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WELL-POSEDNESS OF THE MARTINGALE PROBLEM FOR
SUPERPROCESS WITH INTERACTION

LEONID MYTNIK AND JIE XIONG

Abstract. We consider the martingale problem for superpro-
cess with interactive immigration mechanism. The uniqueness of

the solution to this martingale problem is established using the

strong uniqueness of the solution to a corresponding SPDE, which

is obtained by an extended version of the Yamada–Watanabe ar-
gument.

1. Introduction

Let MF (R) be the collection of all finite Borel measures on R. Let q :
MF (R) → MF (R) be the interactive immigration measure. Here, the word
“interactive” means that the immigration measure q depends on the measure-
valued process itself. Namely, we consider a continuous MF (R)-valued process
(μt) which solves the following martingale problem (MP): ∀f ∈ C2

b (R), the
process

(1.1) Mf
t = 〈μt, f〉 − 〈μ0, f〉 −

∫ t

0

(〈
μs,

1

2
f ′′

〉
+
〈
q(μs), f

〉)
ds

is a continuous martingale with quadratic variation process

(1.2)
〈
Mf

〉
t
= γ

∫ t

0

〈
μs, f

2
〉
ds,

where the constant γ > 0 is the branching rate, the notation Ck
b (R) (resp.

Ck
0 (R)) stands for the collection of all bounded (resp. compactly-supported)

continuous functions on R with bounded derivatives up to kth order, and
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486 L. MYTNIK AND J. XIONG

the notation 〈μ, f〉 denotes the integral of the function f with respect to the
measure μ. Such a process (μt) is called a super-Brownian motion (SBM)
with interactive immigration. The aim of the present article is to prove the
uniqueness of the solution to the MP (1.1, 1.2) under some conditions on q.

This martingale problem is studied by Shiga [12], and Fu and Li [3] us-
ing an equation driven by a Poisson random measure. Its solution is also
constructed by Dawson and Li [1] using the excursion theory. They studied
various properties of the process while leaving the uniqueness of the solution
as an open problem.

In this paper, we prove the uniqueness of the solution to the MP under
suitable conditions. The main idea is to relate the MP to a stochastic partial
differential equation (SPDE), whose pathwise uniqueness of the solution can
be established, satisfied by the distribution valued process (us) correspond-
ing to the measure-valued process (μs). Such a connection is first studied
by one of us [13] for the special case of q = 0. The proof of the pathwise
uniqueness in [13] is done by relating the SPDE to a backward stochastic
differential equation, while for the current setup the proof is done by an ex-
tended Yamada–Watanabe argument to SPDE which is inspired by Mytnik
and Perkins [8] and Mytnik et al. [9]. When the spatial motion is interactive,
that is, it is a diffusion process with diffusion and drift coefficients depending
on the superprocess itself, the well-posedness of the MP has been studied by
Donnelly and Kurtz [2] in their lookdown approach and thanks also to results
of Kurzt [5] on filtered martingale problem (see also Theorem V.5.1 in Perkins
[11]). Uniqueness for “historical” superprocesses with certain interactions was
investigated by Perkins in [10].

We now proceed to presenting the main result of this paper. We first
state the precise definition of the martingale problem. For νi ∈MF (R), let
vi(x) = νi((−∞, x]) for x ∈R and i= 1,2. Define distance ρ on MF (R) by

ρ(ν1, ν2) =

∫
R

e−|x|∣∣v1(x)− v2(x)
∣∣dx.

It is easy to see that, under metric ρ, MF (R) is a Polish space whose topology
coincides with that given by weak convergence of measures. Denote the collec-
tion of all continuous mappings from R+ to MF (R) by X ≡ C(R+,MF (R)).
Throughout the paper we use K to denote a non-negative constant whose
value may change from line to line.

Definition 1.1. A probability measure Γ on X is a solution to MP
(1.1, 1.2) if there exists a continuous MF (R)-valued process μt on a stochas-
tic basis (Ω,F ,P,Ft) such that Γ is the probability measure induced on X by

(μt), and for any f ∈ C2
0 (R), the process Mf

t given by (1.1) is a continuous
martingale with quadratic variation process given by (1.2).

