eA(ζ)]<∞ is equivalent to supx∈E EU
x [e

Aν̄
ζ+AF

ζ ]<∞, which
follows from

sup
x∈E

EU(β)

x

[
eβζ+Aν̄

ζ+AF
ζ
]
<∞.(5.1)

Indeed, [33, Section 62, (62.13)] with the uniform integrability of {Ut}t∈[0,∞]

yields

EU(β)

x

[
eβζ+Aν̄

ζ+AF
ζ
]

(5.2)

=EU
x

[∫ ζ

0

eβs+Aν̄
s+AF

s d
(
−e−βs

)
+ eβζ+Aν̄

ζ+AF
ζ e−βζ

]
= βEU

x

[∫ ζ

0

eA
ν̄
s+AF

s ds

]
+EU

x

[
exp
(
Aν̄

ζ +AF
ζ

)]
.

Then, applying Theorem 4.2 to (EU(β)

,FU(β)

) with e−2uη1+ e−uN(e−u(eF1 −
1))μH ∈ S1

NK1
(U(β)) and e−2uη2 + e−uN(e−uF2)μH ∈ S1

D0
(U(β)), (5.1) is

equivalent to

λQ(m)

:= inf

{
EU(β)(

feu, feu
)
−
∫
E

f2 d(βm+ ν̄)

−
∫
E

∫
E

f(x)f(y)
(
eF (x,y) − 1

)
N(x,dy)μH(dx)

∣∣∣f ∈ C,
∫
E

f2 dm= 1

}
= inf

{
Q(f, f)

∣∣∣f ∈ C,
∫
E

f2 dm= 1

}
> 0.
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The proof of λQ(μ̄∗
1) > 0⇐⇒ λQ(m) > 0 is the same as in the proof of [26,

Propoition 5.1]. We omit it here. �

For p≥ 1, put Fu
(p) := pFu, Gu

(p) := eF
u
(p) − 1 and V(p) :=Gu

(p) − Fu
(p) + pF1.

Define μ̄p := μ̄p
1 − μ̄p

2 by

μ̄p
1 :=N(V(p))μH + pμ1 +

p2

2
μc
〈u〉, μ̄p

2 :=N(pF2)μH + pμ2.

Set

λQ(p)(
μ̄p
1

)
:= inf

{
Q(p)(f, f)

∣∣∣f ∈ C,
∫
E

f2 dμ̄p
1 = 1

}
,

where Q(p) is the quadratic form defined for pu, pμ and pF as well as Q is
defined for u,μ and F .

Proposition 5.2 (Super Gauge theorem). Suppose that μ̄∗
1 ∈ S1

NK1
(X),

μ〈u〉 ∈ S1
NK∞

(X) and μ2+N(F2)μH ∈ S1
D(X) hold. Assume λQ(μ̄1)> 0. Then

there exists a p0 > 1 sufficiently close to 1 such that λQ(p)

(μ̄p
1) > 0 for any

p ∈ [1, p0], hence we have supx∈E Ex[eA(ζ)
p]<∞ for any p ∈ [1, p0] provided

μ2 +N(F2)μH ∈ S1
D0

(X).

Proof. We may assume m ∈ S1
D0

(X) and m(E)<∞ in view of Lemma 5.1.

Note that, for any p sufficiently close to 1, pμ1+N(epF
u
1 −pFu

1 −1+pF1)μH +
p2

2 μc
〈u〉 ∈ S1

NK1
(X), p2μ〈u〉 ∈ S1

NK∞
(X) and p(μ2 +N(F2)μH) ∈ S1

D(X) as in

the same way of the proof of Lemma 4.2(1). The rest of the proof is the same
as in the proof of [26, Proposition 5.2]. We omit it. �

Lemma 5.2. Suppose that μ〈u〉 ∈ S1
NK∞

(X) holds. Then there exists p0 > 1

sufficiently close to 1 such that supx∈E Ex[U
p
ζ ]<∞ for any p ∈ [1, p0].

Proof. We may assume m ∈ S1
D0

(X) and m(E)<∞ in view of Lemma 5.1.
We observe the expression

Ut =Exp
(
MeU−1 +M−u,c

)
t

= exp

(
M−u

t −
∫ t

0

N
(
eU −U − 1

)
(Xs)dHs −

1

2

〈
Mu,c

〉
t

)
= eu(X0)−u(Xt) exp

(
−A

N(eU−U−1)μH+ 1
2μ

c
〈u〉

t +Nu
t

)
.

The quadratic form Q associated to At := −A
N(eU−U−1)μH+ 1

2μ
c
〈u〉

t + Nu
t is

given by

Q(f, g) := E(f, g) + E(fg,u) +
∫
E

fgN
(
eU −U − 1

)
dμH +

1

2

∫
E

fg dμc
〈u〉
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for f, g ∈ F . Note here that N(eU −U − 1)μH + 1
2μ

c
〈u〉 ∈ S1

NK∞
(X)⊂ S1

D0
(X).

One can see that Q(f, g) = EU (feu, geu) for f, g ∈ F . Then, we have

λQ(m) = inf

{
EU
(
feu, feu

)∣∣∣f ∈ F ,

∫
E

f2 dm= 1

}
≥ e−2‖u‖∞ inf

{
E
(
feu, feu

)∣∣∣f ∈ F ,

∫
E

f2 dm= 1

}
= e−2‖u‖∞ inf

{
E(f, f)

∣∣∣f ∈ F ,

∫
E

f2e−2u dm= 1

}
≥ e−2‖u‖∞ inf

{
E(f, f)

∣∣∣f ∈ F , e2‖u‖∞

∫
E

f2 dm= 1

}
= e−4‖u‖∞ inf

{
E(f, f)

∣∣∣f ∈ F ,

∫
E

f2 dm= 1

}
≥ e−4‖u‖∞

‖R1‖∞
> 0.

One can confirm λQ(μ̄∗
1) > 0 for μ̄∗

1 := N(eU − U − 1)μH + 1
2μ

c
〈u〉 as shown

in the proof of Proposition 5.1. Then we obtain the assertion in view of
Proposition 5.2. �

Corollary 5.1. Suppose that μ〈u〉 ∈ S1
NK∞

(X) holds. Then the following
hold:

(1) For ν ∈ S1
D0

(X), e−2uν ∈ S1
D0

(U).

(2) For ν ∈ S1
K∞

(X), e−2uν ∈ S1
K∞

(U).

(3) For ν ∈ S1
CK∞

(X), e−2uν ∈ S1
CK∞

(U).

(4) Suppose that Sνo ⊃ S
μc
〈u〉+N(eU−U−1)μH

o or there exists a measure η ∈
S1
NK∞

(X) such that supp[Aη] = E. Then, for ν ∈ S1
NK∞

(X) we have

e−2uν ∈ S1
NK∞

(U).

(5) For ν ∈ S1
NK1

(X) we have e−2uν ∈ S1
NK1

(U).

Proof. As we proved in the previous lemma, there exists p0 > 1 sufficiently
close to 1 such that α(p) := supx∈E Ex[U

p
ζ ]<∞ for any p ∈ [1, p0]. Put q :=

p/(p − 1) and C(q) := q(q − 1) · · · (q − [q] + 1) with [q] := sup{x ∈ N|x ≤ q}.
Then, by Hölder’s inequality and Lemma 2.2 in [17],

RU
(
e−2uν

)
(x) =EU

x

[
Aν

ζ

]
=Ex

[
UζA

ν
ζ

]
≤ α(p)1/pC(q)1/q sup

x∈E
Ex

[
Aν

ζ

]
.

This implies the assertions of (1), (2) and (3). Next, we prove (4) and (5).
To prove them, we emphasize that (1) is needed. If supx∈E Ex[A

ν
τD ]< 1, then

there exists q ∈ ]1,2[ sufficiently close to 1 with supx∈E Ex[A
ν
τD ] < 1/q1/q .

Applying Hölder’s inequality again

EU
x

[
Aν

τD

]
=Ex

[
UτDA

ν
τD

]
≤Ex

[
Up
τD

] 1
pEx

[(
Aν

τD

)q] 1
q

≤Ex

[
Up
τD

] 1
p q

1
q sup
x∈E

Ex

[
Aν

τD

]
.
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The rest of the proof is the same as in the proof of Lemma 4.1(6), (7). �

Proof of Theorem 1.1. We may assume m ∈ S1
D0

(X) and m(E)<∞ in view
of Lemma 5.1. The gaugeability supx∈E Ex[eA(ζ)]<∞ is equivalent to

sup
x∈E

EU
x

[
eA

ν̄
ζ+AF

ζ
]
<∞

by (4.11). It suffices to prove that this is equivalent to (5.1). It is

easy to see Sν̄1
o ⊃ S

μc
〈u〉+N(eU−U−1)μH

o . By Corollary 5.1(1), (5), we have
e−2um ∈ S1

D0
(U), e−2u(ν̄1 + N(eU (eF1 − 1))μH) ∈ S1

NK1
(U) and e−2u(ν̄2 +

N(eUF2)μH) ∈ S1
D0

(U). Then we can apply Lemma 4.3(1)⇐⇒ (4) so that

EU
x

[∫ ζ

0

eA
ν̄
s+AF

s ds

]
<∞

holds for some x ∈ E. The identity (5.2) with Theorem 4.1 for the function

gβm+ν̄+F (x) :=EU(β)

x [exp(βζ+Aν̄
ζ +AF

ζ )] under U
(β) yields the desired equiv-

alence. The rest of the proof is the same as in the proof of Proposition 5.1. �

Remark 5.1.

(1) The quadratic form (Q̌, F̌) on L2(E;gm) obtained from the Dirichlet form
(Ě , F̌) on L2(E;gm) associated to (X̌, gm) by perturbations is given by
Q̌(ϕ,ψ) = Ě(ϕ,ψ)+ Ě(u,ϕψ)−

∫
E
ϕψ dμ− 2

∫
(E×E)\diag ϕ⊗ψ(eF − 1)dJ .

