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COMPACT COMPOSITION OPERATORS
WITH SYMBOL A UNIVERSAL COVERING

MAP ONTO A MULTIPLY CONNECTED DOMAIN

MATTHEW M. JONES

Abstract. We generalise previous results of the author con-
cerning the compactness of composition operators on the Hardy

spaces Hp, 1≤ p <∞, whose symbol is a universal covering map

from the unit disk in the complex plane to general finitely con-
nected domains. We demonstrate that the angular derivative

criterion for univalent symbols extends to this more general case.

We further show that compactness in this setting is equivalent to

compactness of the composition operator induced by a univalent

mapping onto the interior of the outer boundary component of
the multiply connected domain.

1. Introduction

Let D = {z : |z| < 1} be the unit disk in the complex plane and Hp the
classic Hardy space of holomorphic functions f on D satisfying

‖f‖pp = lim
r→1

∫ 2π

0

∣∣f(
reiθ

)∣∣p dθ <∞.

If φ : D→D is a holomorphic mapping, then the composition operator

Cφ : f �→ f ◦ φ
is well defined and maps Hp boundedly into itself for any 0< p<∞.

Compactness of Cφ, in contrast, depends on φ in a more subtle and inter-
esting way. It was shown in [6] that Cφ is compact on Hp, 1≤ p <∞, if and
only if

lim
|w|→1

Nφ(w)

log 1/|w| = 0,
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where Nφ is the Nevanlinna counting function

Nφ(w) =

{∑
φ(z)=w log 1

|z| , w ∈ φ(D),

0, otherwise.

If φ is a univalent mapping of D onto a simply connected domain D, then the
result above implies that Cφ is compact if and only if D has no finite angular
derivative, or, equivalently,

lim
|z|→1

1− |φ(z)|
1− |z| =∞.

In the next section, we will define the angular derivative and other quantities
pertinent to this work. In general, although the angular derivative criterion
is sufficient for compactness, it is not necessary, see [8]. For an introduction
to the background to these results, see [7] or [2].

In [5], the author showed that if φ is a universal covering map onto a
multiply connected domain of the form described below then the angular
derivative criterion is both necessary and sufficient for Cφ to be compact on
Hp. In particular, let D =D0 \{p1, p2, . . . , pn} where D0 is a simply connected
domain in D and pi, i= 1, . . . , n are isolated points in the interior of D0. It was
shown that if φ is a universal covering map of D onto D then Cφ is compact
on Hp, 1≤ p <∞, if and only if

lim
|z|→1

1− |φ(z)|
1− |z| =∞.

This result highlights the importance of the geometry of the domain D in the
characterisation of compactness of Cφ. In fact, it was shown that if ψ is a
univalent mapping of D onto D0, then Cφ is compact on Hp, 1 ≤ p <∞, if
and only if Cψ is.

The purpose of this paper is to extend these results to arbitrary domains
of finite multiplicity.

Throughout this paper, D will represent a finitely connected domain con-
tained in D whose boundary consists of n components that may be either
points or continua. Let φ be the universal covering map of D onto D. As in
[5], we wish to characterize the compactness of Cφ : H

p →Hp. Our first main
result is the following.

Theorem 1.1. Suppose D is a finitely connected domain in D. Let φ be
a holomorphic universal covering map of D onto D. Then Cφ is compact on
Hp, 1≤ p <∞, if and only if

lim
|z|→1

1− |φ(z)|
1− |z| =∞.

As in [5], we develop this further in the following result.
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Theorem 1.2. Suppose D is a finitely connected domain in D that can be
obtained by removing finitely many components from the interior of a simply
connected domain D0. Let φ be a holomorphic universal covering map of D
onto D and ψ a univalent mapping of D onto D0. Then Cφ is compact on
Hp, 1≤ p <∞, if and only if Cψ is.

In order to prove these results, we will require ideas from Fuchsian groups
and Riemann surfaces. We will provide an overview of these but the reader
may find more details in [1] and [3]. In Section 2, we will cover many of
the prerequisites required for the proofs of the results. Sections 3 and 4 are
devoted to the proofs of the main results.

2. Preliminaries

We begin this section with a discussion of the angular derivative and then
move on to the construction of the universal covering map of D onto a multiply
connected domain.