MP (1.1, 1.2) is well-posed if it has a unique solution.
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For any x ∈R and ν ∈MF (R), we define

η(x, ν) = q(ν)
(
(−∞, x]

)
.

Here is the main result of this article.

Theorem 1.2. (a) Assume the following conditions:
(I1)

∫
R
(1 + x2)μ0(dx)<∞;

(I2) There exists a constant K such that for any ν ∈MF (R), we have∫
R

(
1 + x2

)
q(ν)(dx)≤K.

Then, MP (1.1, 1.2) has a solution.
(b) In addition to (I1), (I2), assume that η satisfies the following condition

(I3) There exists a constant K such that for any y ∈ R, ν1, ν2 ∈MF (R),
we have ∣∣η(y, ν1)− η(y, ν2)

∣∣≤Kρ(ν1, ν2),(1.3)

Then, MP (1.1, 1.2) is well-posed.

This paper is organized as follows. In Section 2, we establish the equiva-
lency between the MP (1.1, 1.2) and a stochastic partial differential equation
(SPDE). Then, in Section 3, we prove the strong uniqueness of the SPDE by
a Yamada–Watanabe argument, which then gives the uniqueness to the MP
(1.1, 1.2).

2. A related SPDE

A relationship between a super-Brownian motion and the SPDE satisfied
by its corresponding distribution function valued process is established in
Xiong [13]. In this section, we extend that result to the case when the system
receives immigration with a rate depending on the current state of the system.
In fact, our result follows from a more general result to be given below for
a model with interactive location-dependent branching rate of the following
form

γ(x, ν) = λ2
(
ν(−∞, x]

)
, ∀x ∈R, ν ∈MF (R),(2.1)

where λ is a bounded measurable function from R+ to R+.

We do not know whether this change in branching rate has any significance
to applications and we put it just for the sake of completeness and with the
hope that somebody could be able to generalize it to more interesting cases.

From now on, we consider the following more general martingale problem

(GMP): ∀f ∈C2
0 (R), the process M

f
t given by (1.1) is a continuous martingale

with quadratic variation process

(2.2)
〈
Mf

〉
t
=

∫ t

0

〈
μs, γ(·, μs)f

2
〉
ds,

where γ is given by (2.1).
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Definition 2.1. A probability measure Γ on X is a solution to GMP (1.1,
2.2) if there exists a continuous MF (R)-valued process μt on a stochastic basis
(Ω,F ,P,Ft) such that Γ is the probability measure induced on X by (μt), and

for any f ∈C2
0 (R), the process Mf

t given by (1.1) is a continuous martingale
with quadratic variation process given by (2.2). We also refer to (μt) as a
solution to the GMP.

GMP (1.1, 2.2) is well-posed if it has a unique solution.

Let W (dsda) be a space-time white noise on R+ ×R+ with intensity mea-
sure dsda. Consider the following SPDE on the space of nondecreasing (in
spatial variable) functions taking values in [0,∞): For y ∈R,

(2.3) ut(y) = F (y)+

∫ t

0

∫ us(y)

0

λ(a)W (dsda)+

∫ t

0

(
1

2
Δus(y)+η(y,μs)

)
ds,

where Δ is the one-dimensional Laplacian and F (y) = μ0((−∞, y]).
Let Cb,m(R) be the subset of Cb(R) consisting of nondecreasing bounded

continuous functions on R.

Definition 2.2. The SPDE (2.3) has a weak solution if there exists a
continuous Cb,m(R)-valued process ut on a stochastic basis such that for any
f ∈C2

0 (R) and t > 0,

〈ut, f〉 = 〈F,f〉+
∫ t

0

∫ ∞

0

∫
R

f(y)λ(y)1a≤us(y) dyW (dsda)

+

∫ t

0

(〈
us,

1

2
f ′′

〉
+
〈
η(·, μs), f

〉)
ds, a.s.,

where 〈f, g〉=
∫
R
f(x)g(x)dx.

