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P-MAPPING SPACES FOR P-OPERATOR SPACES
ON Lp SPACES

Y. F. ZHAO AND Z. DONG

Abstract. In this paper, we introduce p-mapping spaces for
p-operator spaces on Lp spaces, which can be regarded as p-
generalization of mapping spaces for operator spaces. We then

apply p-mapping spaces to study the p-local reflexivity for p-
operator spaces on Lp spaces.

1. Introduction

Throughout this writing, we always assume 1< p<∞ unless stated other-
wise. Given p, its conjugate exponent is denoted by p′ so that 1/p+1/p′ = 1.
Some fundamental results (p-completely bounded maps, p-Haagerup and p-
projective tensor products) for p-operator spaces have been studied by Pisier
[13], Le Merdy [9], and Daws [2]. In [1], the p-injective tensor product was
introduced for p-operator spaces, and various properties related to this tensor
product were studied, including the p-approximation property for p-operator
spaces on Lp spaces. The p-operator space tensor products are crucial in this
paper.

In Section 2, we recall some basic notations and properties of p-operator
spaces developed by Le Merdy [9] and Daws [2]. Obviously, certain operator
space properties may fail for general p-operator spaces. For instance, there
is non-existence of the corresponding Arveson–Wittstock–Hahn–Banach the-
orem for p-completely bounded maps (see Lee [12]). The p-Haagerup tensor
product for p-operator spaces is not injective anymore (see Le Merdy [9]).

The theory of mapping spaces for operator spaces arose from [5], [6],
[7], [4] and [8]. The most successful application of mapping spaces in oper-
ator spaces is to show that the dual of every C∗-algebra is locally reflexive
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in [4]. We first in Section 3 introduce a p-complete isometry Tn(V )∼= Tn

∧p

⊗ V .
The analysis of p-completely 1-summing mappings rests upon a careful study
of Tn(V ). Here we respectively explore the p-completely nuclear mappings
in Section 3, the p-completely integral mappings in Section 4 and the p-
completely 1-summing and ∞-summing mappings in Section 5, for p-operator
spaces on Lp spaces. In Section 6, we then apply these p-mapping spaces to
the study of the p-local reflexivity for p-operator spaces on Lp spaces. We
prove in Theorem 6.2 the equivalence with the isometric conditions. However,
due to the lack of the corresponding Arveson–Wittstock–Hahn–Banach theo-
rem for p-completely bounded maps, it is not clear whether this is true for the
p-completely isometric conditions. Finally, we end the section by an observa-
tion on p-completely 1-summing and ∞-summing mappings in the condition
of the p-local reflexivity.

2. P-operator spaces

Let 1 < p < ∞. A p-operator space is a Banach space V together with
a matrix norm, that is, a norm ‖ · ‖n on each matrix space Mn(V ), which
satisfies the following two conditions D∞: ‖x ⊕ y‖n+m = max{‖x‖n,‖y‖m}
for x ∈Mn(V ) and y ∈Mm(V ), Mp: ‖αxβ‖n ≤ ‖α‖‖x‖n‖β‖ for x ∈Mn(V )
and α,β ∈Mn =B(lnp ).

When V is a p-operator subspace of some B(Lp(μ)), then we say that V
is a p-operator space on Lp space. Unlike operator spaces, there exists a p-
operator space V such that the inclusion κV : V → V ∗∗ is not p-completely
isometric (see Daws [2]). By Proposition 4.9 in [2], however, κV is a p-complete
isometry if and only if V is a p-operator space on Lp space.

In [2], Daws defined and studied the p-projective tensor product. The
p-projective tensor product preserves most of properties of operator space
projective tensor product. For instance, the tensor product of p-complete
contractions (respectively, p-complete quotients) is again a p-complete con-
traction (respectively, a p-complete quotient). The p-projective tensor prod-

uct is associative, that is, (V
∧p

⊗ W )
∧p

⊗ Z = V
∧p

⊗ (W
∧p

⊗ Z), and commutative,

that is, V
∧p

⊗ W =W
∧p

⊗ V . We also have the p-completely isometric identifi-
cations

CBp(X
∧p

⊗ Y,Z) = CBp(X × Y,Z) = CBp

(
X,CBp(Y,Z)

)
.

In particular,

(X
∧p

⊗ Y )∗ =CBp

(
X,Y ∗).

In [1], the authors introduced the p-injective tensor product. The tensor
product of p-complete contractions under the p-injective tensor product is
again a p-complete contraction. In particular, if V and W are p-operator
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spaces, the bilinear mapping

V ×W → V ⊗∨p W : (v,w) 
→ v⊗w

is p-completely contractive, and thus determines a p-complete contraction

Φ : V
∧p

⊗ W → V
∨p

⊗ W.

Let V,W be p-operator spaces on Lp spaces. It was known from [1] that for
each u ∈Mn(V ⊗W ), the p-injective tensor norm ‖u‖∨p can be expressed by

‖u‖∨p = sup
{∥∥(ϕ⊗ ψ)n(u)

∥∥ : ϕ ∈Mm

(
V ∗)

1
, ψ ∈Mk

(
W ∗)

1
,m,k ∈N

}
.

If V ⊆B(Lp(μ)), then we have a p-completely isometric isomorphism

Mn(V ) =Mn

∨p

⊗ V.

Let V,W be p-operator spaces on Lp spaces, then the canonical inclusion

V ∗ ∨p

⊗ W ↪→CBp(V,W )

is a p-completely isometric injection. We do not know whether the p-injective
tensor product is injective. But if all p-operator spaces under consideration
are on Lp spaces, then the p-injective tensor product is injective (see [11]).

Theorem 2.1. Suppose that V,W , and X are p-operator spaces. Then the
natural mappings

V ⊗∧p (W ⊗∨p X)→ (V ⊗∧p W )⊗∨p X

are p-completely contractive.

Proof. we let Z = W ⊗∨p X . Given u ∈ Mn(V ⊗ Z) and ε > 0, we may
assume that

u= α(v⊗ z)β =

[ ∑
i,j,k,l

αg,(i,k)(vij ⊗ zkl)β(j,l),h

]
,

where v ∈Mr(Z), z ∈Mq(Z), α ∈Mn,r×q , and β ∈Mr×q,n satisfy

‖α‖‖v‖‖z‖∨p‖β‖< ‖u‖∧p + ε.

