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GEOMETRIC ZETA FUNCTIONS FOR HIGHER RANK
p-ADIC GROUPS

ANTON DEITMAR AND MING-HSUAN KANG

Abstract. The higher rank Lefschetz formula for p-adic groups
is used to prove rationality of a several-variable zeta function at-
tached to the action of a p-adic group on its Bruhat–Tits building.

By specializing to certain lines one gets one-variable zeta func-
tions, which then can be related to geometrically defined zeta
functions.

Introduction

The zeta functions of Selberg and Ihara are defined by counting closed
geodesics in Riemann surfaces and graphs, respectively. We will refer to these
and similar zeta functions defined by geometric data as geometric zeta func-
tions. Ihara provided in [Iha66] the only known link between geometric and
arithmetic zeta functions by showing that the Ihara zeta function for a fi-
nite graph equals the Hasse–Weil zeta function of the corresponding Shimura
curve. The crucial step in the proof is to show that the Ihara zeta function
equals the characteristic function of the generating Hecke operator, this lat-
ter fact being known under the name Ihara formula. For higher dimensional
buildings, a generalization of Ihara’s formula is still outstanding. For the case
of the group PGL3, this has been provided in [KL14] and [KLW10]. One
problem in higher rank is the lack of a unified zeta function, as in higher
dimensional buildings there are several possibilities to generalize Ihara’s ap-
proach. One of them is through the trace formula, or rather its specialization,
the Lefschetz formula, which, as in the case of Lie groups, treated in [Dei04],
yields a several variable zeta function. This paper is devoted to the study of
this zeta function and its relation to other geometric zeta functions.
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In the first section, we recall the Lefschetz formula as proven in [Dei07].
From this, we deduce in Section 2 the analytic continuation of the latter and in
Section 3 we give a geometric interpretation of this zeta function. In Section 4,
we consider the special case of the group PGL3 in which case we relate our
several variable zeta function to the geometrically defined zeta functions of
Kang, Li and Wang in [KLW10].

1. The Lefschetz formula

Let F be a nonarchimedean local field with valuation ring O and uni-
formizer �. Let | · | be the absolute value on F normalized by the rule
μ(xA) = |x|μ(A), where μ is any additive Haar measure on F . Denote by
G a semisimple linear algebraic group over F . In the following, we will need
some facts about reductive p-adic groups which can for instance, be found in
[Tit79] and [Car79].

Let K ⊂ G be a good maximal compact subgroup. Choose a parabolic
subgroup P = LN of G with Levi component L. Let A = AL denote the
largest split torus in the center of L. Then A is called the split component
of P . There exists a reductive subgroup M =ML of L, containing the derived
group Lder, such that AM has finite index in L. Let Φ = Φ(G,A) be the
root system of the pair (G,A), that is, Φ consists of all homomorphisms
α :A→GL1(F ), written in the form a �→ aα, such that there is X in the Lie
algebra of G with Ad(a)X = aαX for every a ∈ A. Given α, let nα be the
Lie algebra generated by all such X and let Nα be the closed subgroup of N
corresponding to nα. Let Φ+ = Φ(P,A) be the subset of Φ consisting of all
positive roots with respect to P . Let Δ⊂ Φ+ be the subset of simple roots.
Let A− ⊂A be the negative Weyl chamber, that is, A− is the set of all a ∈A
such that |aα|< 1 for any α ∈Δ.

An element g of G is called elliptic if it is contained in a compact torus.
Let Mell denote the set of elliptic elements of M .

Let X∗(A) = Hom(A,GL1) be the group of all homomorphisms as algebraic
groups from the torus A to GL1. This group is isomorphic to Zr with r =
dimA. Likewise let X∗(A) = Hom(GL1,A). There is a natural Z-valued
pairing

X∗(A)×X∗(A)→Hom(GL1,GL1)∼= Z,

(α,η) �→ α ◦ η.

For every root α ∈Φ(A,G)⊂X∗(A) let ᾰ ∈X∗(A) be its coroot, that is, ᾰ is
the unique element of X∗(A) such that A= (ker(α))(Im(ᾰ)) and (α, ᾰ) = 2.
The valuation v of F gives a group homomorphism GL1(F ) → Z. Let Ac

be the unique maximal compact subgroup of A. Let Ā= A/Ac; then Ā is a
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Z-lattice of rank r = r(P ) = dimA. By composing with the valuation v, the
group X∗(A) can be identified with

Ā∗ =Hom(Ā,Z).

Let

a∗0 =Hom(Ā,R)∼=X∗(A)⊗R

be the real vector space of all group homomorphisms from Ā to R and let
a∗ = a∗0 ⊗C=Hom(Ā,C)∼=X∗(A)⊗C. For a ∈A and λ ∈ a∗ let

aλ = q−λ(a),

where q is the number of elements in the residue class field of F . In this way,
we obtain an identification

a∗
/ 2πi

log q
Ā∗ ∼=Hom

(
Ā,C×).

A quasicharacter of A is a continuous group homomorphism ν : A → C×.
It is called a character if its image lies in the cricle group T = {z ∈ C :
|z| = 1}. A quasicharacter ν is called unramified if ν is trivial on Ac. The
set Hom(Ā,C×) can be identified with the set of unramified quasicharacters
on A. Any unramified quasicharacter ν can thus be given a unique real part
Re(ν) ∈ a∗0. This definition extends to general quasicharacters χ :A→C× as
follows. Choose a splitting s : Ā→A of the exact sequence

1→Ac →A→ Ā→ 1.

Then ν = χ ◦ s is an unramified character of A. Set

Re(χ) = Re(ν).