Consider a holomorphic mapping φ : D→ D. At a point ζ ∈ ∂D, φ is said
to have a finite angular derivative if there is a η ∈ ∂D such that the ratio

φ(z)− η

z − ζ

converges as z → ζ non-tangentially. The angular derivative, when it exists,
will be denoted by φ′(ζ). The existence of the angular derivative at a point ζ
has a number of geometric consequences on the mapping properties of φ. For
example, it is known that it implies that φ is conformal at ζ. See also Julia’s
Lemma [2, Lemma 2.41].

We will require the following important result.

Theorem A (Julia–Caratheodory theorem). Let φ : D→D be a holomor-
phic function and suppose ζ ∈ ∂D. The following are equivalent.

(1) φ has finite angular derivative φ′(ζ) at ζ.

(2) D(ζ) = lim infz→ζ
1−|φ(z)|
1−|z| <∞.

(3) Both φ and φ′ have non-tangential limits at ζ, with limr→1 φ(rζ) = η ∈ ∂D.

When any (all) of these criteria hold we have that D(ζ) is the non-tangential
limit

lim
z→ζ

1− |φ(z)|
1− |z|

and φ′(ζ) =D(ζ)ζη.

In particular it is a consequence of this theorem that if

lim
|z|→1

1− |φ(z)|
1− |z| =∞

then φ cannot have finite angular derivative at any point of ∂D.
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When φ is univalent the existence of an angular derivative at a point de-
pends only on the geometry of the simply connected domain φ(D), or, more
precisely, on the boundary of φ(D). A good account of these results is con-
tained in [4, §V.5]. We mention only that since the existence of an angular
derivative at a point implies it is conformal there. Any simply connected do-
main contained in a polygon in D, for example, cannot have finite angular
derivative.

Let D ⊂ D be an arbitrary multiply connected domain. Since D is hy-
perbolic, there is a Riemann surface RD

∼= D/Γ conformally equivalent to D,
where Γ is a torsion-free Fuchsian group. The universal covering map is then
constructed as in the following diagram.

D RD

D

φ̃D

φ π

Here the mapping φ̃D exists as a consequence of the uniformization theo-
rem. The mapping φ is conformal and locally univalent. It follows from the
construction that for any w ∈ D the pre-image under φ of w is a Γ-orbit,
Γ(z) = {g(z) : g ∈ Γ}. We will use this to estimate Nφ(w) in terms of the ac-
tion of Γ. As such we suppose F is a locally finite fundamental domain for the
action of Γ on D. Then F̃/Γ is homeomorphic to D/Γ where F̃ denotes the
relative closure of F in D, see [1, §9.2]. The Dirichlet fundamental polygon is
one such example, it is defined for w ∈D as

D(w) =
⋂

g∈Γ,g �=id

{
z ∈D : dD(z,w)< dD

(
z, g(w)

)}
.

Here we denote by dD(z1, z2) the hyperbolic distance in D,

dD(z1, z2) = inf
γ

∫
γ

2

1− |z|2 |dz|,

where the infimum is taken over all smooth curves γ joining z1 to z2. This
metric has as its geodesics radii and arcs of circles orthogonal to ∂D. In
particular

dD(0, z) = log
1 + |z|
1− |z| .

Since automorphisms of D are isometries of the hyperbolic metric the action of
Γ gives rise to a hyperbolic metric on D/Γ. Automorphisms are characterized
as parabolic or hyperbolic according to whether they have one or two fixed
points on ∂D. The limit set of Γ, denoted Λ(Γ), is the set of all limit points
of orbits of a point under the action of Γ, it is a proper subset of ∂D.
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The conjugacy classes of parabolic elements of Γ correspond to punctures
in the Riemann surface, [3, pp. 214–216]. Similarly, there is a correspondence
between boundary loops of D and conjugacy classes of hyperbolic elements,
called boundary hyperbolic elements in [1, p. 265].

As in [5], we rely on estimating the Nevanlinna counting function by the
Poincare series for Γ:

ρΓ(z,w;s) =
∑
g∈Γ

exp−sdD
(
z, g(w)

)
.

The Poincare series converges for s > dimΛ(Γ) and so, in particular, for s= 1,
the exponent that we will require.

3. Proof of Theorem 1.1

We assume throughout that ∂D ∩ ∂D �= ∅. Otherwise both Theorem 1.1
and 1.2 are true trivially.