We let z = [zkl], where

zkl =
∑
t

w
(t)
kl ⊗ x

(t)
kl ,

with w
(t)
kl ∈W and x

(t)
kl ∈X . Then we have

u=

[ ∑
i,j,k,l,t

αg,(i,k)

((
vij ⊗w

(t)
kl

)
⊗ x

(t)
kl

)
β(j,l),h

]
.

If ‖v‖=0, it is easy see that

‖u‖V⊗∧p (W⊗∨pX) = ‖u‖(V⊗∧pW )⊗∨pX
.
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So here, we can assume ‖v‖>0.
From the definition of p-operator space injective tensor product norm

in [11],

‖u‖(V⊗∧pW )⊗∨pX

= sup

{∥∥∥∥
[ ∑
i,j,k,l,t

αg,(i,k)est
(
vij ⊗w

(t)
kl

)
x
(t)
kl β(j,l),h

]∥∥∥∥
Mmn(X)

:

m ∈N, e= [est] ∈Mm

(
(V ⊗∧p W )∗

)
1

}
,

where Mm((V ⊗∧p W )∗)1 denotes the closed unit ball of

Mm

(
(V ⊗∧p W )∗

)
=CBp

(
(V ⊗∧p W ),Mm

)
.

If we fix such element e, e determines a p-complete contraction

E ∈CBp

(
V,CBp(W,Mm)

)
,

where

E(v0)(w0) = e(v0 ⊗w0)

for any v0 ∈ V and w0 ∈W . Thus, if fij =E(vij)/‖v‖, then
f = [fij ] ∈Mr

(
CBp(W,Mm)

)
=CBp(W,Mr×m)

satisfies

‖f‖pcb ≤ 1.

So we have ∥∥∥∥
[ ∑
i,j,k,l,t

αg,(i,k)est
(
vij ⊗w

(t)
kl

)
x
(t)
kl β(j,l),h

]∥∥∥∥
Mmn(X)

=

∥∥∥∥
[ ∑
i,j,k,l,t

αg,(i,k)E(vij)
(
w

(t)
kl

)
x
(t)
kl β(j,l),h

]∥∥∥∥
=

∥∥∥∥
[ ∑
i,j,k,l

αg,(i,k)

(∑
t

fij
(
w

(t)
kl

)
x
(t)
kl

)
β(j,l),h

]∥∥∥∥‖v‖
≤ ‖α‖‖z‖∨p‖β‖‖v‖
< ‖u‖∧p + ε.

It follows that

‖u‖(V⊗∧pW )⊗∨pX
≤ ‖u‖V⊗∧p (W⊗∨pX).

Thus we obtain the desired inequality. �

Theorem 2.2. Let V,W , and X be p-operator spaces on Lp spaces. Then
we have the p-completely isometric isomorphisms

V
∨p

⊗ W ∼=W
∨p

⊗ V
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and

(V
∨p

⊗ W )
∨p

⊗ X ∼= V
∨p

⊗ (W
∨p

⊗ X).

Proof. Given any index set I, J , and K, we have the natural isometries(
lp(I)⊗p lp(J)

)
⊗p lp(K)∼= lp(I)⊗p

(
lp(J)⊗p lp(K)

)
and

lp(I)⊗p lp(J)∼= lp(J)⊗p lp(I).

Thus, the results follow from Proposition 3.3 in [1]. �

Theorem 2.3. Let V,W be p-operator spaces on Lp spaces with V or W
finite-dimensional. Then we have the p-complete isometry

V ∗ ∨p

⊗ W ∼=CBp(V,W ).

Proof. We have the p-completely isometric inclusion

V ∗ ∨p

⊗ W ↪→CBp(V,W ).

Hence to prove the identification, it suffices to show

ϕ : V ∗ ∨p

⊗ W ↪→CBp(V,W )

is surjective. Since V or W is finite-dimensional, we have the identification
V ∗ ⊗W ∼=FCBp(V,W ). Thus, we obtain that ϕ is surjective. �

3. P-completely nuclear mappings

Definition 3.1. Let V,W,U,X be p-operator spaces on Lp spaces. A p-
operator space mapping ideal O is an assignment to each pair of p-operator
spaces V,W of a linear spaceO of p-completely bounded mappings ϕ : V →W ,
together with a p-operator space matrix norm ‖ · ‖O, such that for each
ϕ ∈Mn(O),

(a) ‖ϕ‖pcb ≤ ‖ϕ‖O and
(b) for any linear mappings r : U → V and s :W →X ,

‖sn ◦ϕ ◦ r‖O ≤ ‖s‖pcb‖ϕ‖O‖r‖pcb.
We say the p-operator space mapping ideal O is local if for each linear mapping
ϕ : V →W ,

‖ϕ‖O = sup
{
‖ϕ|L‖O : for any finite-dimensional subspace L⊆ V

}
.

Definition 3.2. Let V,W be p-operator spaces on Lp spaces. Guided by
operator spaces, we define the p-completely nuclear mappings Np(V,W ) to be
the image of the mapping

Φ : V ∗ ∧p

⊗ W → V ∗ ∨p

⊗ W ⊆CBp(V,W )
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with the quotient p-operator space structure determined by the identification

Np(V,W )∼= V ∗
∧p

⊗ W

kerΦ
.

Let νpn be the matrix norm on Mn(Np(V,W )).

For exploring the identifications in the p-completely nuclear mappings, we
define the following spaces with a norm similar to ‖ · ‖1 in operator space
theory, which has been introduced by Lee [10].

Definition 3.3. For a p-operator space V , let Tn(V ) denote a Banach
space (

Mn(V ),‖ · ‖1,n
)
,

where ‖ · ‖1,n is defined by

‖v‖1,n = inf
{
‖α‖p′‖w‖‖β‖p : r ∈N, v = αwβ,

α ∈Mn,r, β ∈Mr,n,w ∈Mr(V )
}
,

where ‖α‖p′ = (
∑n

i=1

∑r
j=1|αij |p

′
)1/p

′
and ‖β‖p = (

∑r
k=1

∑n
l=1|βkl|p)1/p.

For a p-operator space V , Tn(V )∗ ∼=Mn(V
∗)∼= CBp(V,Mn) are isometric

isomorphisms ([11], Lemma 3.4). Also, these identifications are p-completely
isometric isomorphisms. Let nuclear operators N (lnp ) to be the image of the
mapping

Φ :
(
lnp
)∗ ∧p

⊗ lnp →
(
lnp
)∗ ∨p

⊗ lnp ⊆B
(
lnp
)

with the quotient norm coming from N (lnp )
∼= (lnp )

∗
∧p
⊗ lnp

kerΦ . If we use

Tn
∼=N

(
lnp
)
, Mn(C)∼=B

(
lnp
)
,

then by Proposition 2.2 in [1], we have

Tn
∼=M∗

n, Mn
∼= T ∗

n ,

and

T∞ ∼=K∗
∞, M∞ ∼= T ∗

∞.