Similar to Theorem 2.2 in Xiong [13], we have the following lemma.

Lemma 2.3. {μt} is a solution to GMP (1.1, 2.2) if and only if {ut} defined
by

(2.4) ut(y) = μt

(
(−∞, y]

)
, ∀y ∈R,

is a weak solution to SPDE (2.3).

Proof. Suppose that (ut) is a solution to SPDE (2.3). For a non-decreasing
continuous function g on R, we define its generalized inverse as

g−1(a) = inf
{
x : g(x)> a

}
.

Then, for f ∈C3
0 (R), we have

〈μt, f〉 = −
〈
ut, f

′〉

= −
〈
F,f ′〉−

∫ t

0

∫ ∞

0

∫
R

f ′(y)1a≤us(y) dyλ(a)W (dsda)
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−
∫ t

0

〈
1

2
Δus, f

′
〉
ds−

∫ t

0

∫
R

η(y,μs)f
′(y)dy ds

= μ(f) +

∫ t

0

(〈
μs,

1

2
f ′′

〉
+
〈
q(μs), f

〉)
ds

+

∫ t

0

∫ ∞

0

f
(
u−1
s (a)

)
λ(a)W (dsda).

Thus, Mf
t is a martingale with quadratic variation process

〈
Mf

〉
t
=

∫ t

0

∫ ∞

0

λ(a)2f
(
u−1
s (a)

)2
dads

=

∫ t

0

∫
R

λ
(
us(x)

)2
f(x)2 dus(x)ds

=

∫ t

0

μs

(
γ(·, μs)f

2
)
ds.

Thus, (μt) is a solution to GMP.
On the other hand, suppose that (μt) is a solution to GMP (1.1, 2.2). Let

f ∈C2
0 (R) and g(y) =

∫∞
y

f(x)dx. Then,

〈ut, f〉 = 〈μt, g〉(2.5)

= 〈μ0, g〉+
∫ t

0

(〈
μs,

1

2
g′′

〉
+
〈
q(μs), g

〉)
ds+Mg

t

= 〈F,f〉+
∫ t

0

(〈
us,

1

2
f ′′

〉
+
〈
η(·, μs), f

〉)
ds+Mg

t .

Let S ′(R) be the space of Schwarz distributions and define the S ′(R)-valued
process Nt by Nt(f) =Mg

t for any f ∈ C∞
0 (R). Then, Nt is an S ′(R)-valued

continuous square-integrable martingale with

〈
N(f)

〉
t
=

∫ t

0

∫
R

γ(y,μs)g(y)
2μs(dy)ds

=

∫ t

0

∫
R

λ2
(
us(y)

)
g(y)2μs(dy)ds

=

∫ t

0

∫ ∞

0

λ(a)2g
(
u−1
s (a)

)2
dads

=

∫ t

0

∫ ∞

0

(
λ(a)

∫
R

1a≤us(y)f(y)dy

)2

dads.

Let G :R+ ×Ω→ L(2)(H,H) be defined as

G(s,ω)f(a) = λ(a)

∫
R

1a≤us(x)f(x)dx, ∀f ∈H,
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where H = L2(R) and L(2)(H,H) is the space consisting of all Hilbert–
Schmidt operators on H . By Theorem 3.3.5 of Kallianpur and Xiong [4],
on an extension of the original stochastic basis, there exists an H-cylindric
Brownian motion Bt such that

Nt(f) =

∫ t

0

〈
G(s,ω)f, dBs

〉
H
.

Let {hj} be a complete orthonormal system (CONS) of the Hilbert space H
and define random measure W on R+ ×R as

W
(
[0, t]×A

)
=

∞∑
j=1

〈1A, hj〉Bhj

t .

It is easy to show thatW is a Gaussian white noise random measure on R+×R

with intensity dsda. Furthermore,

Nt(f) =

∫ t

0

∫ ∞

0

∫
R

λ(a)1a≤us(x)f(x)dxW (dsda).