This definition does not depend on the choice of the splitting s. For quasichar-
acters χ, χ′ and a ∈A, we will frequently write aχ instead of χ(a) and aχ+χ′

instead of χ(a)χ′(a). Note that the absolute value satisfies |aχ|= aRe(χ) and
that a quasicharacter χ actually is a character if and only if Re(χ) = 0.

Let ΔP : P → R+ be the modular function of the group P . Then the
element ρ= ρP = 1

2

∑
α∈Φ+ α, called the modular shift of P , satisfies ΔP (a) =

|a2ρP |. For ν ∈ a∗ and a root α let

να = (ν, ᾰ) ∈X∗(GL1)⊗C∼=C.

Note that ν ∈ a∗0 implies να ∈ R for every α. For ν ∈ a∗0, we say that ν is
positive, ν > 0, if να > 0 for every positive root α.

Example. Let G = GLn(F ) and let �j ∈ G be the diagonal matrix
�j = diag(1, . . . ,1,�,1, . . . ,1) with the � on the jth position, where � is
a uniformizer of the valuation ring O. Let ν ∈ a∗ and let

νj = ν(�jAc) ∈C.
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Let α be a root, say α(diag(a1, . . . , an)) =
ai

aj
. Then

να = νi − νj .

Hence, ν ∈ a∗0 is positive if and only if ν1 > ν2 > · · ·> νn.
We will fix Haar-measures of G and its reductive subgroups as follows. For

H ⊂G being a torus, there is a unique maximal compact subgroup UH which
is open. Then we fix a Haar measure on H such that vol(UH) = 1. If H is
connected semisimple with compact center then we choose the unique posi-
tive Haar-measure which up to sign coincides with the Euler–Poincaré measure
[Kot88]. This measure is uniquely determined by the following property. Any
discrete torsion-free cocompact subgroup ΓH ⊂H has finite dimensional ra-
tional cohomology, that is, the Q-vector space H∗(ΓH ,Q) =

⊕∞
p=0H

p(ΓH ,Q)

is finite dimensional, where Hp(ΓH ,Q) denotes the group cohomology with
coefficients in the field Q. We denote its Euler characteristic by χ(ΓH ,Q),
that is,

χ(ΓH ,Q) = dimHeven(ΓH ,Q)− dimHodd(ΓH ,Q).

The Euler–Poincaré measure on H is the unique Haar measure with the prop-
erty, that for every discrete torsion-free cocompact subgroup ΓH ⊂H we have

vol(ΓH \H) = (−1)r(H)χ(ΓH ,Q),

where r(H) is the k-rank of H . For the applications recall that centralizers
of tori in connected groups are connected [Bor91].

Assume we are given a discrete subgroup Γ of G such that the quotient
space Γ\G is compact. Let (ω,Vω) be a finite dimensional unitary representa-
tion of Γ and let L2(Γ\G,ω) be the Hilbert space consisting of all measurable
functions f :G→ Vω such that f(γx) = ω(γ)f(x) and ‖f‖ is square integrable
over Γ \G (modulo null functions). Let R denote the unitary representation
of G on L2(Γ \ G,ω) defined by right shifts, that is, R(g)ϕ(x) = ϕ(xg) for
ϕ ∈ L2(Γ \G,ω). It is known, that as a G-representation this space splits as
a topological direct sum:

L2(Γ \G,ω) =
⊕
π∈Ĝ

NΓ,ω(π)π

with finite multiplicities NΓ,ω(π)<∞.
Suppose γ ∈ Γ is G-conjugate to some aγbγ ∈ A−Mell. Let Gγ and Γγ

denote the centralizers of γ in G and γ respectively. We want to compute the
covolume

vol(Γγ \Gγ).

Let F̄ denote an algebraic closure of the ground field F . An element g of
GLn(F ) is called neat, if the subgroup of F̄× generated by the eigenvalues
of g, is torsion-free. An element x of G is called neat if for some injective
representation ρ : G → GLn(F ) of G the matrix ρ(x) is neat. It is easy to
check that in this case the same property holds for every representation ρ,
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injective or not. A subset A of G is called neat if each element of it is neat.
If the characteristic of F is zero, then every arithmetic group Γ has a finite
index subgroup which is neat [Bor69].

We suppose that Γ is neat. Since Γ is cocompact, this implies that for
every γ ∈ Γ the Zariski closure of the group generated by γ is a torus. It then
follows that the centralizer Gγ is a connected reductive group [Bor91].

An element γ ∈ Γ is called primitive if γ = σn with σ ∈ Γ and n ∈N implies
n = 1. It is a property of discrete cocompact torsion-free subgroups Γ of G
that every γ ∈ Γ, γ �= 1 is a positive power of a unique primitive element. In
other words, given a nontrivial γ ∈ Γ there exists a unique primitive γ0 and a
unique μ(γ) ∈N such that

γ = γ
μ(γ)
0 .

Let Σ be a group with finite dimensional rational cohomology. For r ∈ N,
we define the higher Euler characteristic as

χr(Σ) = χr(Σ,Q) :=

∞∑
p=0

(−1)p+r

(
p

r

)
dimHp(Σ,Q),

where the sum is actually finite. As Γ acts freely on the Bruhat–Tits building
B of G, which is contractible, the quotient Γ \ B is a classifying space for
Γ, hence the rational cohomology of Γ coincides with the cohomology of the
finite CW-complex Γ \ B, hence is finite-dimensional.