In order to utilise Shapiro’s compactness criterion, we must first establish
that as |w| → 1 in D any z ∈ φ−1(w) satisfies |z| → 1. Consider a locally finite
fundamental domain F for the action of Γ on D. Then F can be chosen to be
a finite sided hyperbolic polygon with free sides Ik, k = 1,2, . . . ,N . Each free
side of F lies in an interval of discontinuity, σk, for Γ on ∂D. The stabilizer{

g ∈ Γ: g(σk) = σk

}
is an infinite cyclic subgroup generated by a hyperbolic automorphism, say
hk.

Now the conjugacy class of each hk, Cl(hk), maps Ik to the pairwise disjoint
sets

Jk =
⋃

h̃∈Cl(hk)

h̃(Ik) =
⋃

h̃∈Cl(hk)

h̃(σk).

Note that the unit circle then consists of points in the limit set Λ(Γ) or in Jk
for some k.

Since D is finitely connected, there is a 0<R< 1 such that

A(R,1)∩ ∂D =A(R,1)∩ ∂D0,

where A(R,1) denotes the annulus centered at the origin with inner radius
R and outer radius 1. Therefore as |w| → 1, w must converge to ∂D0 which,
considered as a boundary loop in D/Γ, implies that z ∈ φ−1(w) converges
to Jk for some k. Hence as |w| → 1, |z| → 1 as required. Without loss of
generality, we will throughout assume J1 corresponds to ∂D0.

Proposition 3.1. With the notation above Cφ is compact on Hp, 1≤ p <
∞, if and only if for each ζ ∈ J1

lim
z→ζ

ρΓ(0, z; 1)

1− |φ(z)| = 0.
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Proof. We may write the Nevanlinna counting function as

Nφ(w) =
∑
g∈Γ

log
1

|g(z)| ,

where z is an arbitrary preimage of w under φ.
Now, since Γ is discontinuous in D, the set {g : |g(z)| ≤R}, for 1/2<R< 1,

is finite. Therefore, since

log
1

x
≤ 1− x2 ≤ 2 log

1

x
, 1/2< x< 1

we have that

Nφ(w) ≤ C
∑
g∈Γ

(
1−

∣∣g(z)∣∣2)

≤ C
∑
g∈Γ

1− |g(z)|
1 + |g(z)|

= C
∑
g∈Γ

exp−dD
(
0, g(z)

)
=CρΓ(0, z; 1),

where C denotes a constant not necessarily the same in each instance.
The opposite inequality

Nφ(w)≥CρΓ(0, z; 1)

follows similarly. The result now follows from the definition of J1. �

To complete the proof of the theorem, we will require the following result
that was proved in [5].

Lemma 3.2 ([5, Lemma 1]). If Γ uniformizes the domain D then for z ∈
D(0) with z close enough to I1, the free side of D(0) corresponding to ∂D0.

c1 exp−dD(0, z)≤ ρΓ(0, z,1)≤ c2 exp−dD(0, z),

where c1 and c2 are constants depending only on Γ.

Since exp−d(0, z)∼ (1− |z|) it follows that Cφ is compact if and only if

lim
z→ζ

1− |z|
1− |φ(z)| = 0

for any ζ in the free side of D(0) corresponding to ∂D0. In the notation above
we may call this free side I1, then σ1, J1 and h1 are implicitly defined.

To complete the proof of the theorem, we must consider, in turn, J1, Jk
(k > 1) and Λ(Γ).

Consider first ζ ∈ J1. Then there exists a h ∈ Γ with h(ζ) ∈ I1. Now
suppose without loss of generality that z → ζ inside D(h−1(0)) = h−1(D(0)).
Then, with ζ∗ = h(ζ) and z∗ = h(z), we have that

exp−dD(0, z)≤−dD
(
0, h(z)

)
,
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and so

lim
z→ζ

1− |z|
1− |φ(z)| ≤ C lim

z→ζ

exp−dD(0, z)

1− |φ(z)|

≤ C lim
z→ζ

exp−dD(0, h(z))

1− |φ(z)|

= C lim
z∗→ζ∗

exp−dD(0, z
∗)

1− |φ(z∗)|

≤ C lim
z∗→ζ∗

ρΓ(0, z
∗; 1)

1− |φ(z∗)| .

Conversely,

lim
z→ζ

1− |z|
1− |φ(z)| = lim

z→ζ

1− |z|
1− |z∗|

1− |z∗|
1− |φ(z∗)|

=
1

|h′(ζ)| lim
z∗→ζ∗

1− |z∗|
1− |φ(z∗)| .