Plugging back to (2.5) verifies that ut is a solution to (2.3). �

Proposition 2.4. Assume (I1), (I2), (2.1). Then GMP (1.1, 2.2) has a
solution.

Proof. Let tni = i
n , i = 0,1,2, . . . . Let πn(s) = tni for s ∈ [tni , t

n
i+1). For

each n, let μn
t be a solution to the approximating martingale problem:

∀f ∈C2
0 (R),

(2.6) Mn,f
t =

〈
μn
t , f

〉
− 〈μ0, f〉 −

∫ t

0

(〈
μn
s ,

1

2
f ′′

〉
+
〈
q
(
μn
πn(s)

)
, f

〉)
ds

is a continuous martingale with quadratic variation process

(2.7)
〈
Mn,f

〉
t
=

∫ t

0

〈
μn
s , γ

(
·, μn

πn(s)

)
f2

〉
ds.

The existence of a solution in each subinterval [tni , t
n
i+1] follows from classical

theory of superprocesses (cf. Corollary 7.15 in Li [6]).
Let T be fixed and t≤ T . Taking f = 1 in (2.6), we get

〈
μn
t ,1

〉
= 〈μ0,1〉+

∫ t

0

〈
q
(
μn
πn(s)

)
,1
〉
ds+Mn,1

t .

Hence, by our assumptions on q and γ, we have

an(t) ≡ E sup
s≤t

〈
μn
t ,1

〉4

≤K1 +K2E
〈
Mn,1

〉2
t

≤K1 +K2E

(∫ t

0

〈
μn
s , γ

(
·, μn

πn(s)

)〉
ds

)2
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≤K1 +K3

∫ t

0

E
〈
μn
s ,1

〉4
ds

≤K1 +K3

∫ t

0

an(s)ds.

By classical moment bounds for superprocesses, we can easily get that an(t)
is finite for any n and t > 0. Therefore, we can apply Gronwall’s inequality to
see that an(t)≤K1e

K3t ≤K4 uniformly on t ∈ [0, T ], and n≥ 1.
For any f ∈C2

b (R) and s < t, we then have

E
∣∣〈μn

t − μn
s , f

〉∣∣4

≤ 24E

∣∣∣∣
∫ t

s

(〈
μn
r ,

1

2
f ′′

〉
+
〈
q
(
μn
πn(r)

)
, f

〉)
dr

∣∣∣∣
4

+ 24E
∣∣Mn,f

t −Mn,f
s

∣∣4

≤K1|t− s|4 +K2E
(〈
Mn,f

〉
t
−
〈
Mn,f

〉
s

)2
≤K1|t− s|4 +K3|t− s|2

≤K4|t− s|2.
It then follows from Kolmogorov’s criteria that {〈μn, f〉 : n ≥ 1} is tight in
C([0, T ],R). This implies that {μn : n≥ 1} is tight in C([0, T ],MF (R̄)), where
R̄ is the one-point compactification of R. Denote by (μt) a limit point.

Taking f(x) = x2 in (2.6), we get

E
〈
μn
t , x

2
〉
=
〈
μ0, x

2
〉
+E

∫ t

0

(〈
μn
r ,1

〉
+
〈
q
(
μn
πn(r)

)
, x2

〉)
dr ≤K,

where the last inequality follows by the assumptions (I1) and (I2). This implies
that μt is supported on R and hence μ ∈ C([0, T ],MF (R)) a.s. Passing (2.6,
2.7) to the limit, it is standard to show that (μt) is a solution to the GMP. �

Remark 2.5. The above lemma finishes the proof of Theorem 1.2(a).

In the next section, we shall prove the uniqueness of the solution to SPDE
(2.3). To this end, we need the following lemma.