The Feynman–Kac semigroup (Q̌t)t>0 associated with (Q̌, F̌) is given by

Q̌tf(x) = Ěx

[
ěA(t)f(X̌t)

]
:=Ex

[
eA(τt)f(Xτt)

]
for x ∈ E,f ∈ Bb(E). Then the gauge function for the Feynman–Kac
transform ěA(t) obtained from (Q̌t)t>0 is given by

Ěx

[
ěA(ζ̌)

]
=Ex

[
eA(τAgm

ζ
)
]
=Ex

[
eA(ζ)

]
, x ∈E,

because τAgm
t

= t∧ ζ. Now, applying Theorem 1.1 to (X̌, gm), we see that

λQ(μ̄∗
1

)
= λQ̌(μ̄∗

1

)
:= inf

{
Q̌(ϕ,ϕ)

∣∣∣ϕ ∈ C,
∫
E

ϕ2 dμ̄∗
1 = 1

}
> 0

is equivalent to supx∈E Ex[eA(ζ)]<∞.
(2) In view of [26, Lemma 4.1](2), if (RSF) is satisfied for X, the conclusion

of Theorem 1.1 holds provided μ〈u〉 + μ1 + N(F1)μH ∈ S1
K∞

(X), μ2 +

N(F2)μH ∈ S1
D0

(X).

The following corollary is an easy consequence of Theorem 1.1 through the
same procedure as in the proof of Proposition 5.2.

Corollary 5.2 (Super Gauge Theorem). We have the following.
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(1) Suppose that μ̄∗
1 ∈ S1

NK1
(X), μ〈u〉 ∈ S1

NK∞
(X) and μ2 + N(F2)μH ∈

S1
D0

(X) hold. If supx∈E Ex[eA(ζ)] < ∞, then there exists a p0 > 1 suf-
ficiently close to 1 such that supx∈E Ex[eA(ζ)

p]<∞ for any p ∈ [1, p0].
(2) Suppose that N(eU (eF1 − 1))μH ∈ S1

NK1
(X), μ〈u〉 ∈ S1

NK∞
(X) and

N(F2)μH ∈ S1
D0

(X) hold. Then there exists a p0 > 1 sufficiently close

to 1 such that supx∈E Ex[(Y
1
ζ )

p] < ∞ for any p ∈ [1, p0]. In particular,
the assertions in Corollary 5.1 remain valid by replacing the transformed
process U by Y1 or Z.

Proof. (1): By Theorem 1.1, the gaugeability supx∈E Ex[eA(ζ)] < ∞ is
equivalent to λQ(μ̄1) > 0 without assuming m ∈ S1

D0
(X) and m(E) <∞. In

the same way of the proof of Proposition 5.2, we have that there exists a

p0 ∈ ]1,+∞[ sufficiently close to 1 such that λQ(p)

(μ̄
(p)
1 )> 0 for any p ∈ [1, p0],

equivalently supx∈E Ex[eA(ζ)
p]<∞ holds for any p ∈ [1, p0] by Theorem 1.1.

(2): The proof of (2) is easy in view of the following expressions for Y 1
t

and Zt:

Y 1
t = eu(X0)−u(Xt)eA−Aμ̄∗+AF2 (t),

Zt = eu(X0)−u(Xt)eA−Aμ̄∗ (t). �

Corollary 5.3. Suppose that μ̄∗
1 ∈ S1

NK1
(X), μ〈u〉 ∈ S1

NK∞
(X) and μ2 +

N(F2)μH ∈ S1
D0

(X) hold. Then infx∈E Ex[eA(ζ)]> 0 holds.

Proof. Note that e−2uν̄2 ∈ S1
D0

(U) and e−2uN(eUF2)μH ∈ S1
D0

(U) in view
of Corollary 5.1(1). Then by Jensen’s inequality, we have

inf
x∈E

EU
x

[
exp
(
Aν̄

ζ +AF
ζ

)]
≥ inf

x∈E
EU

x

[
exp
(
−Aν̄2

ζ −AF2

ζ

)]
≥ exp

(
− sup

x∈E
EU

x

[
Aν̄2

ζ +AF2

ζ

])
> 0.

Applying (4.11), we now obtain

inf
x∈E

Ex

[
eA(ζ)

]
≥ inf

x∈E
EU

x

[
exp
(
Aν̄

ζ +AF
ζ

)]
e−2‖u‖∞ > 0. �

Theorem 5.1 (Gauge theorem). Assume μ̄∗
1 ∈ S1

NK1
(X), μ〈u〉 ∈ S1

NK∞
(X)

and μ2+N(F2)μH ∈ S1(X). Then the following are equivalent to each other.

(1) There exists x ∈E such that Ex[eA(ζ)]<∞.
(2) supx∈E Ex[eA(ζ)]<∞.

Proof. The proof is quite similar to the proofs of [4, Theorem 2.13], [10,
Theorem 2.6]. By (4.11), we see

e−2‖u‖∞EU
x

[
exp
(
Aν̄

ζ +AF
ζ

)]
≤ gA(x)≤ e2‖u‖∞EU

x

[
exp
(
Aν̄

ζ +AF
ζ

)]
.

So it suffices to prove gU (x) :=EU
x [exp(A

ν̄
ζ +AF

ζ )] satisfies supx∈E gU (x)<∞
or gU ≡∞. The fine continuity of x �→ gU (x) and the absorbing property of
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the set O := {gU <∞} can be proved in a similar way as in [4], [10]. So, it
suffices to confirm that there are N > 0 and C > 0 such that

O =
{
gU <∞

}
=
{
gU ≤C(1 +N)

}
.

Then O is finely open and finely closed. Since E is connected with respect to
the fine topology under (I) and (AC), we have O =E or O = ∅, which means
the assertion. Next, we prove e−2uν̄1 + e−uN(e−u(eF1 − 1))μH ∈ S1

NK1
(U).

We know ν̄1+N(eU (eF1 −1))μH ∈ S1
NK1

(X) for ν̄1 := μ1+N(eU −U−1)μH +
1
2μ

c
〈u〉. Since ν̄1 +N(eU (eF1 − 1))μH ≥ 1

2μ
c
〈u〉 +N(eU − U − 1)μH , we have

S
ν̄1+N(eU (eF1−1))μH
o ⊃ S

1
2μ

c
〈u〉+N(eU−U−1)μH

o = S
μc
〈u〉+N(eU−U−1)μH

o . We can
apply Corollary 5.1(5) so that e−2uν̄1 + e−uN(e−u(eF1 − 1))μH ∈ S1

NK1
(U).

The proof of e−2uν̄2+ e−uN(e−uF2)μH ∈ S1(U) is easy. The rest of the proof
is the same as in the proof of Theorem 4.1. �

Remark 5.2. Theorem 5.1 is not covered by [22, (4.5) Theorem] due to
the existence of u.

In the rest of this paper, we use the notation τD as the first exit time of X
out of D in E, that is, τD = inf{t > 0 :Xt /∈D}.

The following is a trivial consequence of Theorem 1.1.

Corollary 5.4. Let X be an m-symmetric (not necessarily irreducible)
Feller process on E. Let D be a connected open subset of E and XD the
part process of X on D. Assume that (RSF) is satisfied for X and take
u ∈ (FD)loc∩C(D∂). Then λQ

D(μ̄1)> 0 if and only if supx∈DEx[eA(τD)]<∞
provided μ̄∗

1 ∈ S1
CK1

(XD), μ〈u〉 ∈ S1
K∞

(XD) and μ2 + N(F2)μH ∈ S1
D0

(XD).

Here λQ
D(μ̄1) := inf{Q(f, f)|f ∈ CD,

∫
D
f2 dμ̄1 = 1}.

Proof. Under the condition, XD satisfies (RSF) by [26, Lemma 5.3], hence
S1
CK∞

(XD) = S1
K∞

(XD) from [26, Lemma 4.1]. Moreover, (I) holds for XD

because of the connectedness of D. �

6. Semi-conditional gaugeability and subcriticality

The following definitions of Green-tight measures of Kato class are due to
Chen [4]. Let d := {(x, z) ∈ E × E|R(x, z) = 0 or ∞} and Ez := {x ∈ E|0 <
R(x, z)<∞}.

First, we show the following lemma, which was not stated in [26].

Lemma 6.1. Under the conditions (I) and (AC), R(x, y)> 0 holds for any
x, y ∈E, in particular, d= {(x, y) ∈E ×E|R(x, y) =∞}.

Proof. We may assume E �= ∅. Otherwise, the statement is true. Fix
x ∈E. First we note that αRα(R(x, ·))(y)≤R(x, y) and α �→ αRα(R(x, ·))(y)
is increasing for y ∈ E. We set R(x, y) := limα→∞αRα(R(x, ·))(y) ≤ R(x, y)
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and Dx := {y ∈ E|R(x, y) > 0}. Note that R(x, y) = R(x, y) m-a.e. y ∈ E.
Then 1Dx is an excessive function of X. Indeed,

lim
α→∞

αRα1Dx(y) = lim
α→∞

lim
n→∞

αRα

(
nR(x, ·)∧ 1

)
(y)

= lim
n→∞

lim
α→∞

αRα

(
nR(x, ·)∧ 1

)
(y)

= lim
n→∞

(
nR(x, ·)∧ 1

)
(y) = 1Dx(y).