We denote by EP (Γ) the set of all conjugacy classes [γ] in Γ such that γ is
G-conjugate to an element aγmγ ∈AM , where mγ is elliptic and aγ ∈A−.

Let γ ∈ EP (Γ). To simplify the notation, let us assume that γ = aγmγ ∈
A−Mell. Let Cγ be the connected component of the center of Gγ then Cγ =
ABγ , where Bγ is the connected center of Mmγ the latter group will also be

written as Mγ . Let M
der
γ be the derived group of Mγ . Then Mγ =Mder

γ Bγ .

Let Γγ,A = A ∩ ΓγBγ and Γγ,M =Mder
γ ∩ ΓγABγ . Similar to the proof of

Lemma 3.3 of [Wol62], one shows that Γγ,A and Γγ,M are discrete cocompact
subgroups of A and Mder

γ , respectively. Let

λγ
def
= vol(Γγ,A \A).

We are now able to express the covolume of the centralizers vol(Γγ \Gγ)
in terms of higher Euler characteristics.

Proposition 1.1. (a) Assume that Γ is neat and let γ ∈ Γ be G-conjugate
to an element of A−Mell. Then we obtain

vol(Γγ \Gγ) = λγ

∣∣χr(Γγ)
∣∣,

where r = dimA.
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(b) Let Γ,Λ be groups with finite dimensional rational cohomology. Let Cr be
a group isomorphic to Zr and assume there is an exact sequence

1→Cr → Γ→Λ→ 1.

Assume that Cr is central in Γ. Then

χ(Λ,Q) = χr(Γ,Q).

Proof. [Dei07]. �

For a representation (π,Vπ) ofG let (π∞, V ∞
π ) denote the subrepresentation

of smooth vectors, that is, π∞ is the representation on the space
⋃

H⊂G V H
π ,

where H ranges over the set of all open subgroups of G and V H
π is the subspace

of H-stable vectors. Further, let πN denote the Jacquet module of π. By
definition, πN is the largest quotient MAN -module of π∞ on which N acts
trivially. One can achieve this by factoring out the vector subspace consisting
of all vectors of the form v − π(n)v for v ∈ π∞, n ∈ N . It is known that if
π is an irreducible admissible representation, then πN is a admissible MA-
module of finite length. For a smooth M -module V , let H•

c (M,V ) denote the
continuous cohomology with coefficients in V as in [BW00].

Let σ be an element of a group S acting on a finite dimensional F -vector
space V . Then we write λmin(σ | V ) for the minimal norm of an eigenvalue of
σ in the algebraic closure F̄ of F . Likewise, λmax(σ | V ) is the maximal norm
of such an eigenvalue. The Lie algebra g of G has a direct sum decomposition
g= n̄+m+ n, where m is the Lie algebra of M and n is the Lie algebra of N
as well as n̄ is the Lie algebra of the opposite of N . Then let M̃ denote the
set of all m ∈M such that

λmin(m | n̄)> λmax(m |m+ n).

Theorem 1.2 (Lefschetz Formula). Let Γ be a neat discrete cocompact
subgroup of G. Let ϕ be a uniformly smooth function on A with support in
A−. Suppose that the function a �→ ϕ(a)|a−2ρ| is integrable on A. Let σ be a
finite dimensional unitary representation of M . Let q be the F -split rank of
G and r = dimA. Then∑

π∈Ĝ

NΓ,ω(π)

dimM∑
q=0

(−1)q
∫
A−

ϕ(a) tr
(
a |Hq

c (M,πN ⊗ σ)
)
da

=
∑

[γ]∈EP (Γ)

λγ

∣∣χr(Γγ)
∣∣ trω(γ) trσ(mγ)a

2ρ
γ ϕ(aγ).

Both outer sums converge absolutely and the sum over π ∈ Ĝ actually is a
finite sum, that is, the summand is zero for all but finitely many π. For a
given compact open subgroup U of A, both sides represent a continuous linear
functional on the space of all functions ϕ as above which factor over A/U ,
where this space is equipped with the norm ‖ϕ‖=

∫
A
|ϕ(a)|a2ρ da.
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Let A∗ denote the set of all continuous group homomorphisms λ : A→C×,
which we write in the form a �→ aλ. For λ ∈ A∗ and an A-module V , let Vλ

denote the generalized λ-eigenspace, that is,

Vλ
def
=

∞⋃
k=1

{
v ∈ V |

(
a− aλ

)k
v = 0 ∀a ∈A

}
.

Then ∫
A−

ϕ(a) tr
(
a |Hq

c (M,πN ⊗ σ)
)
da

=
∑
λ∈A∗

dimHq
c (M,πN ⊗ σ)λ

∫
A−

ϕ(a)aλda.

For λ ∈A∗ define

mσ,ω
λ

def
=

∑
π∈Ĝ

NΓ,ω(π)
dimM∑
q=0

(−1)q dimHq
c (M,πN ⊗ σ)λ.

The sum is always finite. Theorem 1.2 is equivalent to the following corollary.

Corollary 1.3 (Lefschetz Formula). As an identity of distributions on
A− we have∑

λ∈A∗

mσ,ω
λ λ=

∑
[γ]∈EP (Γ)

λγ

∣∣χr(Γγ)
∣∣a2ργ trω(γ) trσ(mγ)δaγ .

The proofs of the theorem and the corollary are in [Dei07].

2. The zeta function

Let q denote the residue field cardinality, so q = |O/�O| and let r = r(P ) =
dimA. There are uniquely determined positive integer multiples α1, . . . , αr of
the simple roots, such that the modular shift can be written as

2ρP = α1 + · · ·+ αr.