Lemma 2.6. Let μ0 ∈MF (R), and suppose that Conditions (I2), (2.1) hold.
Let {μt} be arbitrary solution to GMP (1.1, 2.2). Then, for any T > 0, there
exists K1 =K1(T ) such that

(2.8) E

[
sup
t≤T

〈μt,1〉2
]
≤K1.

Proof. Fix arbitrary T > 0. Choosing f = 1, using martingale inequalities
for the martingale at (1.1) and our conditions on q and γ, we get

E〈μt,1〉 = 〈μ0,1〉+E

∫ t

0

〈
q(μs),1

〉
ds

≤ 〈μ0,1〉+KT ≡K2,
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and

E

[
sup
t≤T

〈μt,1〉2
]
≤ 3〈μ0,1〉2 + 3K2T + 3K

∫ T

0

E〈μs,1〉ds

≤ 3〈μ0,1〉2 + 3K2T + 3KK2T ≡K1. �

3. Uniqueness for SPDE

This section is devoted to the proof of the pathwise uniqueness for the
solution to SPDE (2.3). By Lemma 2.3, the uniqueness for the solution to
the GMP is then a direct consequence, and thus Theorem 1.2(b) will fol-
low.

Proposition 3.1. Assume (I1), (I2), (I3) and (2.1). Then the pathwise
uniqueness holds for SPDE (2.3), namely, if (2.3) has two solutions defined on
the same stochastic basis with the same initial conditions, then the solutions
coincide a.s.

Proof. Let {u1
t (y)} and {u2

t (y)} be two solutions to SPDE (2.3) and vt =
u1
t − u2

t . Also let {μ1
t},{μ2

t} be corresponding solutions of the martingale
problem (1.1), (2.2), that is ui

t(x) = μi
t((−∞, x]), x ∈R, i= 1,2.

For simplicity of notation, given functions G(·, ·) on R+ × R+ and η on
MF (R)×R, we write

Ḡs(a, y) =G
(
a,u1

s(y)
)
−G

(
a,u2

s(y)
)

and

η̄s(y) = η
(
y,μ1

s

)
− η

(
y,μ2

s

)
.

Then,

vt(y) =

∫ t

0

∫
R+

Ḡs(a, y)W (dsda) +

∫ t

0

(
1

2
Δvs(y)− η̄s(y)

)
ds,

where G(a,u) = λ(a)1a≤u. Let Φ ∈ C∞
0 (R)+ be such that supp(Φ)⊂ (−1,1)

and the total integral is 1. Let Φm(x) =mΦ(mx). Then,

〈
vt,Φm(x− ·)

〉
=

∫ t

0

∫
R+

∫
R

Ḡs(a, y)Φm(x− y)dyW (dsda)

+

∫ t

0

〈
vs,

1

2
ΔΦm(x− ·)

〉
ds

−
∫ t

0

〈
η̄s,Φm(x− ·)

〉
ds.

Next, we apply a modified Yamada–Watanabe argument. We will follow
closely the argument from [9]. First, we define a sequence of functions φk as
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follows. Let {ak} be a decreasing positive sequence defined recursively by

a0 = 1 and

∫ ak−1

ak

z−1 dz = k, k ≥ 1.

Let ψk be non-negative functions in C∞
0 (R) such that supp(ψk)⊂ (ak, ak−1)

and ∫ ak−1

ak

ψk(z)dz = 1 and ψk(z)≤ 2(kz)−1, ∀z ∈R.

Let

φk(z) =

∫ |z|

0

dy

∫ y

0

ψk(x)dx, ∀z ∈R.

Then, φk(z) ↑ |z| and |z|φ′′
k(z)≤ 2k−1.

Applying Itô’s formula, we get

φk

(〈
vt,Φm(x− ·)

〉)

=

∫ t

0

∫
R+

φ′
k

(〈
vs,Φm(x− ·)

〉)∫
R

Ḡs(a, y)Φm(x− y)dyW (dsda)

+

∫ t

0

φ′
k

(〈
vs,Φm(x− ·)

〉)〈
vs,

1

2
ΔΦm(x− ·)

〉
ds

−
∫ t

0

φ′
k

(〈
vs,Φm(x− ·)

〉)〈
η̄s,Φm(x− ·)

〉
ds

+
1

2

∫ t

0

∫
R+

φ′′
k

(〈
vs,Φm(x− ·)

〉)∣∣∣∣
∫
R

Ḡs(a, y)Φm(x− y)dy

∣∣∣∣
2

dads.