Therefore,

lim
z→ζ

1− |z|
1− |φ(z)| = 0 if and only if lim

z∗→ζ∗

ρΓ(0, z
∗; 1)

1− |φ(z∗)| = 0

for any ζ ∈ J1.
Now suppose that ζ ∈ Jk, k > 1. By the comments at the beginning of

this section, the sets Jk correspond in the Riemann surface structure D/Γ to
boundary loops corresponding to continua interior to D0. In particular, as
z → ζ ∈ Jk, we have that φ(z) is contained in a compact set interior to D.
It follows that at these points φ cannot have a finite angular derivative, by
definition.

Finally, we consider the limit set ζ ∈ Λ(Γ). As above, these points neces-
sarily have no finite angular derivative. This follows from the following result
which may be found in [1, Theorem 10.2.5].

Lemma 3.3. Γ is finitely generated if and only if each ζ ∈ Λ(Γ) is either

(1) a fixed point for a parabolic element of Γ; or
(2) a point of approximation—i.e. there is a sequence gn, n = 1,2, . . . , of

elements of Γ such that gn(0)→ ζ non-tangentially.

If ζ is a fixed point for a parabolic element, then this corresponds to a
puncture in the Riemann surface structure (see [3, pp. 214–216]) and therefore
to an isolated point in the boundary of D interior to D. Hence, as above, this
implies that φ cannot have a finite angular derivative at ζ.

In the second case, if ζ = limn→∞ gn(0), where (gn(0))n∈Z is a non-
tangential sequence, then φ is constant and has absolute value less than 1
on (gn(0))n∈Z. Therefore, by the Julia–Caratheodory theorem, φ cannot have
finite angular derivative at ζ. This completes the proof.
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4. Proof of Theorem 1.2

In order to prove this result, we will consider the function

ω = ψ−1 ◦ φ.
Now ω is a universal covering map of D onto a multiply connected domain
with the same configuration as D whose outer boundary is ∂D. We claim that
at each point ζ ∈ ∂D for which

lim
z→ζ

∣∣ω(z)∣∣ = 1

we have that |ω′(ζ)|<∞.
Suppose that Γ0 is the Fuchsian group uniformizing ω(D), so that

ω(D)∼=D/Γ0.

Then, as in the previous proof, we let I be the free side of a locally finite
fundamental polygon for Γ0. Now I ⊂ σ, an interval of discontinuity for Γ0,
and we let J be the image of I under the conjugacy class of the stabiliser of σ.

Clearly, ζ ∈ J if and only if |ω(z)| → 1 as z → ζ. Fix one such ζ. Then
we may find a neighborhood N of ζ such that ω is univalent on N ∩ D and
continuous on N ∩ ∂N . The continuity of ω on the boundary follows, since
ω(N ∩ D) is a Jordan domain for small enough N . Therefore, ω can be
extended to be holomorphic in N by the reflection principle.

Indeed the same conclusion can be made by considering the Schottky double
of ω(D), defined as

Ω(Γ0)/Γ0, Ω(Γ0) =D∪D
∗ ∪

(
∂D \Λ(Γ0)

)
,

where D
∗ = {z : |z|> 1} ∪ {∞}.

Since ω can be extended to be holomorphic at ζ, it must have a derivative
there.

An application of the Julia–Caratheodory theorem implies that the angular
derivative coincides with the absolute value of the derivative of ω at ζ, as
required.

To complete the proof, first note that

Cφ =CψCω

so if Cψ is compact then so is Cφ. Conversely, if Cφ is compact, then for each
point ζ ∈ ∂D, |φ′(ζ)|=∞ by Theorem 1.1. Suppose then that η is a point at
which |ψ′(η)|<∞. We may find ζ ∈ ∂D such that

ω(rζ)→ η (r→ 1)

and, furthermore, ζ ∈ J . However, we have shown that |ω′(ζ)|<∞, so that
by the Julia–Caratheodory theorem

lim
r→1

φ′(rζ) = lim
r→1

ψ′(ω(rζ))ω′(rζ)

= λψ′(η)
∣∣ω′(ζ)

∣∣
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for some |λ|= 1. It follows that φ has finite angular derivative at ζ, contra-
dicting the compactness of Cφ. Therefore, |ψ′(η)|=∞ for all η ∈ ∂D and Cψ

is compact.
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