For a ∈A−, we write

lj(a) =− logq
(
aαj

)
, j = 1, . . . , r.

Then lj(a) is a non-negative integer. For γ ∈ EP (Γ), we also write lj(γ) =
lj(aγ). For u ∈Cn, we write

uL(a) = u
l1(a)
1 · · ·ulr(a)

r

and likewise uL(γ). Note that this several variable expression must not be
mixed up with ul(γ), where u is a single variable and l(γ) is the length of a
geodesic closed by γ. These two notions agree in the rank one case, but differ
in higher rank.
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For u ∈Cr consider the series

SΓ(u) = SΓ,P,ω,σ(u) =
∑

[γ]∈EP (Γ)

λγ

∣∣χr(Γγ)
∣∣ trω(γ) trσ(mγ)u

L(γ).

In the setting of Lie groups, the analogue of this function has been introduced
in [Dei04], where it is used to establish a higher rank prime geodesic theo-
rem. Although not immediately clear by its definition, this function actually
counts closed geodesics and therefore deserves to be called a “geometric zeta
function,” as is explained in the next section.

The following theorem gives a generalization of the Selberg zeta function to
higher rank groups. In order to collect all information the Lefschetz formula
has to offer, it is necessary to encode it in a function of several variables, the
number of variables given by the rank of the split torus. This function then
turns out to be a rational function and it indeed encodes the information of
the Lefschetz formula in a neat and handy way. It also contains all information
encoded in geometric zeta functions, like the ones in [KLW10], as we will make
explicit in Section 4.

Theorem 2.1. The series SΓ(u) converges locally uniformly in the set{
u ∈Cr : |uj |< 1/q, j = 1, . . . , r

}
.

It is a rational function in u. More precisely, there exists a finite subset E ⊂ Ā,
elements a1, . . . , ar ∈ Ā and natural numbers k1, . . . , kr such that

SΓ(u) =
∑
λ∈Ā∗

mσ,ω
λ+2ρ

1

1− aλ1u
k1
1

· · · 1

1− aλru
kr
r

(∑
v∈E

vλ+2ρuL(v)

)
.

Both sums are finite, so in particular, the coefficient mσ,ω
λ+2ρ is zero for almost

all λ ∈ Ā∗.

Proof. Note that a �→ ulj(a) is the restriction of a character on A to A−

which we write as a �→ asj . Also, we write as for as1 · · ·asr .
For u ∈C, consider the function ϕu :A→C defined by

ϕu(a) =

{
(uq)l(a) = ul(a)a−2ρ, a ∈A−,

0, a /∈A−.

The function ϕ factors over Ā, therefore is uniformly smooth. It is easy to
see that ϕu(a)|a−2ρ| is integrable on A if and only if |uj | < 1/q for every
j = 1, . . . , r. Assuming this, ϕu satisfies the Lefschetz formula, the geometric
side of which equals SΓ(u). The spectral side is∑

λ∈A∗

mσ,ω
λ

∫
A

ϕu(a)a
λ da.
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Definition 2.2. Let V denote a Q-vector space of dimension r ∈ N. Let
VR = V ⊗R. A subset C ⊂ VR is called a sharp rational open cone with r sides
if there exist α1, . . . , αr ∈Hom(V,Q) such that

C =
{
v ∈ VR : α1(v)> 0, . . . , αr(v)> 0

}
and its closure C does not contain a line.

Lemma 2.3. Let V denote a Q-vector space of dimension r ∈N and let C
be a sharp rational open cone in VR. Let Σ⊂ V be a lattice, that is, a finitely
generated subgroup which spans V . Then there exists a finite subset E ⊂ Σ
and elements a1, . . . , ar ∈Σ such that C ∩Σ is the set of all v ∈ V of the form

v = v0 + ν1a1 + · · ·+ νrar,

where v0 ∈E and ν1, . . . , νr ∈N0. The vector v0 and the numbers νj ∈N0 are
uniquely determined by v.

Proof. For j = 1, . . . , r let aj ∈Σ be the unique element such that αi(aj) = 0
for i �= j and αj(aj) is strictly positive and minimal. Then a1, . . . , ar is a
basis of V inside Σ, hence it generates a sublattice Σ′ ⊂ Σ. Let E be a set
of representatives of Σ/Σ′ which may be chosen such that each v0 ∈E lies in
C, but for every j = 1, . . . , r the vector v0 − aj lies outside C. It is clear that
every v of the form given in the statement of the lemma is in C ∩Σ.

For the converse, let v ∈C∩Σ. Then there are uniquely determined v0 ∈E,
ν1, . . . , νr ∈ Z such that v = v0 + ν1a1 + · · · + νrar. We have to show that
ν1, . . . , νr ≥ 0. Assume that νj < 0. Then

0<αj(v) = αj(v0) + νjαj(aj)≤ αj(v0)− αj(aj) = αj(v0 − aj)

and the latter is ≤ 0, as v0 − aj lies outside C. This is a contradiction! �

We apply this lemma to V = Ā⊗Q, the lattice Ā and the cone A−. Writing
the groups multiplicatively, we obtain∫

A

ϕu(a)a
λ+2ρ da=

∫
A−

aλ+s da

=
∑
v∈E

∞∑
ν1,...,νr=0

(
vaν1

1 · · ·aνr
r

)λ+s

=
∑
v∈E

vλuL(v) 1

1− aλ+s1
1

· · · 1

1− aλ+sr
r

.