Let

J(x) =

∫
R

e−|y|�(x− y)dy,

where � is the mollifier given by

�(x) =K exp
(
−1/

(
1− x2

))
1|x|<1,

and K is a constant such that
∫
R
�(x)dx = 1. Then, for any m ∈ Z+, there

are positive constants cm and Cm such that

cme−|x| ≤
∣∣J (m)(x)

∣∣≤Cme−|x|, ∀x ∈R,(3.1)

(cf. Mitoma [7], (2.1)). Then

E

∫
R

φk

(〈
vt,Φm(x− ·)

〉)
J(x)dx= Im,k

1 + Im,k
2 +

1

2
Im,k
3 ,(3.2)

where

Im,k
1 = E

∫ t

0

∫
R

φ′
k

(〈
vs,Φm(x− ·)

〉)〈
vs,

1

2
ΔΦm(x− ·)

〉
J(x)dxds,

Im,k
2 = −E

∫ t

0

∫
R

φ′
k

(〈
vs,Φm(x− ·)

〉)〈
η̄s,Φm(x− ·)

〉
J(x)dxds,
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and

Im,k
3 = E

∫ t

0

∫
R

∫
R+

φ′′
k

(〈
vs,Φm(x− ·)

〉)

×
∣∣∣∣
∫
R

Ḡs(a, y)Φm(x− y)dy

∣∣∣∣
2

daJ(x)dxds.

Now we estimate Im,k
1 . First, denote by Δx the Laplacian acting with

respect to x. Since vs(·) is locally integrable and Φm is smooth with compact
support we have, for all x ∈R,∫

R

vs(y)ΔyΦm(x− y)dy =

∫
R

vs(y)ΔxΦm(x− y)dy

=Δx

∫
R

vs(y)Φm(x− y)dy

=Δx

(〈
vs,Φm(x− ·)

〉)
, ∀m≥ 1.

Then by using φ′′
k = ψk ≥ 0, integration by parts and the chain rule, we have

2Im,k
1 = E

∫ t

0

∫
R

φ′
k

(〈
vs,Φm(x− ·)

〉)
Δx

(〈
vs,Φm(x− ·)

〉)
J(x)dxds

= −E

∫ t

0

∫
R

ψk

(〈
vs,Φm(x− ·)

〉)( ∂

∂x

〈
vs,Φm(x− ·)

〉)2

× J(x)dxds

−E

∫ t

0

∫
R

φ′
k

(〈
vs,Φm(x− ·)

〉) ∂

∂x

(〈
vs,Φm(x− ·)

〉)
J ′(x)dxds

≤ −E

∫ t

0

∫
R

∂

∂x

(
φk

(〈
vs,Φm(x− ·)

〉))
J ′(x)dxds

= E

∫ t

0

∫
R

φk

(〈
vs,Φm(x− ·)

〉)
J ′′(x)dxds.

Use φk(z)≤ |z| to get

φk

(〈
vs,Φm(x− ·)

〉)
≤
∣∣〈vs,Φm(x− ·)

〉∣∣≤ 〈
|vs|,Φm(x− ·)

〉
.

Therefore,

2Im,k
1 ≤ E

∫ t

0

∫
R

〈
|vs|,Φm(x− ·)

〉∣∣J ′′(x)
∣∣dxds, ∀k,m≥ 1.(3.3)

Since for each t, vt(·) is the difference of two non-decreasing functions,
we have that, almost surely, the number of discontinuities of vt(·) is at most
countable for any time t. Therefore, we get

lim
m→∞

〈
vs,Φm(x− ·)

〉
= vs(x),(3.4)

for Lebesgue-a.e. x,∀s≥ 0,almost surely,
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and

lim
m→∞

〈
|vs|,Φm(x− ·)

〉
=
∣∣vs(x)∣∣,(3.5)

for Lebesgue-a.e. x,∀s≥ 0,almost surely.