Thus, we have that Dx is Borel measurable, and finely open and finely closed.
Under (I) and (AC), the fine topology of X is connected. Then we obtain
Dx = ∅ or Dx =E. The case Dx = ∅ yields R(x, y) = 0 for all x, y ∈E, which
implies Rf(x) =

∫
E
R(x, y)f(y)m(dy) =

∫
E
R(x, y)f(y)m(dy) = 0 for any f ∈

L2(E;m). Consequently L2(E;m) = {0}, hence C0(E) = {0}. Thus, we get
E = ∅ contradicting E �= ∅. Therefore, we obtain Dx = E, hence R(x, y) ≥
R(x, y)> 0 for all x, y ∈E. �

Definition 6.1 (Semi-conditionally Green-bounded, semi-conditionally
Green tight Kato class measures in the sense of Chen). Let ν ∈ S1(X) and
denote by Rz

α(x, y) the α-order Green function of Doob’s R(·, z)-transformed
process Xz of X for α≥ 0 defined by

Rz
α(x, y) :=

Rα(x, y)R(y, z)

R(x, z)
, x, y ∈Ez with (x, y) ∈ (E ×E) \ d,

where d := {(x, y)|R(x, y) = 0 or +∞} and Ez := {x ∈E|(x, z) ∈ (E×E) \ d}.
We write Rz(x, y) :=Rz

0(x, y) for α= 0.

(1) ν is said to be semi-conditionally Green-bounded if ν ∈
⋂

z∈E S1
D0

(Xz). ν
is said to be conditionally Green-bounded if

sup
(x,z)∈(E×E)\d

∫
Ez

Rz(x, y)ν(dy)<∞.

(2) ν is said to be a semi-conditionally Green-tight measure of Kato class in
the sense of Chen if ν ∈

⋂
z∈E S1

CK∞
(Xz). ν is said to be a conditionally

Green-tight measure of Kato class in the sense of Chen if for any ε > 0
there exist a Borel set K =K(ε)⊂E of finite ν-measure and a constant
δ > 0 such that for all ν-measurable set B ⊂K with ν(B)< δ,

sup
(x,z)∈(E×E)\d

∫
B∪Kc

Rz(x, y)ν(dy)< ε.

(3) ν is said to be a semi-conditionally semi-Green-tight measure of extended
Kato class in the sense of Chen if ν ∈

⋂
z∈E S1

CK1
(Xz). ν is said to be

a conditionally semi-Green-tight measure of extended Kato class in the
sense of Chen if there exist a Borel set K ⊂E of finite ν-measure and a
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constant δ > 0 such that for all ν-measurable set B ⊂K with ν(B)< δ,

sup
(x,z)∈(E×E)\d

∫
B∪Kc

Rz(x, y)ν(dy)< 1.

Let us denote by S1
CS∞

(X) (resp. S1
CS1

(X), S1
DS0

(X)) the family of condi-
tionally Green-tight measures of Kato class in the sense of Chen (resp. the fam-
ily of conditionally semi-Green-tight measures of extended Kato class in the
sense of Chen, the family of conditionally Green-bounded measures) and semi-
S1
CS∞

(X) :=
⋂

z∈E S1
CK∞

(Xz) (resp. semi-S1
CS1

(X) :=
⋂

z∈E S1
CK1

(Xz), semi-

S1
DS0

(X) :=
⋂

z∈E S1
D0

(Xz)) the family of semi-conditionally Green-tight mea-
sures of Kato class in the sense of Chen (resp. the family of semi-conditionally
semi-Green-tight measures of extended Kato class in the sense of Chen, the
family of semi-conditionally Green-bounded measures). Clearly, S1

CS∞
(X)⊂

S1
CS1

(X) ⊂ S1
DS0

(X), S1
CS∞

(X) ⊂ semi-S1
CS∞

(X), S1
CS1

(X) ⊂ semi-S1
CS1

(X)

and S1
DS0

(X)⊂ semi-S1
DS0

(X).

It is known S1
CS∞

(X)⊂ S1
CK∞

(X) and S1
CS1

(X)⊂ S1
CK1

(X) ([4, the remark

after Definition 3.1] and [9, Proposition 3.1 and Corollary 3.1]) and S1
DS0

(X)⊂
S1
D0

(X) can be similarly proved along the proof of [9, Proposition 3.1 and

Corollary 3.1]. The converse inclusions S1
CK∞

(X)⊂ S1
CS∞

(X), 1
2c ·S1

CK1
(X)⊂

S1
CS1

(X) and S1
D0

(X) ⊂ S1
DS0

(X), hence S1
CK∞

(X) =

S1
CS∞

(X), 1
2c · S1

CK1
(X) ⊂ S1

CS1
(X) ⊂ S1

CK1
(X) and S1

D0
(X) = S1

DS0
(X) hold

under the 3G-inequality: Rz(x, y)≤ c(R(x, y)+R(y, z)). Here 1
2c ·S1

CK1
(X) :=

{ 1
2cν|ν ∈ S1

CK1
(X)}. Moreover, S1

CS1
(X) ⊂ S1

DS0
(X) holds by [4, Proposi-

tion 3.2]. Note that the Borel set K of finite measure appeared in Defini-
tion 6.1 can be taken to be compact (cf. the argument after Definition 4.1).

Definition 6.2. Let F be a symmetric bounded function on E×E vanish-
ing on the diagonal set such that F can be extended to (E×{∂})∪({∂}×{∂})
with F (x,∂) = F (∂, ∂) = 0 for x ∈E.

(1) F is said to be in the class J1
DS0

(X) if N(|F |)μH ∈ S1
DS0

(X). F is said to

be in the class A1
DS0

(X) if

sup
(x,z)∈(E×E)\d

∫
E×E

R(x, y)|F (y,w)|R(w,z)

R(x, z)
N(y,dw)μH(dy)<∞.

(2) F is said to be in the class J1
CK∞

(X) (resp. J1
CS∞

(X)) if N(|F |)μH ∈
S1
CK∞

(X) (resp. N(|F |)μH ∈ S1
CS∞

(X)). F is said to be in the class

A1
CS∞

(X) if for any ε > 0, there exist a Borel set K =K(ε)⊂E of finite
N(|F |)μH -measure and a constant δ > 0 such that for all measurable set
B ⊂K with

∫
B
N(|F |)dμH < δ,

sup
(x,z)∈(E×E)\d

∫
{(K\B)×(K\B)}c

R(x, y)|F (y,w)|R(w,z)

R(x, z)
N(y,dw)μH(dy)< ε.
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(3) F is said to be in the class J1
CK1

(X) (resp. J1
CS1

(X)) if N(|F |)μH ∈
S1
CK1

(X) (resp. N(|F |)μH ∈ S1
CS1

(X)). F is said to be in the class

A1
CS1

(X) if there exist a Borel set K ⊂ E of finite N(|F |)μH -measure
and a constant δ > 0 such that for all measurable set B ⊂ K with∫
B
N(|F |)dμH < δ,

sup
(x,z)∈(E×E)\d

∫
{(K\B)×(K\B)}c

R(x, y)|F (y,w)|R(w,z)

R(x, z)
N(y,dw)μH(dy)< 1.

By a similar proof as that for [10, Corollary 3.2], we have A1
CS∞

(X) ⊂
J1
CK∞

(X), A1
CS1

(X)⊂ J1
CK1

(X) and A1
DS0

(X)⊂ J1
D0

(X). Moreover, according

to the same way of the proof of Proposition 3.2 in [4], we see A1
CS∞

(X) ⊂
A1

CS1
(X)⊂A1

DS0
(X).

Remark 6.1. The definition for A∞(X) in [10, Definition 3.2] is incorrect.
We follow the definition as in [4, Definition 3.4]. So [26, Definition 6.2(2)(3)]
should be corrected as in Definition 6.2(2), (3) above.

Definition 6.3. Let F be a symmetric bounded function on E×E noted
in Definition 6.2 above and ν ∈ S1(X).

(1) (ν,F ) is said to be in the class B1
DS0

(X) if ν ∈ S1
DS0

(X) and F ∈A1
DS0

(X).

(2) (ν,F ) is said to be in the class B1
CS∞

(X) if ν ∈ S1
CS∞

(X) and F ∈
A1

CS∞
(X).

(3) (ν,F ) is said to be in the class B1
CS1

(X) if there exist a Borel set K ⊂E
of finite ν + N(|F |)μH -measure and a constant δ > 0 such that for all
measurable set B ⊂K with ν(B) +

∫
B
N(|F |)dμH < δ,

sup
(x,z)∈(E×E)\d

(∫
B∪Kc

Rz(x, y)ν(dy)(6.1)

+

∫
{(K\B)×(K\B)}c

R(x, y)|F (y,w)|R(w,z)

R(x, z)
N(y,dw)μH(dy)

)
< 1.

Clearly, (ν,F ) ∈B1
CS1

(X) implies ν ∈ S1
CS1

(X) and F ∈ A1
CS1

(X). In par-

ticular, we have B1
CS∞

(X)⊂B1
CS1

(X)⊂B1
DS0

(X).
Note that the Borel set K of finite measure appeared in Definitions 6.2

and 6.3 can be taken to be compact (cf. the argument after Definition 4.1).
The following lemma is needed in the proof of Theorem 6.1.

Lemma 6.2. Take ν ∈ S1(X) and F ∈ J1(X). Let g ∈ L1(E;ν+N(|F |)μH)
be a (ν+N(|F |)μH)-a.e. strictly positive bounded function. Then the following
are equivalent each other.

(1) The following are equivalent.
(a) (ν,F ) ∈B1

CS∞
(X).
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(b) (ν,F ) ∈ B1
DS0

(X) and for every decreasing sequence of Borel sets
{Dn} with empty intersection

lim
n→∞

sup
(x,z)∈(E×E)\d

(∫
Dn

Rz(x, y)ν(dy)

+

∫
(Dn×E)∪(E×Dn)

R(x, y)|F (y,w)|R(w,z)

R(x, z)
N(y,dw)μH(dy)

)
= 0.

(c) For any ε > 0 there exist a Borel subset K =K(ε) of E and a con-
stant δ > 0 such that for all measurable set B ⊂ K with

∫
B
g d(ν +

N(|F |)μH)< δ,

sup
(x,z)∈(E×E)\d

(∫
B∪Kc

Rz(x, y)ν(dy)(6.2)

+

∫
{(K\B)×(K\B)}c

R(x, y)|F (y,w)|R(w,z)

R(x, z)
N(y,dw)μH(dy)

)
= 0.