Writing a
αj

j = q−kj we obtain the assertion of Theorem 2.1. �
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3. Geometric zeta functions

In this section, we explain in what sense the zeta function SΓ(u) of the
last section actually counts closed geodesics. The way it is set up, it actually
counts conjugacy classes in Γ and we will show how those are connected to
geometrical data.

Let G be a reductive linear group over a nonarchimedian local field and let
Γ⊂G be a torsion-free uniform lattice. Further, let B denote the Bruhat–Tits
building of G. This is a metric space which is a union of so called apartments,
each of which is isometric with Rr, the latter equipped with the euclidean
metric. A geodesic line in B is a curve which locally minimizes distances.
Each geodesic necessarily lies in one apartment and via any isometry with
Rr, is mapped to an affine line. A geodesic curve c : R → B can therefore
be normalized to speed one, that is, such that d(c(a), c(b)) = |a− b|, where d
denotes the metric of B.

The group Γ acts on B by isometries, so Γ \ B becomes a metric space and
geodesics in Γ \B lift to geodesics in B. A geodesic curve c :R→ Γ \B is said
to be normalized or have speed one, if this holds locally. A closed geodesic in
Γ \ B is a normalized geodesic curve c : R→ Γ \ B which is periodic, that is,
there exists l(c)> 0 such that c(t+ l(c)) = c(t) holds for every t ∈ R. In this
case, if z ∈ B is a preimage of c(t0) for some given t0 ∈R and c̃ is the unique
geodesic lift of c to B such that c̃(t0) = z, then there exists a unique γ ∈ Γ
such that γz = c̃(t0 + l(c)). In this case, we say that γ closes the geodesic c.

Proposition 3.1. (a) Every γ ∈ Γ \ {1} closes a geodesic in B.
(b) This sets up a bijection

ψ :
(
Γ \ {1}

)
/conjugation→{closed geodesics}/homotopy

with the property that

ψ
([
γn

])
= ψ

(
[γ]

)n
for every γ ∈ Γ \ {1} and every n ∈N.

(c) If two closed geodesics c, c′ in Γ \ B are homotopic, then there are preim-
ages c̃, c̃′ in B which are closed by the same γ ∈ Γ.

(d) For a given γ ∈ Γ let

Pγ =
{
x ∈ B : d(x,γx) is minimal

}
.

Then Pγ is a convex subset of the building B which is a union of parallel
geodesic lines and γ acts by translation along these geodesics. The set Pγ

equals the set of all geodesics in B which are closed by γ. Consequently,
the closed geodesics closed by a given γ all have the same length.

Proof. (a) Let Γ ∈ Γ \ {1}. As Γ is torsion-free, the element γ has no
fixed point in B. As γ preserves the simplicial structure on B, the function
p �→ d(p, γp) attains a minimal value m> 0. The set P = Pγ defined above
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is therefore well-defined and non-empty. We first claim that P is a union of
γ-stable geodesic lines on each of which γ acts by a translation. Let p ∈ P
and let z be on the line segment between p and γp. Then we have

d(z, γz)≤ d(z, γp) + d(γp, γz)

= d(z, γp) + d(p, z)

= d(p, γp) =m.

As m is minimal, we have equality and the geodesic from z to γz is the
composite of z, γp and γp, γz, which means that the line segment p, γz is
geodesic. We repeat this construction with z in place of p and in this way
extend p, γp to a geodesic line which is preserved by γ and on which γ acts
by translation. This proves (a) and parts of (d).

(b) As Γ is the fundamental group of BΓ =Γ\B we have a natural bijection

Γ/conjugation→
[
S1,BΓ

]
,

where the right-hand side is the set of free homotopy classes of loops. Also,
there is a trivial injection

{closed geodesics}/homotopy ↪→
[
S1,BΓ

]
.

These maps compose to give the desired injective map

ψ : {closed geodesics}/homotopy ↪→ Γ/conjugation.

By the first part, the image of this map is Γ \ {1}/conjugation.
(c) Let γ and γ′ be elements of Γ closing some preimages c̃ and c̃′ of c and

c′. By (b), the elements γ and γ′ must be conjugate, which means that the
preimages c̃ and c̃′ can be chosen in such a way that γ = γ′.

(d) We already know that Pγ is a union of geodesic lines. By construction,
for p ∈ P , the convex hull Lp of the set γZp is the unique geodesic line closed
by γ and containing p. Now let q be another point of P , then the distance of
any point on the geodesic line Lq to any point on the line Lp is bounded, which
can only happen if the two geodesics Lp and Lq lie in a common apartment
and are parallel in that apartment. The convex hull of these two lines is
preserved by γ and as γ is a translation on both lines, it is a translation on
this convex hull. This proves the convexity of Pγ .

Now finally, let L be any geodesic which is closed by γ and let z be a point
of L. Let p be a point of Pγ . Then again the lines L and Lp are parallel and
thus lie in the same apartment, γ must act by the same translation and thus
L belongs to Pγ . �

Lemma 3.2. Assume that Γ is torsion-free and let γ ∈ Γ. Let S ⊂ B be a
Γ-stable affine subset. Then there exists an origin 0 in S, a linear orthogonal
transformation T : S → S and a point b ∈ S \ {0} with Tb= b such that γx=
Tx+ b.
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Proof. As γ fixes the euclidean structure on S, it acts, after choosing an
arbitrary origin, as γx= Tx+ b for some linear orthogonal T and some b ∈ S.
Let U be the eigenspace of the eigenvalue 1 for T and let V be its orthocom-
plement. We have the orthodecomposition b= bU + bV . As 1− T : V → V is
surjective, there exists v0 ∈ V with (1−T )v0 = bV , or γv0−b= Tv0 = v0−bV ,
which amounts to γv0 = v0 + bU . Since Γ is torsion-free, γ fixes no point in B
and so bU �= 0. Relocating the zero to the point v0 gives the claim. �

An element g of G is called admissible, if there exists a parabolic group
P = LN defined over F , such that g lies in Areg

L ML. Here, for a given torus
A, the set Areg is the set of regular elements, that is, the set of all a ∈A such
that the centralizer Ga of a in G equals the pointwise centralizer of A. Then
the group Areg

L ML has finite index in L and as there are only finitely many
conjugacy classes of parabolic subgroups, there exists N ∈N such that gN is
admissible for every semisimple, non-elliptic element g. A subgroup Γ⊂G is
called admissible, if every γ ∈ Γ \ {1} is admissible.