Let V be a p-operator space on Lp space. By Theorem 3.6 in [1], we have the
isometric isomorphism

(Mn

∨p

⊗ V )∗ ∼= Tn

∧p

⊗ V ∗.

Lemma 3.4. Let V,W be p-operator spaces on Lp spaces. Given linear
mappings ϕn :Mn(V )→Mn(W ) and Tn(ϕ) : Tn(V )→ Tn(W ) for each n ∈N.
If Tn(ϕ) is an isometric injection for each n ∈N, then so is ϕn.
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Proof. We may prove that if ϕn is a quotient mapping for each n ∈ N,
then so is Tn(ϕ). Let us suppose that ϕn is a quotient mapping for each
n ∈ N. For any w ∈ Tn(W ) with ‖w‖1,n < 1, we may assume that w = αw̃β,
where w̃ ∈Mr(W ), α ∈Mn,r and β ∈Mr,n satisfy ‖w̃‖,‖α‖p′ ,‖β‖p < 1. By
hypothesis, we may choose an element ṽ ∈ Mr(V ) with ‖ṽ‖ < 1, for which
ϕr(ṽ) = w̃. If we let v = αṽβ, then it follows that ‖v‖1,n < 1 and Tn(ϕ)(v) =w.
So Tn(ϕ) is a quotient mapping for each n ∈N.

We have the isometric isomorphisms

Mn(V )∗ ∼= (Mn

∨p

⊗ V )∗ ∼= Tn

∧p

⊗ V ∗ ∼= Tn

(
V ∗).

We can note that Tn(ϕ)
∗ = (ϕ∗)n and (ϕn)

∗ = Tn(ϕ
∗). Thus from (A.2.1)

in [8], Tn(ϕ) is an isometric injection for each n ∈ N ⇒ (ϕ∗)n is a quotient
mapping for each n ∈N ⇒ Tn(ϕ

∗) is a quotient mapping for each n ∈N ⇒ ϕn

is an isometric injection for each n ∈N. �

For any p-operator space V , we have the p-complete isometries

(Tn

∧p

⊗ V )∗ ∼=CBp(V,Mn)∼=Mn

(
V ∗)∼= (

Tn(V )
)∗
.

Then, we obtain a natural isometry Tn(V )∼= Tn

∧p

⊗ V .

Corollary 3.5. Let V be a p-operator space. The natural isometry

Tn(V )∼= Tn

∧p

⊗ V is a p-completely isometric isomorphism.

Proof. We have the p-complete isometries

(Tn

∧p

⊗ V )∗ ∼=CBp(V,Mn)∼=Mn

(
V ∗)∼= (

Tn(V )
)∗
.

Then for each r ∈N, we have the isometries

(
Tr(Tn

∧p

⊗ V )
)∗ ∼=Mr

(
(Tn

∧p

⊗ V )∗
)∼=Mr

((
Tn(V )

)∗)∼= (
Tr

(
Tn(V )

))∗
,

and thus Tr(Tn

∧p

⊗ V ) ∼= Tr(Tn(V )). From Lemma 3.4, for each r ∈ N we

have the isometry Mr(Tn

∧p

⊗ V ) ∼= Mr(Tn(V )). Then, Tn(V ) ∼= Tn

∧p

⊗ V is a
p-completely isometric isomorphism. �

Theorem 3.6. Let V be a p-operator space on Lp space. We have the
following p-completely isometric identifications

Mn(V )∗∗ ∼=Mn

(
V ∗∗)

and

Mn(V )∗ ∼= Tn

(
V ∗).
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Proof. We have the isometric isomorphisms

Mn(V )∗ ∼= (Mn

∨p

⊗ V )∗ ∼= Tn

∧p

⊗ V ∗ ∼= Tn

(
V ∗).

It is easy to see that Mn(V )∗∗ ∼=Mn(V
∗∗) is a p-completely isometric isomor-

phism. Then we just need to show that

Mr

(
Tn

(
V ∗))→Mr

(
Mn(V )∗

)
is isometric for each r ∈N. To see this, it suffices to show that the correspond
mapping

Tr

∧p

⊗ Tn

∧p

⊗ V ∗ → Tr

∧p

⊗ Mn(V )∗

is isometric for each r ∈N. This is apparent from the commutative diagram

Tr

∧p

⊗ Tn

∧p

⊗ V ∗ −−−−→ Tr

∧p

⊗ Mn(V )∗⏐⏐� ⏐⏐�
Tr×n

∧p

⊗ V ∗ −−−−→ (Mr×n(V ))∗

since we can obtain that the bottom and vertical mappings are isometric, we
have Mn(V )∗ ∼= Tn(V

∗) is a p-completely isometric isomorphism. �
We can obtain the p-completely isometric identifications

Tn

(
Np(V,W )

)∼=Np

(
V,Tn(W )

)∼=Np

(
Mn(V ),W

)
which is evident from the diagram

Tn

∧p

⊗ (V ∗
∧p

⊗ W ) V ∗
∧p

⊗ Tn(W ) Mn(V )∗
∧p

⊗ W⏐⏐� ⏐⏐� ⏐⏐�
Tn

∧p

⊗ Np(V,W ) Np(V,Tn(W )) Np(Mn(V ),W )

in which the column mappings are p-complete quotient mappings, and their
null spaces are the same.

Theorem 3.7. Np is a p-operator space mapping ideal.

Proof. Let us suppose that we are given ϕ ∈ Mn(Np(V,W )) and linear

mappings r : U → V and s : W → X . Since Φ : V ∗
∧p

⊗ W → V ∗
∨p

⊗ W is p-
completely contractive, we have ‖ϕ‖pcb ≤ νp(ϕ). If we choose

u ∈Mn

(
V ∗ ∧p

⊗ W
)

with ϕ=Φn(u), it follows that

sn ◦ϕ ◦ r =Φn

(
u′),

where

u′ =
(
r∗ ⊗ s

)
n
(u) ∈Mn

(
U∗ ∧p

⊗ X
)
,
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and thus

νpn(sn ◦ϕ ◦ r)≤
∥∥u′∥∥

∧p
≤ ‖s‖pcb‖u‖∧p‖r‖pcb.