This, almost sure boundedness of |vs(x)|, on (s,x) ∈ [0, t]×R, and integrability
of J ′′(·) implies, by the dominated convergence theorem, that

lim
m→∞

∫ t

0

〈
|vs|,Φm(x− ·)

〉∣∣J ′′(x)
∣∣dxds(3.6)

=

∫ t

0

∫
R

∣∣vs(x)∣∣× ∣∣J ′′(x)
∣∣dxds, a.s.

Moreover, by (2.8) we easily get that{〈
|vs|,Φm(x− ·)

〉
,m≥ 1, x ∈R, s≤ t

}
(3.7)

is uniformly integrable. This and (3.6) imply

lim
m→∞

E

∫ t

0

〈
|vs|,Φm(x− ·)

〉∣∣J ′′(x)
∣∣dxds(3.8)

= E

∫ t

0

∫
R

∣∣vs(x)∣∣× ∣∣J ′′(x)
∣∣dxds.

(3.3) and (3.8) imply

limsup
k,m→∞

2Im,k
1 ≤ E

∫ t

0

∫
R

∣∣vs(x)∣∣× ∣∣J ′′(x)
∣∣dxds.(3.9)

Now, by (3.1) we conclude that for some constant K,

limsup
m,k→∞

Im,k
1 ≤KE

∫ t

0

∫
R

∣∣vs(x)∣∣J(x)dxds.(3.10)

It is easy to show that

Im,k
3 ≤ E

∫ t

0

∫
R

∫
R+

φ′′
k

(〈
vs,Φm(x− ·)

〉)

×
∫
R

(
Ḡs(a, y)

)2
Φm(x− y)dy daJ(x)dxds

≤ E

∫ t

0

∫
R

∫
R+

φ′′
k

(〈
vs,Φm(x− ·)

〉)

×
(
sup
a∈R+

∣∣λ(a)∣∣2)
∫
R

∣∣vs(y)∣∣Φm(x− y)dyJ(x)dxds.

Now use (3.4), (3.5), (3.7) to get

limsup
m→∞

Im,k
3 ≤KE

∫ t

0

∫
R

∫
R+

φ′′
k

(
vs(x)

)∣∣vs(x)∣∣J(x)dxds(3.11)

= O
(
k−1

)
,
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where the last inequality follows since k|z|φ′′(z) is bounded. Also, using
|φ′

k(z)| ≤ 1, and (1.3) we easily get that there are non-negative constants
K1, K such that

limsup
m,k→∞

∣∣Im,k
2

∣∣ ≤K

∫ t

0

Eρ
(
μ1
s, μ

2
s

)
ds(3.12)

≤K1E

∫ t

0

∫
R

∣∣vs(x)∣∣J(x)dxds,
where for the last inequality we applied (3.1). Use (3.4) and (3.7) to get

lim
m→∞

E

∫
R

φk

(〈
vt,Φm(x− ·)

〉)
J(x)dx = E

∫
R

φk

(
vt(x)

)
J(x)dx.(3.13)

Since φk(z) ↑ |z|, we obtain by the monotone convergence

lim
k→∞

lim
m→∞

E

∫
R

φk

(〈
vt,Φm(x− ·)

〉)
J(x)dx(3.14)

= E

∫
R

∣∣vt(x)∣∣J(x)dx.
Now, put together (3.2), (3.10), (3.11), (3.12), (3.14) to get

E

∫
R

∣∣vt(x)∣∣J(x)dx≤K2E

∫ t

0

∫
R

∣∣vs(x)∣∣J(x)dxds
for some constant K2. Then the Grönwall lemma implies that

E

∫
R

∣∣vt(x)∣∣J(x)dx= 0

and the uniqueness follows. �
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