(2) The following are equivalent.
(a) (ν,F ) ∈B1

CS1
(X).

(b) (ν,F ) ∈ B1
DS0

(X) and for every decreasing sequence of Borel sets
{Dn} with empty intersection

lim
n→∞

sup
(x,z)∈(E×E)\d

(∫
Dn

Rz(x, y)ν(dy)

+

∫
(Dn×E)∪(E×Dn)

R(x, y)|F (y,w)|R(w,z)

R(x, z)
N(y,dw)μH(dy)

)
< 1.

(c) There exist a Borel subset K of E and a constant δ > 0 such that for
all measurable set B ⊂K with

∫
B
g d(ν +N(|F |)μH)< δ, (6.1) holds.

Proof. The proof of Lemma 6.2 is similar to the proof of [26, Lemma 4.2]
(see also [4, Propositions 2.2 and 2.4]). So we omit the detail. �

Let μ̄∗
1 ∈ S1

EK(X), μ〈u〉 ∈ S1
K(X) and μ2 + N(F2)μH ∈ S1(X). In the

same way of Lemma 4.1 in [19], for α ≥ 0, we can construct a symmetric
α-order resolvent kernel RA

α (x, y) of the Feynman–Kac semigroup PA
t f(x) :=

Ex[eA(t)f(Xt)], which is defined for all x, y ∈E (possibly infinite), α-excessive
with respect to (PA

t )t≥0 in x (and in y), and satisfies a resolvent equation like
as in [19, (4.2.12)].

We need the following lemmas:

Lemma 6.3 (cf. [26, Lemma 6.1]). Suppose that μ̄∗
1 ∈ S1

EK(X), μ〈u〉 ∈
S1
K(X) and μ2 + N(F2)μH ∈ S1(X) hold. Then for α ≥ 0 and x ∈ E,

y �→RA
α (x, y) is finely continuous with respect to X.

Proof. The proof is the quite same as that of [26, Lemma 6.1] under the
condition above. So we omit it. �
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Lemma 6.4 (cf. [26, Lemma 6.2]). Assume that μ̄∗
1 ∈ semi-S1

CS1
(X), μ〈u〉 ∈

semi-S1
CS∞

(X) and μ2 + N(F2)μH ∈ semi-S1
DS0

(X). Then for each y ∈ E,
Ey � x �→Ey

x[eA(ζ
y)] is finely lower semi continuous with respect to Xy .

Proof. The proof is the quite same as that of [26, Lemma 6.2] under the
condition above. So we omit it. �

The following theorems and lemma can be proved with slight modifications
as those in [4].

Theorem 6.1 (Conditional Gauge Theorem I, cf. [4, Theorem 3.8], [10,
Theorem 3.5]). Suppose (ν1, e

F1 − 1) ∈B1
CS1

(X) and ν2 +N(F2)μH ∈ S1(X).

Let A=Aν +AF . If Ew
x [eA(ζ

w)] is finite for some (x,w) ∈ (E ×E) \ d, then
it is bounded on (E ×E) \ d.

Proof. The proof is similar to that of [4, Theorem 3.8], [10, Theo-
rem 3.5]. We provide the proof for reader’s convenience. We let u(x, y) :=
Ey

x[eA(ζ
y)]. By symmetricity (see [10, (3.7)]), u(x, y) = u(y,x) for (x, y) ∈

(E × E) \ d. Set O := {(x, z) ∈ (E × E) \ d|u(x, z) < ∞} and suppose
O �= ∅. Take (x0, y0) ∈O. The condition (ν1, e

F1 − 1) ∈B1
CS1

(X) yields ν1 +

Nz(eF1 − 1)μH ∈ S1
CK1

(Xz) ⊂ S1
NK1

(Xz) for each z ∈ E. Here Nz(y,dw) :=
R(w,z)
R(y,z)N(y,dw) is the Lévy kernel of Xz (see [10, Proposition 3.3]). We will

confirm it. Since (ν1, e
F1 − 1) ∈ B1

CS1
(X) ⊂ B1

DS0
(X) = S1

DS0
(X)×A1

DS0
(X),

we see ν1 +Nz(eF1 − 1)μH ∈ S1
D0

(Xz) for any z ∈ E. Applying [4, Proposi-
tion 2.4(2)] to Xz , it suffices to show that for each z ∈E and any decreasing
sequence {Dn} of Borel subsets of Ez with empty intersection,

lim
n→∞

sup
x∈Ez

∫
Dn

Rz(x, y)
(
ν1 +Nz

(
eF1 − 1

)
μH

)
(dy)< 1.(6.3)

By Lemma 6.2(2), we have

lim
n→∞

sup
(x,z)∈(E×E)\d

(∫
Dn

R(x, y)R(y, z)

R(x, z)
ν1(dy)

+

∫
(Dn×E)∪(E×Dn)

R(x, y)R(w,z)

R(x, z)

(
eF1(y,w) − 1

)
N(y,dw)μH(dy)

)
< 1.

Hence,

lim
n→∞

sup
x∈Ez

∫
Dn

Rz(x, y)
(
ν1 +Nz

(
eF1 − 1

)
μH

)
(dy)

= lim
n→∞

sup
x∈Ez

(∫
Dn

R(x, y)R(y, z)

R(x, z)
ν1(dy)

+

∫
Dn

∫
E

R(x, y)R(y, z)

R(x, z)

(
eF1(y,w) − 1

)
Nz(y,dw)μH(dy)

)
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≤ lim
n→∞

sup
(x,z)∈(E×E)\d

(∫
Dn

R(x, y)R(y, z)

R(x, z)
ν1(dy)

+

∫
{Dn×E}∪{E×Dn}

R(x, y)R(w,z)

R(x, z)

(
eF1(y,w) − 1

)
N(y,dw)μH(dy)

)
< 1.

Thus, we have (6.3). One can apply Theorem 5.1 to Xy0 so that

sup
x∈Ey0

u(x, y0) = sup
x∈Ey0

u(y0, x)<∞.

Applying Theorem 5.1 to Xx again that for any x ∈E,

sup
z∈Ex

u(x, z) = sup
z∈Ex

u(z,x)<∞.(6.4)

Recall the condition (ν1, e
F1 − 1) ∈B1

CS1
(X). There exists a Borel subset K

of finite (ν1 +N(eF1 − 1)μH)-measure such that there exists δ > 0 with

β := sup
B⊂K,

(ν1+N(eF1−1)μH)(B)<δ

sup
(x,z)∈(E×E)\d

(
Rz1B∪Kcν1(x)

+

∫
{(K\B)×(K\B)}c

R(x, y)|eF1(y,w) − 1|R(w,z)

R(x, z)
N(y,dw)μH(dy)

)
< 1.

Note that u(x, y) is B(E ×E)-measurable if we set u(x, y) = 1 for (x, y) ∈ d.
Hence, {x ∈ K| supz∈E u(x, z) ≥ n} is B(E)-measurable as it is the x-pro-
jection of the set {(x, z) ∈ K × E|u(x, z) ≥ n}. As

⋂∞
n=2{x ∈ K|n ≤

supz∈E u(x, z)} = ∅ from (6.4), we can choose N large enough so that the
set BN := {x ∈K|N ≤ supz∈E u(x, z)} has (ν1 +N(eF1 − 1)μH)-measure less
than δ. Applying Khasinskii’s Lemma to Xz , we have

C : = sup
(x,z)∈(E×E)\d

Ez
x

[
exp
(
Aν1

τBN∪Kc +AF1
τBN∪Kc

)]
= sup

(x,z)∈(E×E)\d
Ez

x

[
Exp

(
Aν1 +AeF1−1

)
τBN∪Kc

]
≤ 1

1− sup(x,z)∈(E×E)\dE
z
x[A

ν1
τBN∪Kc +AeF1−1

τBN∪Kc ]
≤ 1

1− β
<∞.

By the formula

u(x, z) = Ez
x

[
exp
(
Aν

τBN∪Kc +AF
τBn∪Kc

)
: τBN∪Kc = ζz

]
+Ez

x

[
exp
(
Aν

τBN∪Kc +AF
τBN∪Kc

)
u(XτBN∪Kc , z) : τBN∪Kc < ζz

]
for (x, z) ∈ (E ×E) \ d, we have u(x, z)≤ C +CN for (x, z) ∈O ∩ (BN ×E)
in view of XτBN∪Kc ∈ Oz ∩ (K \BN ) Pz

x-a.s. on {τBN∪Kc < ζz} for x ∈ Oz ,

where we use the absorbing property of Oz := {x ∈E|u(x, z)<∞} under Xz

for each z ∈ E. Moreover, u(x, z) ≤N for (x, z) ∈ O ∩ (Bc
N × E). Thus, we

obtain O = {(x, z) ∈ (E×E)\d|u(x, z)≤C+CN} for some C > 0 and N ∈N

under O �= ∅, which implies the assertion. �
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Lemma 6.5 (cf. [4, Lemmas 3.5 and 3.9]). Suppose that ν1 +N(F1)μH ∈
S1(X), ν2 +N(F2)μH ∈ S1(X) and μ〈u〉 ∈ S1

D(X). Let A = Aν + AF +Nu.
Then the following hold:

(1) For every Borel function f ≥ 0,

Ex

[∫ ∞

0

eA(t)f(Xt)dt

]
=

∫
E

R(x, y)Ey
x

[
eA
(
ζy
)]
f(y)m(dy).

(2) For any positive measure μ ∈ S1
D0

(X),

Ex

[∫ ∞

0

eA(t)dA
μ
t

]
=

∫
E

R(x, y)Ey
x

[
eA
(
ζy
)]
μ(dy).

Here Aμ is the PCAF of X in the strict sense with Revuz measure μ.