For simplicity of exposition, we will now assume that G is simple, which
implies that the Bruhat–Tits building B is a simplicial complex. Let r ∈N. An
r-dimensional path is a sequence . . . , S−1, S0, S1, . . . of r-dimensional simplices
such that Sj and Sj+1 have a common face of dimension r− 1 for each j ∈ Z.

We say that the path is geodesic, if there exists a geodesic line L with L∪S̊j �= ∅
for every j ∈ Z. Here S̊ denotes the interior of the simplex S. If this is the
case, then all Sj lie in a common apartment A. We say that a given γ ∈ Γ
closes the path (Sj) if γSj = Sj+n holds for all j ∈ Z and some n ∈N. If this
is the case, then γ stabilizes the union of the Sj . This union lies in a common
apartment, so it carries an euclidean structure. Therefore, after fixing an
origin in S, the element γ acts as γx= Tx+ b, where T is linear orthogonal
and b ∈ S \ {0}. Actually, T fixes b and thus can be considered an orthogonal
transformation of the orthogonal space of b.

4. PGL3

In this section, we explain the connection between the current zeta function
in several variables and the zeta functions occurring in a generalized Ihara
formula in the paper [KLW10].

The vertices of the building of G=PGL3(F ) are parametrized by homoth-
ety classes of O-lattices in F 3. Let vF : F× → Z denote the valuation of the
local field F . The group G acts transitively on the latter, but the index three
subgroup G′ of all g ∈G with vF (det(g))≡ 0 mod (3) has three orbits, which
are given by the representatives

L0 = 〈e1, e2, e3〉,
L1 = 〈e1, e2, πe3〉,
L2 = 〈e1, πe2, πe3〉.
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We say a vertex v is of type j mod (3), if it is in the G′-orbit of Lj . We
assume from now on, that Γ is contained in G′, so that Γ preserves types of
vertices.

A geodesic c in B or Γ \ B is called rational, if it contains a point of the
zero skeleton and is called integral, if it is contained in the 1-skeleton of B or
Γ\B. Every integral geodesic is rational. The vertices on an integral geodesic
either have consecutive types 0,1,2 or 2,1,0. In the first case, the geodesic is
called positive in the latter it is negative. The inverse of a positive geodesic is
negative and vice versa. A geodesic parallel to an integral positive geodesic
is also called positive.

An element γ ∈ Γ \ {1} is called positive, if it closes a positive geodesic,
that is, if for one and thus every point p in Pγ the geodesic line through γZp
is positive.

Let Cint(Γ) denote the set of all integral geodesics in Γ \ B. Then every
element of Cint(Γ) is actually closed, as we show below.

For G=PGL3(F ) there are three different classes of proper parabolics: P0

is the group of all upper triangular matrices,

P1 =

⎛
⎝ ∗

0 0

⎞
⎠ and P2 =

⎛
⎝ ∗
0
0

⎞
⎠ .

We write Pj = LjNj for the Levi decomposition and we fix subgroups MjAj ⊂
Lj as in Section 1. We choose A0 to be the group of all diagonal matrices, A1

to be the subgroup of all matrices of the form diag(a, a, b) with a, b ∈ F , and
A2 to consist of all matrices of the form diag(a, b, b).

An element diag(a, b, c) of A0 is called strongly regular, if the absolute values
|a|, |b|, |c| are all different.

The following Euler product can be viewed as one possible version of the
Ruelle zeta function of compact Riemann surface. In the case of a higher-
dimensional building, the zeta functions have to take the fact into account,
that one can have geodesics, which in a given apartment point into different
directions. This fact is taken care of by the fact that generally one deals with
several variable zeta functions.

Restricting the variables, however, one gets single variable zeta functions,
and sometimes these turn out to be representable by Euler products, in con-
trast to the several variable case. The following zeta function only considers
geodesics which point in one given direction, therefore the length suffices to
characterize them and one gets a single variable zeta function.

Definition 4.1. Let

Z1,+(u) =
∏
c

(
1− ul(c)

)
,
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where the product is extended over all closed integral positive primitive
geodesics in Γ \ B. Here a closed geodesic c is called primitive, if it is not
a power of a shorter one. Note that l(c) here denotes the length of the closed
geodesic c.

The reader may note, that this definition differs from Ihara’s and others
in that we consider the Euler factors with a positive exponent while other
authors would prefer 1/Z1,+(u) instead. There is, however, good reason for
this: firstly, as the next lemma shows, the function becomes a polynomial in
this way, which is slightly easier to handle than the inverse of a polynomial.
Next, Ihara’s zeta function is the p-adic version of Selberg’s zeta function and
Selberg chose our current normalization, so we stuck with his notation. There
is a deep reason for the sign in Selberg’s paper, which is explained in [Dei00]:
It emerges that the exponent prescribed by the trace formula is an Euler
number, in Selberg’s original case the Euler number of a point, but generally
the Euler number of a locally symmetric space which can be negative, as
happens in the example of SL2×SL2.