Taking the infimum over all u with ϕ=Φn(u), we have that

νpn(sn ◦ϕ ◦ r)≤ ‖s‖pcbνpn(ϕ)‖r‖pcb.
So we conclude that Np is a p-operator space mapping ideal. �

Lemma 3.8. Let V,W be p-operator spaces on Lp spaces. If ϕ∗ :W ∗ → V ∗

is a p-complete quotient mapping, then ϕ : V →W is a p-complete isometry.

Proof. By Lemma 4.6 in [2], the mapping ϕ∗∗ : V ∗∗ →W ∗∗ is p-completely
isometric. We have a commutative diagram

V −−−−→ W⏐⏐� ⏐⏐�
V ∗∗ −−−−→ W ∗∗

,

where the columns are p-completely isometric inclusions, and the bottom
row is p-completely isometric. It follows that ϕ : V → W is p-completely
isometric. �

Lemma 3.9. Let V,W be p-operator spaces on Lp spaces. Then the usual
inclusion mapping ι : V ↪→ V ∗∗ induces the p-completely isometric injection

V
∧p

⊗ W ↪→ V ∗∗
∧p

⊗ W .

Proof. By Lemma 4.5 in [2], the mapping ι∗ : V ∗∗∗ → V ∗ is p-completely
contractive.

For any n ∈ N, the mapping ϕ → (ι∗)n ◦ ϕ provides us with a quotient
mapping in the top row of the diagram

CBp(W,Mn(V
∗∗∗)) −−−−→ CBp(W,Mn(V

∗))∥∥∥ ∥∥∥
Mn((V

∗∗
∧p

⊗ W )∗) −−−−→ Mn((V
∧p

⊗ W )∗)

,

since we are given a p-complete contraction ψ ∈ CBp(W,Mn(V
∗)), then

(ιV ∗)n ◦ ψ is the p-completely contractive preimage. Thus, the bottom row

is also a quotient mapping. It follows that (V ∗∗
∧p

⊗ W )∗ → (V
∧p

⊗ W )∗ is a
p-complete quotient mapping.

Owing to Lemma 3.8, we have that V
∧p

⊗ W ↪→ V ∗∗
∧p

⊗ W is p-completely
isometric. �

Proposition 3.10. Let V,W be p-operator spaces on Lp spaces and ϕ :
V →W is a p-completely bounded mapping, then ϕ∗ :W ∗ → V ∗ satisfies

νp
(
ϕ∗)≤ νp(ϕ).
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If V or W is finite-dimensional, then νp(ϕ∗) = νp(ϕ).

Proof. The result follows from Lemma 3.9 and a commutative diagram

V ∗
∧p

⊗ W −−−−→ V ∗
∧p

⊗ W ∗∗⏐⏐� ⏐⏐�
Np(V,W ) −−−−→ Np(W

∗, V ∗)

.

�

Proposition 3.11. Suppose that L is a finite-dimensional p-operator space
on Lp space. Then for any p-operator space W on Lp space, the natural
injection

Np(L,W )→Np

(
L,W ∗∗)

is p-completely isometric.

Proof. The result follows from Lemma 3.9 and a commutative diagram

L∗
∧p

⊗ W −−−−→ L∗
∧p

⊗ W ∗∗⏐⏐� ⏐⏐�
Np(L,W ) −−−−→ Np(L,W

∗∗)

.

�

4. P-completely integral mappings

Definition 4.1. Let V,W be p-operator spaces on Lp spaces. We define
the mapping ϕ : V → W with a p-operator space matrix norm ιp(·) to be
p-completely integral, which

ιp(ϕ) = sup
{
νp(ϕ|L) : for any finite-dimensional subspace L⊆ V

}
<∞.

And let Ip(V,W ) denote the p-completely integral mapping spaces.

Given ϕ ∈Mn(Ip(V,W )), we define

ιpn(ϕ) = sup
{
νpn(ϕ|L) : for any finite-dimensional subspace L⊆ V

}
<∞.

Given a linear mapping ϕ : V →W and a finite-dimensional subspace L of V
we have ϕ|L = ϕ ◦ r, where r : L→ V is the inclusion mapping, and thus

‖ϕ|L‖pcb ≤ νp(ϕ|L)≤ νp(ϕ)‖r‖pcb = νp(ϕ).

From this, we infer that

‖ϕ‖pcb ≤ ιp(ϕ)≤ νp(ϕ).

If V is finite-dimensional, then from the definition νp(ϕ)≤ ιp(ϕ). So we have
an isometric identification Ip(V,W )∼=Np(V,W ).

Theorem 4.2. Ip is a local p-operator space mapping ideal.
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Proof. To see this, let us suppose that we are given ϕ ∈ Mn(Ip(V,W ))
and linear mappings r : U → V and s :W →X . If K is a finite-dimensional
subspace of U and we let L= r(K), then

νpn(sn ◦ϕ ◦ r|K)≤ ‖s‖pcbνpn(ϕ|L)‖r‖pcb ≤ ‖s‖pcbιpn(ϕ)‖r‖pcb,

and thus

ιpn(sn ◦ϕ ◦ r)≤ ‖s‖pcbιpn(ϕ)‖r‖pcb.
Since ‖ϕ‖pcb ≤ ιp(ϕ), we have that Ip is a p-operator space mapping ideal.
Then from Definition 4.1, we have that this p-mapping ideal is local. �

Theorem 4.3. Let V,W be p-operator spaces on Lp spaces. The natural
mapping Ip(V,W )→Ip(V,W ∗∗) is p-completely isometric.