Proof. The proof is similar to that of [4, Lemmas 3.5 and 3.9]. We provide
it for completeness. It suffices to prove (1). The proof for (2) is similar. Fix
a bounded Borel measurable function f0 ∈ L2(E;m) being strictly positive m-
a.e. on E such that h := Rf0 is bounded on E. The existence of such f0 is
proved in Getoor [21]. As in the proof of [4, Lemma 3.5],

Mt := h(Xt)− h(X0) +

∫ t

0

f0(Xs)ds

is a square integrable martingale under Px with

sup
t∈[0,∞[

Ex

[
M2

t

]
<∞(6.5)

for all x ∈E. By [20, Proposition 5.3], for any bounded F∞-measurable Λ∫
E

R(x, y)Ey
x[Λ]f0(y)m(dy) = h(x)Eh

x[Λ].(6.6)

Applying the bounded F∞-measurable Λ = eA(∞)∧ k to (6.6),∫
E

R(x, y)Ey
x

[
eA
(
ζy
)
∧ k
]
f0(y)m(dy) = h(x)Eh

x

[
eA
(
ζh
)
∧ k
]
.

By way of the argument in Sharpe [33, Section 62], we have∫
E

R(x, y)Ey
x

[
eA
(
ζy
)
∧ k
]
f0(y)m(dy) =Ex

[∫ ∞

0

(
eA(t)∧ k

)
f0(Xt)dt

]
as in the proof of [4, Lemma 3.5]. Letting k→∞, we obtain the assertion for
f = f0. The rest of the proof is similar to that of [4, Lemma 3.5]. �

Theorem 6.2 (cf. [4, Theorem 3.10]). Suppose that (ν1, e
F1−1) ∈B1

CS1
(X),

ν2 +N(F2)μH ∈ S1(X). Let A = Aν + AF . Then the following are equiva-
lent:

(1) (X,A) is gaugeable.
(2) (X,A) is conditionally gaugeable.
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Proof. The proof is similar to that of [4, Theorem 3.10] with [4, Lemma 3.9]
by use of Lemmas 4.2(2), 6.5(3), (4) and Theorem 6.1. We omit it. �

We also obtain the existence of α-order resolvent kernel RU,ν̄+F
α (x, y) of

the Feynman–Kac semigroup PU,ν̄+F
t defined by

PU,ν̄+F
t f(x) :=EU

x

[
exp
(
Aν̄

t +AF
t

)
f(Xt)

]
.

RU,ν̄+F
α (x, y) is defined for all x, y ∈ E (but possibly infinite) and for each

x ∈ E, y �→ RU,ν̄+F
α (x, y) is finely continuous with respect to U by apply-

ing Lemma 6.3 to U, because e−2u(ν1 +N(eU (eF1 − 1))μH) ∈ S1
EK(U) and

e−2u(μ2 +N(eUF2)μH) ∈ S1(U) hold by Lemma 4.1. By (4.10), we have the
relation

RA(x, y) =RU,ν̄+F (x, y)e−u(x)−u(y)(6.7)

holds for m-a.e. y ∈E and all x ∈E. Applying Lemma 3.1 to U, (6.7) holds
for all x, y ∈E.

Proof of Theorem 1.2. The equivalence (1)⇐⇒ (5) also follows from The-
orem 1.1 and

λQ(μ̄1) = inf

{
Q
(
R(·, y)f,R(·, y)f

)∣∣∣R(·, y)f ∈ C,
∫
E

f2R(·, y)2 dμ̄1 = 1

}
.

It suffices to prove the equivalence (1) ⇐⇒ (2) ⇐⇒ (3) ⇐⇒ (4). By
Lemma 6.5, we see that

RA(x, y) =R(x, y)Ey
x

[
eA
(
ζy
)]

for m-a.e. y ∈Ex.(6.8)

The implications (4) =⇒ (3) =⇒ (2) are trivial. Suppose (2). Owing to
the symmetricity RA(x, y) = RA(y,x), this is equivalent to that for each

y ∈ E, RA(x, y) < ∞ for m-a.e. x ∈ Ey . Then Ey
x[eA(ζ

y)] = RA(x,y)
R(x,y) < ∞

for m-a.e. x ∈ Ey for each y ∈ E. Here we use R(x, y) > 0 for x, y ∈ E
in view of Lemma 6.1. Applying Theorem 5.1 to Xy , we have from
μ̄∗
1 ∈ S1

CS1
(X) ⊂ semi-S1

CS1
(X), μ〈u〉 ∈ S1

CS∞
(X) ⊂ semi-S1

CS∞
(X) and μ2 +

N(F2)μH ∈ S1
DS0

(X)⊂ semi-S1
DS0

(X) that

sup
x∈Ey

Ey
x

[
eA
(
ζy
)]

<∞.

Consequently (1) holds from (6.8). Conversely suppose (1). Note that

inf
x∈Ey

Ey
x

[
eA
(
ζy
)]

> 0

always holds under the present conditions in view of Corollary 5.3. Then there
exists C > 0 depending only on y ∈ E such that C−1R(x, y) ≤ RA(x, y) ≤
CR(x, y) m-a.e. x ∈ Ey . Noting the fine continuity of x �→ RA(x, y) by
Lemma 6.3, we obtain (4). The equivalence (6)⇐⇒ (5) under μ̄∗

1 ∈ S1
CS1

(X),

μ〈u〉 ∈ S1
CS∞

(X) and μ2 +N(F2)μH ∈ S1
DS0

(X) follows from Theorem 1.1, be-

cause S1
CS1

(X) ⊂ S1
CK1

(X) and S1
DS0

(X) ⊂ S1
D0

(X). Next, we prove (6) =⇒
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(8) =⇒ (7) =⇒ (1) under (1.4) with (μ1, F1) ∈B1
CS∞

(X), (μ2, F2) ∈B1
DS0

(X)

and μ〈u〉 ∈ S1
CS∞

(X). The proof for (6) =⇒ (8) =⇒ (7) =⇒ (1) under u = 0,

(μ1, e
F1 − 1) ∈ B1

CS1
(X) and (μ2, F2) ∈ B1

DS0
(X) is simpler than it. The

proof for (6) =⇒ (7) =⇒ (1) under u = 0 with (μ1, e
F1 − 1) ∈ B1

CS1
(X) with-

out (μ2, F2) ∈ B1
DS0

(X) is also similar. Suppose (6). As we proved in
Theorem 1.1 with (4.11), the condition (5) is equivalent to the gaugeabil-
ity supx∈E EU

x [exp(A
ν̄
ζ + AF

ζ )] < ∞. Recall ν̄1 := μ1 + N(eU − U − 1)μH +
1
2μ

c
〈u〉 and ν̄2 := μ2. Note that (e−2uν̄1, e

−u(x)−u(y)F1(x, y)) ∈ B1
CS∞

(U) and

(e−2uμ2, e
−u(x)−u(y)F2(x, y)) ∈ B1

DS0
(U) hold under (1.4). From these facts

with Theorem 6.2, we see that supx∈E EU
x [exp(A

ν̄
ζ +AF

ζ )] <∞ is equivalent
to the following conditional gaugeability:

sup
(x,y)∈(E×E)\d

(
EU

x

)y[
exp
(
Aν̄

ζy +AF
ζy

)]
<∞,(6.9)

where (EU
x )

y stands for the expectation of Doob’s RU (·, y)-transformed pro-
cess Uy of U starting from x ∈ Ey . Since (e−2uμ2, e

−u(x)−u(y)F2(x, y)) ∈
B1

DS0
(U) under (1.4)

inf
(x,y)∈(E×E)\d

(
EU

x

)y[
exp
(
Aν̄

ζy +AF
ζy

)]
≥ exp

(
− sup

(x,y)∈(E×E)\d

(
EU

x

)y[
Aμ2

ζy +AF2

ζy

])
> 0.

Moreover, by virtue of Lemma 6.5(1)

RU,ν̄+F (x, y) =RU (x, y)
(
EU

x

)y[
exp
(
Aν̄

ζy +AF
ζy

)]
for m-a.e. y ∈Ex.

Therefore, there exists C > 0 such that

C−1RU (x, y)≤RU,ν̄+F (x, y)≤CRU (x, y) m-a.e. y ∈Ex.(6.10)

Applying Lemma 6.3 to U, (6.10) holds for all y ∈ Ex, because the under-
lying symmetric measure e−2um has always full fine support under (AC).
Now, by using the relation (6.7) with the boundedness of u, we obtain (8).
Next suppose (8). Then by (6.8), we have that there exists C > 0 indepen-
dent of x, y ∈ E such that C−1 ≤ Ey

x[eA(ζ
y)] ≤ C m-a.e. x ∈ Ey . Applying

Lemma 6.4, Ey
x[eA(ζ

y)]≤C holds for all x ∈Ey and y ∈E, which implies (7).
The implication (7) =⇒ (1) is trivial. �

Finally, we give a criterion for (1.4). The next theorem is a slight extension
of [4, Theorem 3.8].

Theorem 6.3 (Conditional Gauge Theorem II, [26, Theorem 6.3]). Sup-
pose μc

〈u〉 = μκ
〈u〉 = 0, μ = μ1 − μ2 ∈ S1

CS1
(X) − S1

DS0
(X) and F = F1 − F2

with F1 +U+ ∈A1
CS∞

(X) and F2 +U− ∈A1
DS0

(X). Here U±(x, y) := (u(x)−
u(y))±, x, y ∈E. Then the following are equivalent to each other.

(1) There exists (x, y) ∈ (E ×E) \ d such that Ey
x[eA(ζ

y)]<∞.



760 D. KIM, M. KURNIAWATY AND K. KUWAE

(2) sup(x,y)∈(E×E)\dE
y
x[eA(ζ

y)]<∞.

Proposition 6.1. Suppose μc
〈u〉 = μκ

〈u〉 = 0, U+ ∈A1
CS∞

(X)∩J1
DS0

(X) and

U− ∈A1
DS0

(X)∩ J1
CS1

(X). Then there exists C > 0 such that (1.4) holds.