Lemma 4.2. The infinite product Z1,+(u) converges absolutely to a polyno-
mial in u, when |u| is small.

As usual, we will also write Z1,+(u) for the polynomial which is the limit.

Proof of Lemma 4.2. Let N be the number of edges in the finite building
Γ\B. Then there are no more than Nm geodesic paths of lengthm. Therefore,

∑
c

|u|l(c) ≤
∞∑

m=1

Nmum,

which converges for |u| < 1/N and so the product Z1,+(u) also converges
in that region. Having settled convergence, let V =

⊕
eCe be the formal

complex vector space generated by all edges e of Γ\B. define a linear operator
T : V → V by

T (e) =
∑
e′

e′,

where the sum ranges over all edges e′ connected to e such that the path ee′

is positive. We equip V with the inner product 〈 , 〉 defined by making the
edges an orthonormal basis, that is, by

〈
e, e′

〉
=

{
1, e= e′,

0, e �= e′.

For n ∈N consider the nth iteration Tn of T . It’s trace is

trTn =
∑
e

〈
Tne, e

〉
.
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If one imagines the action of T as sending a potential from e to neighboring
edges e′ along positive directions, it becomes clear, that 〈Tne, e〉 can only be
non-zero, if e lies on a positive path of length n. Therefore, one gets

trTn =
∑

c:l(c)=n

l(c0),

where the sum runs over all positive paths c of length n and c0 is the unique
primitive positive path such that c is a power of c0. We keep the notation
that c0 denotes a positive primitive closed geodesic, also

∑
c will denote the

sum over all positive closed geodesics c and
∑

c0
the sum over all positive

primitive closed geodesics. Note that if c = cm0 , then l(c) =ml(c0), that is,
m= l(c)/l(c0). We then get

Z1,+(u) =
∏
c0

(
1− ul(c0)

)
= exp

(∑
c0

log
(
1− ul(c0)

))

= exp

(
−
∑
c0

∞∑
m=1

ul(c0)m

m

)
= exp

(
−
∑
c

ul(c)

l(c)
l(c0)

)

= exp

(
−

∞∑
n=1

un

n

∑
c:l(c)=n

l(c0)

)

= exp

(
−

∞∑
n=1

un

n
tr
(
Tn

))
= exp

(
log(1− uT )

)
= det(1− uT ).

Here all infinite sums converge when |u| is small enough. �

Definition 4.3. Let

Z2,+(u) =
∏
p

(
1− ul(p)

)
,

where the product ranges over all positive primitive closed geodesic paths in
Γ \ B of dimension 2 and the length is the number of chambers such a path
contains.

Similar to the above, it can be shown that Z2,+(u) converges to a polyno-
mial when |u| is small enough.

We now show how the different zeta functions we have defined, are interre-
lated. The function SΓ,P1(u), as defined in Section 2, uses group theoretical
input from the groups Γ and G. The connection to geometric zeta functions
defined by geometric data on the quotient building Γ \B is the fact, that each
closed geodesic c gets closed by some γ ∈ Γ. In the special situation of the
parabolic P1, the rank of A1 is one and therefore the function Sγ,P1 actually
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is a single variable function. We now show how it is related to the geometric
zeta functions defined via rational geodesics and paths of higher dimensions
Z1,+ and Z2,+.

Theorem 4.4. After replacing the group Γ with a finite index subgroup,
we have the identity of rational functions,

Z2,+(−u)

Z1,+(u2)
= exp

(
−
∫ u

0

SΓ,P1(z)dz

)
.

Or, otherwise stated, SΓ,P1(u) =
F ′

F (u), where F (u) =
Z1,+(u2)
Z2,+(u) .

For the proof of the theorem, we will need the following lemma.

Lemma 4.5. After replacing the group Γ with a finite index subgroup, we
can assume Γ to be regular in the sense that every γ ∈ Γ \ {1} lies in the
regular set Greg.

Proof. By Margulis’s arithmeticity result, we know that Γ is arithmetic, so
there exists a global field κ, of which F is a local completion, and a division
algebra M over κ of degree 3, which splits at F , such that Γ is commen-
surable with the image of M(Λ)× in G(F ), where Λ is some order in κ.
Replacing Γ by a finite index subgroup, we may assume that Γ lies in that
image. For a given γ ∈ Γ \ {1} fix a preimage γ̃ ∈ M(Λ). The centralizer
Mγ̃ of γ̃ in M is a proper subalgebra, whose degree must divide the degree
of M , which is a prime, therefore the degree of Mγ̃ is one, so Mγ̃ is a field,
hence commutative and so is Gγ which is the image of Mγ̃(F ). Therefore, γ
is regular. �

Proof of Theorem 4.4. By the lemma, we can assume Γ to be regular. In
this case, each centralizer Gγ is a torus, so for γ ∈ EP1(Γ) the group Γγ will be
isomorphic to Z, so that χ1(Γγ) = 1. By the normalizations of Haar measures,
we see that λγ = l(γ0), where γ0 is the underlying primitive element. Thus,
the Selberg zeta function equals

SΓ,P1(u) =
∑

[γ]∈EP1
(Γ)

l(γ0)u
l(γ).