Proof. Since Ip is a p-mapping ideal, this mapping is a p-complete contrac-
tion. On the other hand, letting λ :W →W ∗∗ be the canonical injection, let
us suppose that ιpn(λn ◦ϕ)≤ 1. Given a finite-dimensional subspace L⊆ V , it
follows from Proposition 3.11 that

νpn(ϕ|L) = νpn(λn ◦ϕ|L)≤ 1,

and thus ιpn(ϕ)≤ 1. �

Let V,W be p-operator spaces on Lp spaces. We have a natural diagram
of p-complete contractions

Np(V,W
∗) ⊆ Ip(V,W ∗)⊆ CBp(V,W

∗)
Φ̂↑ ↓S

V ∗
∧p

⊗ W ∗ θ→ (V
∨p

⊗ W )∗
Φ∗
→ (V

∧p

⊗ W )∗
,

where S : CBp(V,W
∗)∼= (V

∧p

⊗ W )∗ is a p-complete isometry determined by

S(ϕ) : V ⊗W →C : v⊗w 
→ ϕ(v)(w),

Φ : V
∧p

⊗ W → V
∨p

⊗ W and Φ̂ : V ∗
∧p

⊗ W ∗ →Np(V,W
∗) are the canonical map-

pings. The map θ is determined by the fact that the bilinear mapping

V ∗ ×W ∗ → (V
∧p

⊗ W )∗

is p-completely contractive in the sense that

‖f ⊗ g‖ ≤ ‖f‖‖g‖

for f ∈ Mr(V
∗) and g ∈ Ms(W

∗). The diagram commutes since it is im-

mediate that S(Φ̂(F )) = Φ∗(θ(F )) for F = f ⊗ g (f ∈ V ∗, g ∈W ∗), and ex-
tending linearly and using continuity, we find that this relation holds for all

F ∈ V ∗
∧p

⊗ W ∗.
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Lemma 4.4. Let V,W be p-operator spaces on Lp spaces. There is a p-
completely contractive mapping

Sint : Ip
(
V,W ∗)→ (V

∨p

⊗ W )∗

for which the following diagram commutes

Np(V,W
∗) ⊆ Ip(V,W ∗) ⊆ CBp(V,W

∗)
Φ̂↑ ↓Sint ↓S

V ∗
∧p

⊗ W ∗ θ→ (V
∨p

⊗ W )∗
Φ∗
→ (V

∧p

⊗ W )∗
.

Proof. Our task is to show that for any φ ∈Mn(Ip(V,W ∗)),

Sp(φ) : V ⊗∨p W →Mn

satisfies ‖Sn(φ)‖pcb ≤ ιpn(φ). From this, it will follow that the restriction Sint

of S is p-completely contractive.
Given φ ∈ Mn(CBp(V,W

∗)) with ιpn(φ) ≤ 1, there is by definition a net
ψα(v) ∈ Mn(W

∗) converges to φ(v) in norm for all v ∈ V . It follows that
the net of scalar matrices (Sn(ψα))m(u) converges to (Sn(φ))m(u) for any

u ∈Mm(V ⊗W ). Letting ψα = Φ̂n(Fα) with ‖Fα‖∧p ≤ 1, we have∥∥(Sn(ψα)
)
m
(u)

∥∥=
∥∥(θn(Fα)

)
m
(u)

∥∥≤ ‖Fα‖∧p‖u‖∨p < ‖u‖∨p .

Taking the limit, we see that ‖Sn(φ)(u)‖pcb ≤ ‖u‖∨p , and thus∥∥Sn(φ)
∥∥
pcb

≤ 1. �

Lemma 4.5. Let V,W be p-operator spaces on Lp spaces. Then the com-
position

S0 : Ip(V,W ) ↪→Ip
(
V,W ∗∗)→ (

V
∨p

⊗ W ∗)∗
is isometric.

Proof. By Theorem 4.3 and Lemma 4.4, we have the composition is con-
tractive. Let us suppose that ϕ ∈ Ip(V,W ) satisfies ‖S0(ϕ)‖ ≤ 1.

Since

W ∗ ∨p

⊗ V ∼= V
∨p

⊗ W ∗ ↪→CBp

(
W,V ∗∗)∼= (

V ∗ ∧p
⊗ W

)∗
are p-completely isometric, we may identify W ∗

∨p

⊗ V with a p-operator sub-

space of (V ∗ ∧p
⊗ W )∗. It follows from the Hahn–Banach theorem that S0(ϕ)

has a contractive extension

Fϕ ∈
(
V ∗ ∧p

⊗ W
)∗∗

.

From the bipolar theorem, we may choose a net of elements

uλ ∈ V ∗ ∧p
⊗ W
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such that

‖uλ‖
V ∗

∧p
⊗W

< 1

and uλ converges to Fϕ in the point-norm topology on (V ∗ ∧p
⊗ W )∗∗. It follows

that

ϕλ =Φ(uλ) ∈Np(V,W )

is a net with νp(ϕλ)< 1, and for each v ∈ V and g ∈W ∗,

ϕλ(v)(g) = uλ(v⊗ g) = S0(ϕ)(v⊗ g) = ϕ(v)(g).

Therefore, ϕλ converges to ϕ in the point-weak topology, and thus ιp(ϕ)≤ 1.
We conclude that the composition is isometric. �

Theorem 4.6. If L is a finite-dimensional p-operator space on Lp space,
then for any p-operator spaces on Lp space V we have the isometry

Sint : Ip
(
V,L∗)∼= (V

∨p

⊗ L)∗.

Proof. It is immediate from Lemma 4.5. �

Given p-operator spaces V and W , Lee defined V ∗∗ :
∨p

⊗ :W ∗∗, V
∨p

⊗ :W ∗∗

and V ∗∗ :
∨p

⊗ W , which were called the p-augmented, p-right augmented and
p-left augmented injective tensor products, respectively (see [11]).

Theorem 4.7. For any p-operator spaces V and W on Lp spaces, the
mapping

Sint : Ip
(
V,W ∗)→ (V

∨p

⊗ W )∗

is an isometric surjection if and only if we have the natural isometric isomor-
phism

V
∨p

⊗ :W ∗∗ ∼= V
∨p

⊗ W ∗∗.

Proof. Let us suppose that we have V
∨p

⊗ :W ∗∗ ∼= V
∨p

⊗ W ∗∗. For any

ϕ ∈ Ip
(
V,W ∗),

Fϕ = Sint(ϕ) = S(ϕ) is determined by 〈Fϕ, v⊗w〉= ϕ(v)(w) (see Lemma 4.4).
From Lemma 4.5, we have the natural isometry

S0 : Ip
(
V,W ∗) ↪→ (

V
∨p

⊗ W ∗∗)∗.
It follows that

ιp(ϕ) = sup
{∣∣〈Fϕ, u〉

∣∣ : u ∈ V ⊗W ∗∗,‖u‖
V

∨p
⊗W∗∗

≤ 1
}

= sup
{∣∣〈Fϕ, u〉

∣∣ : u ∈ V ⊗W ∗∗,‖u‖
V

∨p
⊗ :W∗∗

≤ 1
}
.
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Since the closed unit ball of V ⊗∨p W is weak∗ dense in the closed unit ball

of (V
∨p

⊗ W )∗∗,

ιp(ϕ) = sup
{∣∣〈Fϕ, u〉

∣∣ : u ∈ V ⊗W,‖u‖
V

∨p
⊗W

≤ 1
}
= ‖Fϕ‖.