Proof. The proof is similar to the proof of [26, Proposition 6.1] by replacing
Y 1
1 with Ut. So we omit it. �
Example 6.1 (Symmetric Relativistic α-stable Process). Take 0 < α < 2

and m≥ 0. Let X= (Ω,Xt,Px) be a Lévy process on R
d with

E0

[
e
√
−1〈ξ,Xt〉]= exp

(
−t
{(

|ξ|2 +m2/α
)α/2 −m

})
.

If m> 0, it is called the relativistic α-stable process with mass m (see [31]).
In particular, if α= 1 and m> 0, it is called the relativistic free Hamiltonian
process (see [23]). When m = 0, X is nothing but the usual (rotationally)
symmetric α-stable process. It is known that X is transient if and only if
d > 2 under m> 0 or d > α under m= 0, and X is a doubly Feller conservative
process.

Let (E ,F) be the Dirichlet form on L2(Rd) associated with X. Using

Fourier transform f̂(x) := 1
(2π)d/2

∫
Rd e

i〈x,y〉f(y)dy, it follows from Exam-

ple 1.4.1 of [19] that⎧⎪⎪⎨⎪⎪⎩
F :=

{
f ∈ L2

(
R

d
)∣∣∣ ∫

Rd

∣∣f̂(ξ)∣∣2((|ξ|2 +m2/α
)α/2 −m

)
dξ <∞

}
,

E(f, g) :=
∫
Rd

f̂(ξ)¯̂g(ξ)
((
|ξ|2 +m2/α

)α/2 −m
)
dξ for f, g ∈ F .

It is shown in [11] that the corresponding jumping measure satisfies

J(dxdy) = Jm(x, y)dxdy with Jm(x, y) =A(d,−α)
Ψ(m1/α|x− y|)

|x− y|d+α
,

where A(d,−α) =
α2d+αΓ( d+α

2 )

2d+1πd/2Γ(1−α
2 )
, and Ψ(r) := I(r)/I(0), where

I(r) :=

∫ ∞

0

s
d+α

2 −1e−
s
4− r2

s ds

is a function satisfying Ψ(r) � e−r(1 + r(d+α−1)/2) near r =∞, and Ψ(r) =
1+Ψ′′(0)r2/2 + o(r4) near r = 0. In particular,⎧⎪⎪⎨⎪⎪⎩

F =

{
f ∈ L2

(
R

d
)∣∣∣ ∫

Rd×Rd

∣∣f(x)− f(y)
∣∣2Jm(x, y)dxdy <∞

}
,

E(f, g) := 1

2

∫
Rd×Rd

(
f(x)− f(y)

)(
g(x)− g(y)

)
Jm(x, y)dxdy for f, g ∈ F .

Let pt(x, y) be the heat kernel of X. The following global heat kernel estimates
were proved in [15, Theorem 2.1]: There exists C1,C2 > 0 such that

C−1
2 Φm

1/C1
(t, x, y)≤ pt(x, y)≤C2Φ

m
C1

(t, x, y),(6.11)
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where

Φm
C (t, x, y) =

{
t−d/α ∧ tJm(x, y), t ∈ ]0,1/m],

md/α−d/2t−d/2e(−C−1(m1/α|x−y|∧m2/α−1 |x−y|2
t )), t ∈ ]1/m,∞[.

For a signed Borel measure μ on R
d, μ is said to be of Kato class with

respect to X if and only if

lim
r→0

sup
x∈Rd

∫
|x−y|<r

|μ|(dy)
|x− y|d−α

= 0 for d > α,

lim
r→0

sup
x∈Rd

∫
|x−y|<r

(
log |x− y|−1

)
|μ|(dy) = 0 for d= α(= 1),

sup
x∈Rd

∫
|x−y|≤1

|μ|(dy) <∞ for α> d(= 1).

Denote by Kd,α the family of nonnegative measures of Kato class with respect
to X. Then we have Kd,α = S1

K(X) by [29].
From now on, we assume the transience of X. Using (6.11), we see the

following Green kernel estimate by [15, Theorem 1.3]: For each fixed M > 0,
there exists C =C(d,α,M)> 1 such that for any m ∈ ]0,M ], x, y ∈R

d

C−1 1 +m
2−α
α |x− y|2−α

|x− y|d−α
≤R(x, y)≤C

1 +m
2−α
α |x− y|2−α

|x− y|d−α
.

From this, we can obtain that 3G-inequality holds. Owing to this 3G-inequali-
ty, we have S1

CK∞
(X) = S1

CS∞
(X) and S1

D0
(X) = S1

DS0
(X).

From [31, Lemma 3] or (6.11), for m> 0, there exists C1(d,m,α)> 0 de-
pending only on m, d and α such that

sup
x,y∈Rd

pt(x, y)≤C1(d,m,α)t−d/2 for any t≥ 1.(6.12)

We can apply [17, Lemma 5.1(2)] to X for Φ1 :=C1Ψ1, Φ2(s) :=
C2e

m

(1+s)d+α and

Φ∗
2(s) := C(d,m,α) with t0 = 1, d∗ = d and β∗ = 2 > β = α provided m> 0,

and for Φ1 = C1Ψ2, Φ2 =Φ∗
2 = C2Ψ2 with Ψ2(s) := 1/(1 + s)d+α, d= d∗ and

β∗ = β = α provided m= 0. Hence every μ ∈Kd,α = S1
K(X) with μ(Rd)<∞

belongs to S1
K+

∞
(X) (to S1

K∞
(X) if X is transient).

We show that there exists a positive Radon measure ν ∈ S1
D0

(X) \ S1
K(X)

under the transience of X. More concretely, in [8, Example 4.2] for m = 0
and in [26, Example 4.2] for m > 0, we construct a nonnegative function
ϕ ∈ L1(Rd) such that ϕ(x)dx /∈ S1

K(X) and ‖R(α)ϕ‖∞ <∞. Here R(α)ϕ(x) :=∫
Rd

ϕ(y)
|x−y|d−α dy is the Riesz potential of ϕ.

Take u ∈ Fe∩C∞(Rd) with (
∫
Rd(u(x)−u(y))2Jm(x, y)dy)dx ∈Kd,α. Since

this energy measure has finite total mass, it also belongs to S1
K∞

(X). We
know the existence of the limit Nu

∞ := limt→∞Nu
t Px-a.s. under the tran-

sience and the doubly Feller property of X. Indeed, there exists a strictly
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positive bounded Borel function g on R
d such Rg is bounded by [21]. More-

over, Rg ∈ Cb(R
d) in view of the doubly Feller property of X. Let {Kn} be

an increasing sequence of compact subsets of Rd with R
d =

⋃∞
k=1Kn. Then

cn := infx∈Kn Rg(x) > 0 and pKn(x) :=Px(σKn <∞) ≤ Ex[Rg(XσKn
)]/cn ≤

Rg(x)/cn < ∞. Then PtpKn(x) ≤ PtRg(x)/cn → 0 as t → ∞, and conse-
quently,

Px

( ∞⋂
j=1

Λj

)
= lim

j→∞
Px(Λj) = 0 for Λj := {σKn ◦ θj <∞}.

Hence, Px(
⋂∞

n=1

⋃∞
j=1{σKn ◦ θj =∞}) =Px(

⋂∞
n=1

⋃∞
j=1Λ

c
j) = 1. In particu-

lar,

Px

( ∞⋂
n=1

∞⋃
j=1

{Xt ∈E \Kn for all t > j}
)
= 1

for x ∈ R
d. That is Px(limt→∞ |Xt| = +∞) = 1 for x ∈ R

d. From this,
Px(limt→∞ u(Xt) = 0) = 1 for x ∈R

d. On the other hand,

sup
t>0

Ex

[(
Mu

t

)2]≤Ex

[〈
Mu
〉
∞
]
<∞

implies the uniform integrability of (Mu
t )t∈[0,∞[, which yields the existence of

the limit limt→∞Mu
t under Px for all x ∈R

d.
Take ν1, ν2 ∈ S1

D0
(X) \S1

K(X) and bounded symmetric functions φ1, φ2 on

R
d ×R

d vanishing on the diagonal. Suppose φ1, φ2 ∈ J1
D0

(X). We set

μ1 =
1

2c
· ν1
1 + ‖R(ν1 +N(φ1)μH)‖∞

,

F1 = log

(
1 +

1

2c
· φ1e

−U

1 + ‖R(ν1 +N(φ1)μH)‖∞

)
,

μ2 =
1

2c
· ν2
1 + ‖R(ν2 +N(φ2)μH)‖∞

,

F2 =
1

2c
· φ2e

−U

1 + ‖R(ν2 +N(φ2)μH)‖∞
,

where c is the constant appeared in the 3G-inequality. Then we see

μ1 +N
(
eU
(
eF1 − 1

))
μH =

1

2c
· ν1 +N(φ1)μH

1 + ‖R(ν1 +N(φ1)μH)‖∞
∈ S1

CS1
(X) \ S1

K(X)

and

μ2 +N
(
eUF2

)
μH =

1

2c
· ν2 +N(φ2)μH

1 + ‖R(ν2 +N(φ2)μH)‖∞
∈ S1

DS0
(X) \ S1

K(X).



ANALYTIC CHARACTERIZATIONS OF GAUGEABILITY 763

Consider the following Feynman–Kac semigroup

PA
t f(x) :=Ex

[
eN

u
t +Aμ

t +AF
t f(Xt)

]
.

The associated quadratic form Q is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q(f, g) :=

∫
Rd×Rd

(
f(x)− f(y)

)(
g(x)− g(y)

)
Jm(x, y)dxdy

+

∫
Rd×Rd

(
fg(x)− fg(y)

)
(u(x)− u(y))Jm(x, y)dxdy

−
∫
Rd

f(x)g(x)ν(dx)

−
∫
Rd×Rd

f(x)g(y)
(
eF (x,y) − 1

)
Jm(x, y)dxdy

for f, g ∈D(Q)∩L∞(Rd),

D(Q) :=F .