To prove that Sint is a surjection, let us suppose that f ∈ (V
∨p

⊗ W )∗. Then

since the mapping S : CBp(V,W
∗) ∼= (V

∧p

⊗ W )∗ is a p-completely isometric

surjection and Φ : V
∧p

⊗ W → V
∨p

⊗ W is contractive, there is a p-complete
contraction ϕ : V →W ∗ such that S(ϕ) = Φ∗(f). Restricting to the algebraic
tensor product V ⊗W , we have Fϕ = f , and thus from the above calculations
we obtain ιp(ϕ) = ‖f‖<∞. We conclude that ϕ ∈ Ip(V,W ∗) and Sint(ϕ) = f .

Conversely, let us suppose that

Sint : Ip
(
V,W ∗)→ (V

∨p

⊗ W )∗

is an isometric surjection. Then we have the commutative diagram

Ip(V,W ∗)
Sint−−−−→ (V

∨p

⊗ W )∗
Φ∗

−−−−→ (V
∧p

⊗ W )∗ ∼=CBp(V,W
∗)

J̃

⏐⏐� ⏐⏐�
Ip(V,W ∗∗∗)

S̃int−−−−→ (V
∨p

⊗ W ∗∗)∗ −−−−→ (V
∧p

⊗ W ∗∗)∗ ∼=CBp(V,W
∗∗∗)

,

where J̃ is the isometry described in Theorem 4.3, and the right column is
the obvious isometric inclusion. Thus, if we let

η = S̃int ◦ J̃ ◦ S−1
int ,

then we obtain a diagram of contractions

(V
∨p

⊗ W )∗
Φ∗

−−−−→ (V
∧p

⊗ W )∗ ∼=CBp(V,W
∗)

η

⏐⏐� ⏐⏐�
(V

∨p

⊗ W ∗∗)∗ −−−−→ (V
∧p

⊗ W ∗∗)∗ ∼=CBp(V,W
∗∗∗)

.

If we take the adjoints of the mappings in this diagram, then we obtain the
commutative diagram

V ⊗W ∗∗ → (V
∧p

⊗ W ∗∗)∗∗ → (V
∨p

⊗ W ∗∗)∗∗

↘ ↓ ↓
(V

∧p

⊗ W )∗∗ → (V
∨p

⊗ W )∗∗

.

The bottom composition has range V⊗ :∨p W ∗∗. On the other hand,
V ⊗W ∗∗ in (V⊗ :∨p W ∗∗)∗∗, and thus the algebraic identification V ⊗∨p

W ∗∗ = V⊗ :∨p W
∗∗ is an isometric isomorphism. �
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The conditions Cp, C
′
p and C ′′

p of p-operator spaces on Lp spaces have been
studied by Lee (see [11]). Let V be a p-operator space on Lp space. We say

V satisfies condition Cp if we have the isometry V ∗∗ :
∨p

⊗ :W ∗∗ ∼= V ∗∗
∨p

⊗ W ∗∗

for all p-operator spaces W on Lp spaces. It is equivalent to suppose that the
isometry is a p-complete isometry, since Theorem 3.6 and the isometry imply
that

Mn

(
V ∗∗ :

∨p

⊗ :W ∗∗)∼= V ∗∗ :
∨p

⊗ :Mn(W )∗∗ ∼=Mn

(
V ∗∗ ∨p

⊗ W ∗∗).
Similarly, we say V satisfies condition C

′
p if we have the isometry V

∨p

⊗ :W ∗∗ ∼=
V

∨p

⊗ W ∗∗ for all p-operator spaces W on Lp spaces. We say V satisfies con-

dition C
′′

p if we have the isometry V ∗∗ :
∨p

⊗ W ∼= V ∗∗
∨p

⊗ W for all p-operator
spaces W on Lp spaces. Once again, these conditions are stable in the sense
that if they hold, then these identifications are p-completely isometric isomor-
phisms.

Corollary 4.8. Let V be a p-operator space on Lp space.

(1) V satisfies condition C ′
p if and only Ip(V,W ∗)∼= (V

∨p

⊗ W )∗ is an isometry
for all p-operator spaces W on Lp spaces;

(2) V satisfies condition C ′′
p if and only if Ip(W,V ∗)∼= (V

∨p

⊗ W )∗ is an isom-
etry for all p-operator spaces W on Lp spaces.

Proof. This is an immediate consequence of Theorem 4.7 and the definitions
of the conditions C ′

p and C ′′
p . �

5. P-completely 1-summing and ∞-summing mappings

Completely 1-summing mappings have been studied by Effros and Ruan
[6] and completely ∞-summing mappings have been considered by Dong [3].
In this section, we will define and study p-completely 1-summing and ∞-
summing mappings.

Definition 5.1. If ϕ : V →W is a linear mapping of p-operator spaces on
Lp spaces, then we define πp

1(ϕ) in [0,∞] by

πp
1(ϕ) = ‖ idT∞ ⊗ϕ : T∞

∨p

⊗ V → T∞
∧p
⊗ W‖

= sup
{
‖ idTr ⊗ϕ : Tr

∨p

⊗ V → Tr

∧p
⊗ W‖ : r ∈N

}
.

If πp
1(ϕ) <∞, we say that ϕ is p-completely 1-summing and we refer to

πp
1(ϕ) as the p-completely 1-summing norm of ϕ. We let Πp

1(V,W ) denote
the space of all p-completely 1-summing mappings from V into W .

Theorem 5.2. For any p-operator spaces on Lp spaces V and W , a linear
mapping ϕ : V → W satisfies πp

1(ϕ) < 1 if and only if for each n ∈ N and
p-complete contraction θ :Mn → V , νp(ϕ ◦ θ)≤ 1.
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Proof. This is apparent from the commutative diagram

Tn

∨p

⊗ V
id⊗ϕ−−−−→ Tn

∧p
⊗ W⏐⏐� ⏐⏐�

CBp(Mn, V ) −−−−→ Np(Mn,W )

.

�
Corollary 5.3. Let V and W be p-operator spaces on Lp spaces. The

bifunctor Πp
1 : (V,W ) 
→ (Πp

1(V,W ),Πp
1) is a local p-operator space mapping

ideal, and for any linear mapping ϕ : V →W , πp
1(ϕ)≤ ιp(ϕ).

Proof. If r = 1, we have ‖ idTr : Tr

∨p

⊗ V → Tr

∧p
⊗ W‖. Then we have

‖ϕ‖ ≤ πp
1(ϕ). Suppose linear mappings r : U → V and s : W → X . Then

it is apparent from the diagram

T∞
∨p

⊗ U
id⊗r→ T∞

∨p

⊗ V
id⊗ϕ→ T∞

∧p
⊗ W

id⊗s→ T∞
∧p
⊗ X

that
πp
1(s ◦ϕ ◦ r)≤ ‖s‖πp

1(ϕ)‖r‖.
Therefore Πp

1 is a p-mapping ideal. Since Πp
1 has the p-ideal property, it is

clear that for every finite-dimensional p-operator subspace L⊆ V ,

πp
1(ϕ|L)≤ πp

1(ϕ).

On the other hand, suppose that for any finite-dimensional p-operator sub-
space L ⊆ V , πp

1(ϕ|L) ≤ 1. For any n ∈ N and p-complete contraction
ψ : Mn → V , we set L = ψ(Mn). Since πp

1(ϕ|L) ≤ 1, it follows from Theo-
rem 5.2 that

νp(ϕ ◦ψ) = νp(ϕ|L ◦ψ)≤ 1.

Theorem 5.2 shows that πp
1(ϕ)≤ 1 and therefore Πp

1 is local.
If νp(ϕ) ≤ 1, then for any n ∈ N and each p-complete contraction

ψ :Mn → V
νp(ϕ ◦ ψ)≤ νp(ϕ) · ‖ψ‖pcb ≤ 1

and from Theorem 5.2,
πp
1(ϕ)≤ νp(ϕ).

Since Πp
1 and Ip are local,

πp
1(ϕ) = sup

{
πp
1(ϕ|L) : for any finite-dimensional subspace L⊆ V

}
≤ sup

{
νp(ϕ|L) : for any finite-dimensional subspace L⊆ V

}
= ιp(ϕ). �

Definition 5.4. If ϕ : V →W is a linear mapping of p-operator spaces on
Lp spaces, then we define πp

∞(ϕ) in [0,∞] by

πp
∞(ϕ) = ‖ idM∞ ⊗ϕ :M∞

∨p

⊗ V →M∞
∧p
⊗ W‖

= sup
{
‖ idMr ⊗ϕ :Mr

∨p

⊗ V →Mr

∧p
⊗ W‖ : r ∈N

}
.
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This definition is ‘stable’ in the sense that we may replace the bounded
norms with p-completely bounded norms. To see this, let us suppose that
πp
∞(ϕ)≤ 1. Let us fix r. We have

‖ idMr ⊗ϕ‖pcb = sup
{∥∥idMn ⊗ idMr ⊗ϕ :

Mn

∨p

⊗ (Mr

∨p

⊗ V )→Mn

∨p

⊗ (Mr

∧p
⊗ W )

∥∥ : n ∈N
}
.

From Theorem 2.1 and the definition of πp
∞, the two mappings in the

diagram

Mn

∨p

⊗ (Mr

∨p

⊗ V ) =Mnr

∨p

⊗ V →Mnr

∧p
⊗ W

= (Mn

∨p

⊗ Mr)
∧p
⊗ W →Mn

∨p

⊗ (Mr

∧p
⊗ W )

are contractions, and thus ‖ idMr ⊗ϕ‖pcb ≤ 1. If we let r = 1, then ‖ϕ‖pcb ≤ 1,
and thus ‖ϕ‖pcb ≤ πp

∞(ϕ). If πp
∞(ϕ)<∞, we say that ϕ is p-completely ∞-

summing and we refer to πp
∞(ϕ) as the p-completely ∞-summing norm of ϕ.

We let Πp
∞(V,W ) denote the space of all p-completely ∞-summing mappings

from V into W .

Theorem 5.5. For any p-operator spaces V and W on Lp spaces, a linear
mapping ϕ : V → W satisfies πp

∞(ϕ) < 1 if and only if for each n ∈ N and
p-complete contraction θ : Tn → V , νp(ϕ ◦ θ)≤ 1.

Proof. This is apparent from the commutative diagram

Mn

∨p

⊗ V
id⊗ϕ−−−−→ Mn

∧p
⊗ W⏐⏐� ⏐⏐�

CBp(Tn, V ) −−−−→ Np(Tn,W )

.

�
Corollary 5.6. Let V and W be p-operator spaces on Lp spaces. The

bifunctor Πp
∞ : (V,W ) 
→ (Πp

∞(V,W ),Πp
∞) is a local p-operator space mapping

ideal, and for any linear mapping ϕ : V →W , πp
∞(ϕ)≤ ιp(ϕ).

Proof. We may use the argument for the p-completely 1-summing norm.
�

Theorem 5.7. Given p-operator spaces on Lp spaces V,W and a lin-
ear mapping ϕ : V → W , we have πp

1(ϕ) ≤ πp
∞(ϕ∗). Moreover, we have

πp
1(ϕ) = πp

∞(ϕ∗) for any p-operator space W and linear mapping ϕ : V →W
if and only if Ip(V,Mn) =Np(V,Mn) for any n ∈N.

Proof. Since Mn

∧p
⊗ V ∗ → (Tn

∨p

⊗ V )∗ is norm-decreasing, we conclude that

πp
1(ϕ) = sup

{
‖ idTn ⊗ϕ : Tn

∨p

⊗ V → Tn

∧p
⊗ W‖ : n ∈N

}
= sup

{∥∥(idTn ⊗ϕ)∗ : (Tn

∧p
⊗ W )∗ → (Tn

∨p

⊗ V )∗
∥∥ : n ∈N

}
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≤ sup
{∥∥idMn ⊗ϕ∗ :Mn

∨p

⊗ W ∗ →Mn

∧p
⊗ V ∗∥∥ : n ∈N

}
= πp

∞
(
ϕ∗).

If Ip(V,Mn) =Np(V,Mn), then Mn

∧p
⊗ V ∗ → (Tn

∨p

⊗ V )∗ is isometric, and the
above calculation implies that πp

1(ϕ) = πp
∞(ϕ∗).

Conversely, we first prove Πp
∞(Tn, V

∗) = Np(Tn, V
∗). In fact, it follows

from Corollary 5.6 that πp
∞(ψ) ≤ ιp(ψ) ≤ νp(ψ) for any ψ : Tn → V ∗. Sup-

pose that πp
∞(ψ) ≤ 1 for any ψ : Tn → V ∗. Theorem 5.5 shows that for

idTn : Tn → Tn,

νp(ψ) = νp(ψ ◦ idTn)≤ 1.