In view of [14, Theorem 1.2], the heat kernel p̌Ut (x, y) of the time changed
process (Ǔ,dx) obtained from the Girsanov transformed process U by Ut =

Exp(MeU−1)t has the same global estimates as for the relativistic symmetric
α-stable process (symmetric α-stable process if m = 0). Note that the con-
dition UJS in [14] is satisfied for (relativistic) symmetric α-stable process
(see [14, Example 2.3]). Then the Green kernel RU of U, which coincides

with the Green kernel RǓ of (Ǔ,dx), satisfies (1.4) for some C > 0. Then by
Theorem 1.2, the following are equivalent:

(1) supx∈Rd Ex[e
Nu

∞+Aμ
∞+AF

∞ ]<∞.
(2) For each y ∈R

d, supx∈Rd\{y}E
y
x[exp(N

u
ζy +Aμ

ζy +AF
ζy )]<∞.

(3) Ru,μ,F (x, y)<∞ for all x, y ∈R
d with x �= y.

(4) λ(u,μ,F ) := inf{Q(f, f)|f ∈C∞
0 (Rd),

∫
Rd f(x)

2μ̄1(dx) = 1}> 0.

Here μ̄1(dx) := (
∫
Rd V (x, y)Jm(x, y)dy)(dx) + ν1(dx) with V (x, y) := (Gu −

Fu+F1)(x, y) and Ru,μ,F (x, y) is the Green kernel of the Feynman–Kac semi-
group by Nu

t + Aμ
t + AF

t . If u = 0, μ1 ∈ S1
K∞

(X) and eF1 − 1 ∈ A1
CS1

(X)

(resp. μ1 ∈ S1
K∞

(X) and F1 ∈A1
CS∞

(X)), then we see (μ1, e
F1 − 1) ∈B1

CS1
(X)

(resp. (μ1, F1) ∈B1
CS∞

(X)). In this case, (1)–(4) are equivalent to

(5) supx,y∈Rd,x �=y E
y
x[e

Nu
ζy+Aμ

ζy+AF
ζy ]<∞.

If further m> 0 and (μ2, F2) ∈B1
DS0

(X), (1)–(5) are equivalent to

(6) There exists C > 0 such that

C−1

(
1

|x− y|d−α
+

1

|x− y|d−2

)
≤Ru,μ,F (x, y)≤C

(
1

|x− y|d−α
+

1

|x− y|d−2

)
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for all x, y ∈R
d with x �= y. If further m= 0 and (μ2, F2) ∈B1

DS0
(X), (1)–(5)

are equivalent to

(7) There exists C > 0 such that

C−1

|x− y|d−α
≤Ru,μ,F (x, y)≤ C

|x− y|d−α
for all x, y ∈R

d with x �= y.

7. Maximum principle of generalized Feynman–Kac semigroups

In this section, we apply Theorem 1.1 to prove the maximum principle
of generalized Feynman–Kac semigroup extending the recent result [42] by
Takeda. Throughout this section, we assume that E is a locally compact
separable metric space, m is a positive Radon measure with full topological
support and X is an m-symmetric process associated to a regular Dirich-
let form (E ,F) on L2(E;m) enjoying (AC) and (I). Let u,μ,F be as in
the previous section and consider the generalized Feynman–Kac semigroup
PA
t f(x) = Ex[eA(t)f(Xt)] with eA(t) := exp(Nu

t + Aμ
t + AF

t ). Let SHub(Q)
be the family of upper bounded submedian function with respect to (PA

t ),
that is,

SHub(Q) :=
{
h ∈ B(E)|h is upper bounded, h≤ PA

t h on E for all t > 0
}

and define the maximum principle by

(MP) If h ∈ SHub(Q), then h(x)≤ 0 for all x ∈E.

Recall that X∗ is the subprocess of X killed by e−A
μ2
t −A

F2
t . If μ2 +

N(F2)μH ∈ S1(X) is non-trivial, then X∗ is always transient under (I).

Theorem 7.1. Suppose that μ2 +N(F2)μH ∈ S1(X) is non-trivial, μ̄∗
1 ∈

S1
NK1

(X∗) and μ〈u〉 ∈ S1
D(X)∩ S1

NK∞
(X∗) hold. Assume

(A) Ex

[
e−Aμ2∞ −AF2∞ : ζ =∞

]
= 0.

Then λQ(μ̄1)> 0 implies (MP). Conversely, (MP) implies λQ(μ̄1)> 0 pro-
vided X enjoys (RSF), and μ1 + N(F1)μH + μ〈u〉 ∈ S1

K∞
(X∗) and μ2 +

N(F2)μH ∈ S1
K(X) hold.

Let us introduce the space Hb(Q) of (PA
t )-invariant bounded functions:

Hb(Q) :=
{
h ∈ Bb(E)|h= PA

t h on E for all t > 0
}

and define the Liouville property by

(L) If h ∈Hb(Q), then h(x) = 0 for all x ∈E.

Then we have the following.

Corollary 7.1. Suppose that μ2 +N(F2)μH ∈ S1(X) is non-trivial, μ̄∗
1 ∈

S1
NK1

(X∗) and μ〈u〉 ∈ S1
D(X)∩S1

NK∞
(X∗) hold. Assume (A). Then λQ(μ̄1)>

0 implies (L).
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When X is transient, the special cases of Theorem 7.1 and Corollary 7.1
are the following:

Theorem 7.2. Suppose that X is transient, μ̄∗
1 ∈ S1

NK1
(X), μ〈u〉 ∈

S1
NK∞

(X) and μ2 +N(F2)μH ∈ S1
D0

(X) hold. Assume (A). Then λQ(μ̄1)> 0

implies (MP). Conversely, (MP) implies λQ(μ̄1) > 0 provided X enjoys
(RSF), and μ1 + N(F1)μH + μ〈u〉 ∈ S1

K∞
(X) and μ2 + N(F2)μH ∈ S1

K(X)
hold.

Corollary 7.2. Suppose that X is transient, μ̄∗
1 ∈ S1

NK1
(X), μ〈u〉 ∈

S1
NK∞

(X), and μ2+N(F2)μH ∈ S1
D0

(X) hold. Assume (A). Then λQ(μ̄1)> 0
implies (L).

Note that under the conditions for measures in this section there exist
positive constants C,α0 > 0 such that supx∈E PA

t 1(x) = supx∈E Ex[eA(t) : t <
ζ]≤Ceα0t.

To prove Theorem 7.1, we need the following lemma.

Lemma 7.1. Suppose that μ2+N(F2)μH ∈ S1(X) is non-trivial and μ〈u〉 ∈
S1(X)∩ S1

NK∞
(X∗) holds. Then (Ut)t∈[0,∞[ is a uniformly integrable martin-

gale under P∗
x for all x ∈E.

Proof. Recall that Mt := MeU−1
t + M−u,c

t is a locally square integrable
local Px-martingale for all x ∈ E under μ〈u〉 ∈ S1(X). By Itô formula for

semimartingales, we see M2
t = 2

∫ t

0
Ms− dMs+[M ]t, where [M ]t = 〈M−u,c〉t+

[MeU−1]t = 〈M−u,c〉t +
∑

s≤t(e
U(Xs−,Xs) − 1)2. We then have

sup
x∈E

E∗
x

[
[M ]∞

]
= sup

x∈E
E∗

x

[〈
M−u,c

〉
∞ +

∑
0≤t<∞

(
eU(Xt−,Xt) − 1

)2]
<∞(7.1)

under μ〈u〉 ∈ S1
NK∞

(X∗)⊂ S1
D0

(X∗), because (eU −1)2 ≤ U2e2‖u‖∞ . From this

E∗
x

[
M2

t

]
=Ex

[∫ t

0

e−Aμ2
s −AF2

s Ms− dMs

]
+E∗

x

[
[M ]t

]
=E∗

x

[
[M ]t

]
<∞.(7.2)

Let {Tn} be a increasing sequence of stopping times such that (Mt∧Tn)t∈[0,∞[

is a Px-martingale. Then

E∗
x[Mt∧Tn ] =Ex

[∫ t∧Tn

0

e−Aμ2
s −AF2

s dMs

]
= 0.

This implies that Mt is also a square integrable martingale under P∗
x for

all x ∈ E. Combining (7.1) and (7.2), we have the uniform integrability of
(Mt)t∈[0,∞[ under P∗

x for all x ∈ E and the limit M∞ := limt→∞Mt exists

P∗
x-a.s. and in L1(P∗

x) for all x ∈E, consequently E∗
x[M∞] = 0. Applying [6,

Theorem 3.2] to the square integrable P∗
x-martingale (Mt)t∈[0,∞[ and Ut =

Exp(M)t with ΔMt ≥ e−2‖u‖∞ − 1, we obtain the assertion. �
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Proof of Theorem 7.1. LetU∗ be the transformed process by Ute
−A

μ2
t −A

F2
t .

Then U∗ is also a transient e−2um-symmetric process. Under μ〈u〉 ∈
S1
NK∞

(X∗), any ν ∈ S1
NK1

(X∗) implies e−2uν ∈ S1
NK1

(U∗) by Corollary 5.1.