Therefore, νp(ψ) = πp
∞(ψ) and Πp

∞(Tn, V
∗) =Np(Tn, V

∗).
Thus we have the isometries

Πp
1(V,Mn) = Πp

∞
(
Tn, V

∗)=Np

(
Tn, V

∗)=Np(V,Mn),

where the first equation follows from the hypothesis and the third from Propo-
sition 3.10. Then, it follows from Corollary 5.6 we easily have

Πp
1(V,Mn) = Ip(V,Mn) =Np(V,Mn). �

6. P-local reflexivity

Definition 6.1. We say that a p-operator space W on Lp space is p-locally
reflexive if for any finite-dimensional p-operator space L on Lp space, every
p-complete contraction ϕ : L→W ∗∗ is the point-weak∗ limit of a net of linear
mappings ϕα : L→W with ‖ϕα‖pcb ≤ 1.

Theorem 6.2. Suppose that W is a p-operator space on Lp space. Then
the following are equivalent:

(1) W is p-locally reflexive;
(2) For any finite-dimensional p-operator space L on Lp space, we have the

isometry

L∗ ∧p

⊗ W ∗ ∼= (L
∨p

⊗ W )∗;

(2)′ For any finite-dimensional p-operator space L on Lp space, we have the
isometry

Ip
(
W,L∗)∼=Np

(
W,L∗);

(3) For any p-operator space V on Lp space, we have the isometry

Ip
(
V,W ∗)∼= (V

∨p

⊗ W )∗;

(4) W satisfies condition C ′′
p .
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Proof. We have already proved (3)⇔ (4) (see Corollary 4.8).
(2)⇔ (2)′ It is immediate from Theorem 4.6.
(1)⇔ (2) Since for any finite-dimensional p-operator space L on Lp space,(

L∗ ∧p

⊗ W ∗)∗ ∼=CBp

(
L∗,W ∗∗)∼= L

∨p

⊗ W ∗∗,

(2) holds if and only if we have the natural isometric isomorphism

L
∨p

⊗ W ∗∗ ∼= (L
∨p

⊗ W )∗∗.

The corresponding is explicitly given by the norm-increasing linear isomor-
phism

τ : L
∨p

⊗ W ∗∗ → (L
∨p

⊗ W )∗∗.

Thus, the relation is isometric if and only if

ϕ ∈
(
L

∨p

⊗ W ∗∗)
‖·‖≤1

∼=CBp

(
L∗,W ∗∗)

‖·‖pcb≤1

implies that

ϕ ∈ (L
∨p

⊗ W )∗∗‖·‖≤1.

From the bipolar theorem, the latter is the case if and only if ϕ is a weak∗

limit of elements in

(L
∨p

⊗ W )‖·‖≤1
∼=CBp

(
L∗,W

)
‖·‖pcb≤1

.

Since it is evident that

τ : CBp

(
L∗,W ∗∗)→ (L

∨p

⊗ W )∗∗

is a homeomorphism in the point-weak∗ and weak∗ topologies, we are done.
(3)⇒ (2) For any finite-dimensional p-operator space L on Lp space, we

have the isometries

L∗ ∧p

⊗ W ∗ ∼=Np

(
L,W ∗)∼= Ip

(
L∗,W ∗)∼= (L

∨p

⊗ W )∗.

(2)⇒ (3) From Lemma 4.4, we have seen that

Sint : Ip
(
V,W ∗)→ (V

∨p

⊗ W )∗

is a contractive injection. Let us suppose that the mapping in (2) is isometric.

If we have a contractive functional F ∈ (V
∨p

⊗ W )∗, then F = S(ϕ) for some
ϕ : V →W ∗(see Lemma 4.4). For any finite-dimensional subspace L⊆ V and
p-complete contraction ψ : L→ V , we have

F ◦ (ψ⊗ idW ) ∈ (V
∨p

⊗ W )∗ and ϕ ◦ψ : L→W ∗.

Since for any x ∈ L,y ∈W(
F ◦ (ψ⊗ idW )

)
(x⊗ y) = F

(
ψ(x)⊗ y

)
= ϕ

(
ψ(x)

)
(y),
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we have F ◦ (ψ⊗ idW ) = S(ϕ ◦ψ). Thus from (2) and L∗
∧p

⊗ W ∗ ∼=Np(L,W
∗),

νp(ϕ ◦ψ) =
∥∥F ◦ (ψ⊗ idW )

∥∥≤ ‖F‖.
From the definition of ιp(ϕ), we have ιp(ϕ) ≤ ‖F‖. Therefore, ιp(ϕ) = ‖F‖
for ϕ ∈ Ip(V,W ∗) and thus Ip(V,W ∗)∼= (V

∨p

⊗ W )∗. �

Corollary 6.3. Suppose that W is a p-operator space on Lp space. If W
is p-locally reflexive, then any subspace X ⊆W is p-locally reflexive.

Proof. For any finite-dimensional p-operator space L on Lp space, from
Theorem 6.2, we have the isometry

L∗ ∧p

⊗ W ∗ ∼= (L
∨p

⊗ W )∗.

Since (
L∗ ∧p

⊗ W ∗)∗ ∼=CBp

(
L∗,W ∗∗)∼= L

∨p

⊗ W ∗∗,

L∗
∧p

⊗ W ∗ ∼= (L
∨p

⊗ W )∗ holds if and only if we have the natural isometric
isomorphism

L
∨p

⊗ W ∗∗ ∼= (L
∨p

⊗ W )∗∗.

Then X is p-locally reflexive from Theorem 6.2 and the commutative diagram

L
∨p

⊗ X∗∗ −−−−→ (L
∨p

⊗ X)∗∗⏐⏐� ⏐⏐�
L

∨p

⊗ W ∗∗ −−−−→ (L
∨p

⊗ W )∗∗

in which the columns are isometric. �

Corollary 6.4. Suppose that W is a p-operator space on Lp space. If W
is p-locally reflexive, then Πp

1(W,V )∼=Πp
∞(V ∗,W ∗) for any p-operator space

V on Lp space and linear mapping ϕ :W → V .

Proof. It follows from Theorem 5.7 and Theorem 6.2 immediately. �

Acknowledgment. The authors give their sincere thanks to the referee and
Professor Z.-J. Ruan for their valuable comments and improvements.

References

[1] G. An, J.-J. Lee and Z.-J. Ruan, On p-approximation properties for p-operator spaces,
J. Funct. Anal. 259 (2010), 933–974. MR 2652178
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