From this, μ̄∗
1 = ν1 + N(eU (eF1 − 1))μH ∈ S1

NK1
(X∗) yields

e−2uν1 + e−uN(e−u(eF1 − 1))μH ∈ S1
NK1

(U∗). Consequently, e−2uν1 +

e−uN(e−u(e−F2(eF1 − 1)))μH ∈ S1
NK1

(U∗). Owing to the expression

Q(f, g)

= EU
(
feu, geu

)
−
∫
E

fg dν̄ −
∫
E×E

f(x)g(y)
(
eF (x,y) − 1

)
N(x,dy)μH(dx)

= EU∗(
feu, geu

)
−
∫
E

fg dν̄1

−
∫
E×E

f(x)g(y)
(
eF1(x,y) − 1

)
e−F2(x,y)N(x,dy)μH(dx),

we can deduce that λQ(μ̄∗
1) > 0 implies supx∈E EU∗

x [eA
ν1
ζ +A

F1
ζ ] < ∞ by ap-

plying Theorem 1.1 to U∗ under e−2uν1 + e−uN(e−u(e−F2(eF1 − 1)))μH ∈
S1
NK1

(U∗). Suppose h ∈ SHub(Q) and λQ(μ̄1)> 0. Then we have

h(x) ≤ PA
t h(x) = e−u(x)EU

x

[
eA

ν̄
t +AF

t
(
euh
)
(Xt)

]
(7.3)

= e−u(x)EU∗

x

[
eA

ν̄1
t +A

F1
t
(
euh
)
(Xt)

]
≤ e2‖u‖∞

∥∥h+
∥∥
∞EU∗

x

[
eA

ν̄1
ζ +A

F1
ζ : t < ζ

]
.

Under μ〈u〉 ∈ S1
D(X), (Ut)t∈[0,∞[ is a non-negative Px-supermartingale for all

x ∈E. Then there exists a limit U∞ := limt→∞Ut Px-a.s. On the other hand,
Lemma 7.1 tells us that the convergence U∞ := limt→∞Ut holds P

∗
x-a.s. and

in L1(P∗
x) for all x ∈E. Then we have

lim
t→∞

PU∗

x (t < ζ) = lim
t→∞

E∗
x[Ut : t < ζ] =E∗

x[U∞ : ζ =∞](7.4)

= Ex

[
U∞e−Aν̄2∞−AF2∞ 1{ζ=∞}

]
= 0,

because e−Aν̄2∞−AF2∞ 1{ζ=∞} = e−Aμ2∞ −AF2∞ 1{ζ=∞} = 0 Px-a.s. for all x ∈ E

by (A). Here we use P∗
x � Px on F∞ with dP∗

x/dPx = exp(−Aμ2
∞ − AF2

∞ )
by [34, Theorem 1] (cf. [2, Lemma 1(1)] and [32, Lemma 2.3(a)]). Letting
t → ∞ in (7.3) with (7.4), we obtain h(x) ≤ 0 for all x ∈ E. This yields
(MP).

Next, we prove the converse assertion. Note that X∗ enjoys (RSF) and
S1
K(X) = S1

K(X∗) under μ2 +N(F2)μH ∈ S1
K(X). Indeed,

lim
t→0

sup
x∈E

Ex

[∣∣e−A
μ2
t −A

F2
t − 1

∣∣] ≤ lim
t→0

sup
x∈E

Ex

[
Aμ2

t +AF2
t

]
= lim

t→0
sup
x∈E

Ex

[
Aμ2

t +A
N(F2)μH

t

]
= 0
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implies the (RSF) of W by [28, Corollary 5.1], and the estimate

Ex

[
Aν

t

]
=Ex

[∫ t

0

eA
μ2
s +AF2

s e−Aμ2
s −AF2

s dAν
s

]
≤Ex

[
eA

μ2
t +A

F2
t

∫ t

0

e−Aμ2
s −AF2

s dAν
s

]
=
(
sup
x∈E

Ex

[
e2A

μ2
t +2A

F2
t
])1/2(

sup
x∈E

Ex

[(∫ t

0

e−Aμ2
s −AF2

s dAν
s

)2])1/2

≤
√
2 sup
x∈E

Ex

[
e2A

μ2
t +2A

F2
t
] 1

2 sup
x∈E

E∗
x

[
Aν

t

]
yields the inclusion S1

K(X∗)⊂ S1
K(X), where we use

sup
x∈E

Ex

[
e2A

μ2
t +2A

F2
t
]
= sup

x∈E
Ex

[
Exp

(
A2μ2 +Ae2F2−1

)]
≤ 1

1− supx∈E Ex[A
2μ2

t +Ae2F2−1
t ]

<∞

for small t > 0 under μ2 + N(F2)μH ∈ S1
K(X). Set Wt := Zte

−A
μ2
t =

Y 1
t e

−A
μ2
t −A

F2
t and let W be the transformed process by Wt. It is easy to

see that W also enjoys (RSF) under N(F1)μH + μ〈u〉 ∈ S1
K∞

(X∗)⊂ S1
K(X∗)

and μ2 + N(F2)μH ∈ S1
K(X). Indeed, applying [8, Lemma 3.2(iii)] with

N(F1)μH + μ〈u〉 ∈ S1
K(X∗), we have

lim
t→0

sup
x∈E

E∗
x

[∣∣Y 1
t − 1

∣∣]= 0.

This implies the (RSF) ofW by [28, Corollary 5.1]. Moreover, we see that any
ν ∈ S1

K(X∗) (resp. ν ∈ S1
K∞

(X∗)) satisfies ν ∈ S1
K(W) (resp. ν ∈ S1

K∞
(W)).

Indeed, for ν ∈ S1
K(X∗) ans its PCAF Aν

t , we have the following estimate

based on the martingale property of Y 1
t := Exp(MeF1+U−1 + M−u,c)t with

respect to X under N(F1)μH + μ〈u〉 ∈ S1
K∞

(X∗) ⊂ S1
K(X∗) = S1

K(X) with
[17, Lemma 2.2]:

EW
x

[
Aν

t

]
=Ex

[∫ t

0

Y 1
s e

−Aμ2
s −AF2

s dAν
s

]
=Ex

[
Y 1
t

∫ t

0

e−Aμ2
s −AF2

s dAν
s

]
≤Ex

[(
Y 1
t

)2] 1
2
√
2 sup
y∈E

Ey

[∫ t

0

e−Aμ2
s −AF2

s dAν
t

]
≤ sup

x∈E
Ex

[(
Y 1
t

)2] 1
2
√
2 sup
y∈E

E∗
y

[
Aν

t

]
.
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Since supx∈E Ex[(Y
1
t )

2] → 1 as t → 0 under N(F1)μH + μ〈u〉 ∈ S1
K∞

(X∗) ⊂
S1
K(X∗) = S1

K(X), we have supx∈E EW
x [Aν

t ]→ 0 as t→ 0. Similarly

EW
x

[
1Kc ∗Aν

t

]
=Ex

[∫ t

0

Y 1
s e

−Aμ2
s −AF2

s 1Kc(Xs)dA
ν
s

]
=Ex

[
Y 1
t

∫ t

0

e−Aμ2
s −AF2

s 1Kc(Xs)dA
ν
s

]
≤Ex

[(
Y 1
t

)2] 1
2
√
2 sup
y∈E

Ey

[∫ t

0

e−Aμ2
s −AF2

s 1Kc(Xs)dA
ν
t

]
≤ sup

x∈E
Ex

[(
Y 1
t

)2] 1
2
√
2 sup
y∈E

E∗
y

[
1Kc ∗Aν

t

]
implies e−2uν ∈ S1

K∞
(W) for ν ∈ S1

K∞
(X∗). Let (EW ,FW ) be the Dirichet

form on L2(E;m) associated to W. Then we see

λQ(μ̄∗
1

)
= inf

{
EW (f, f)− 1

∣∣∣f ∈ F ∩C0(E),

∫
E

f2 dμ̄∗
1 = 1

}
.(7.5)

Applying Stollmann–Voigt’s inequality to (EZ ,FZ), we get

λQ(μ̄∗
1

)
+ 1= inf

{
EZ
(
feu, feu

)
+

∫
E

f2 dμ2

∣∣∣f ∈ F ∩C0(E),

∫
E

f2 dμ̄∗
1 = 1

}
≥ 1

‖RZ(e−2uμ̄∗
1)‖∞

> 0.

Then one can get

inf

{
EZ
(
feu, feu

)
+

∫
E

f2 dμ2

∣∣∣f ∈ F ∩C0(E), λ∗
∫
E

f2 dμ̄∗
1 = 1

}
= 1,

where λ∗ := λQ(μ̄∗
1) + 1. Under λQ(μ̄∗

1) ≤ 0, we have 0 < λ∗ ≤ 1. Since
μ1 + N(F2)μH + μ〈u〉 ∈ S1

K∞
(X∗), we have μ̄∗

1 ∈ S1
K∞

(X∗), hence e−2uμ̄∗
1 ∈

S1
K∞

(W). By [41, Theorem 2.1], we can get the existence of the unique min-
imizer v of (7.5). Set

h(x) :=EW
x

[∫ ζ

0

v(Xs)dA
λ∗μ̄∗

1
s

]
.

As in [42, Section 5], we can deduce the strict positivity, boundedness and
fine continuity of h with respect to W. Moreover, for each t > 0 we have

h(x) = P
W,λ∗μ̄∗

1
t h(x) for q.e. x ∈ E. Hence, P

W,λ∗μ̄∗
1

s h(x) = P
W,λ∗μ̄∗

1
t h(x)

for all x ∈ E and t, s > 0. Letting s → 0, we have h(x) = P
W,λ∗μ̄∗

1
t h(x)

for all x ∈ E, because of the boundedness and fine continuity of h under
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W and supx∈E EW
x [eA

λ∗μ̄∗
1

s0 ] ≤ supx∈E EZ
x [e

Aμ̄∗
s0 ] = supx∈E eu(x)PA

s0e
−u(x) ≤

Ceα0s0 under λQ(μ̄∗
1)≤ 0. Thus, λQ(μ̄∗

1)≤ 0 yields

h(x) = P
W,λ∗μ̄∗

1
t h(x)≤ P

W,μ̄∗
1

t h(x) =Ex

[
Zte

Aμ̄∗
t h(Xt)

]
=Ex

[
eA(t)e

u(X0)−u(Xt)h(Xt)
]
,

hence

he−u(x)≤ PA
t

(
he−u

)
(x),

that is, e−uh is a positive element of SHub(Q). Therefore, (MP) does not
hold under λQ(μ̄∗

1)≤ 0. �
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