Note that in this particular situation, as the rank of A1 equals one, we indeed
have ul(γ) = uL(γ). So that for small enough u,

exp

∫ u

0

SΓ,P1(z)dz = exp
∑
[γ]

l(γ0)
1

l(γ)
ul(γ)

= exp
∑
[γ0]

∞∑
n=1

ul(γ0)n

n
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= exp

(
−
∑
γ0

log
(
1− ul(γ0)

))

=
∏

[γ0]∈EP1,prim(Γ)

(
1− ul(γ0)

)−1
,

where the product extends over all primitive elements in EP1(Γ). Taking
inverses, it remains to show

Z1,+(u
2)

Z2,+(−u)
=

∏
[γ0]∈EP1,prim(Γ)

(
1− ul(γ0)

)
.

To prove this, we will make use of the following phenomenon: If p is a closed
gallery path in Γ \ B, then the boundary of p consists of two or one closed
integral geodesics, depending on whether p is orientable or not. In the ori-
entable case, the length of p will be twice the length of either of the geodesics,
so the contribution of p to the product Z2,+(−u) will equal the contribution
of either of the two geodesics in Z1,+(u

2). The minus sign will not play a
role as the length of the gallery path is even. In the non-orientable case, one
gets only one closed geodesic and this has the same length as p, which is an

odd number and one gets the contribution 1−u2l(γ)

1+ul(γ) = 1− ul(γ). This kind of

reduction is used in the sequel.
Start with a positive closed primitive integral geodesic c, choose a preimage

c̃ in B and let γ ∈ Γ be an element closing c̃. We first deal with the case when
γ is not a primitive element of Γ, so γ = γn

0 for some n ∈N, n≥ 2. Then the
geodesic c̃ lies in Pγ , but not in Pγ0 . So, c̃ must be parallel to a geodesic c̃0 in
Pγ0 . The convex hull of c̃ and c̃0 is a strip consisting of finitely many galleries
and the one adjacent to c̃ is closed by γ and no lower power of γ0. Therefore,
the factor of c̃ cancels with the factor of this particular gallery. It follows that
we only have to consider geodesics closed by primitive elements of Γ.

First case. Assume that Gγ is a split torus. Then γ induces a translation
on the apartment S attached to Gγ . This apartment therefore lies in Pγ .
The set Pγ is a union of parallel geodesic lines, so every x0 ∈ Pγ lies in a
unique geodesic line L= c(R) fully contained in Pγ , where the geodesic curve
c : R→ Pγ with c(0) = x0 is uniquely determined up to orientation, that is,
up to replacing c(t) by c(−t). We assume that orientations have been chosen
in a compatible way so that we obtain an action of R on the set Pγ given by
(t, x0) �→ c(t). We call this the geodesic action of R. We consider the quotient
of Pγ by the geodesic action and see that Pγ/R is a tree which contains a
line L. We claim that the structure of this tree is as such that Pγ/R \L is a
union of disjoint finite trees. This is a consequence of the fact that Γγ \Pγ is
compact. So, modulo geodesic gallery paths, one can reduce each of the finite
trees to a point and so reduce Pγ to one apartment S. The image of S in
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Γ \ B is a union of closed geodesics or of closed gallery paths and both occur

in the same number, so that they cancel in the quotient
Z1,+(u2)
Z2,+(−u) .

Second case. If Gγ is a non-split torus, then Pγ will not contain an apart-
ment. Then Pγ/R is compact. We have two possible situations. The first is
that Pγ contains an integral geodesic, so we can reduce to that one and get

one remaining contribution of the form (1− u2l(γ)). If Pγ does not contain
an integral geodesic, this implies that Pγ is a single line going through the
interior of a gallery path, which is not closed by γ, but by γ2. In the quotient,
this is exactly the non-orientable case and the argument given above proves
Theorem 4.4. �

Remark. In [KL14], the authors also study
Z1,+(u2)
Z2,+(−u) by taking the loga-

rithm derivative and show that it can be expressed as a group zeta function,
which indeed equals the right-hand side of the above theorem. Their com-
putations are much more complicated but include that case that Γ is not
regular.

5. Riemann hypothesis

The complex BΓ = Γ \ B is called Ramanujan if all irreducible unramified
infinite dimensional subrepresentations of L2(Γ \G) are tempered. See [Li04]
and [LSV05] for details. When G = PGL2(F ), BΓ is a finite regular graph.
It was first pointed out by [Sun86] that the non-trivial poles of Ihara zeta
function Z(BΓ, u) of BΓ have absolute values equal to q−1/2 if and only if BΓ

is a Ramanujan graph. The first condition is called the Riemann hypothesis
of Z(BΓ, u) since if we replace u by q−s, the condition becomes that all non-
trivial poles of Z(BΓ, q

−s) lie on Re(s) = 1
2 . We remark that Z(BΓ, u) satisfies

the Riemann hypothesis if and only if BΓ is a Ramanujan graph.
We shall give an analogue of the above statement for G=PGL3(F ). Recall

that Z1,+(u) and Z2,+(u) are polynomials so that Z1,+(u) = det(I −LEu) for
some parahoric Hecke operator LE ; Z2,+(u) = det(I −LBu) for some Iwahori
Hecke operator LB [KLW10]. Given a smooth unramified representation V of
G, consider

Q(V,u) =
det(I +LBu)

det(I −LEu2)
,

where the determinant is taken over the spaces of parahoric and Iwahori fixed
vectors of V respectively. Then we have

Z2,+(−u)

Z1,+(u2)
=
∏
V

Q(V,u)mV ,

where V runs through all irreducible unitary Iwahori-spherical subrepresen-
tations of L2(Γ \G) and mV is its multiplicity. From Table 1 and Table 2 in
[KLW10], we have
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(a) If V is a principal series representation, then Q(V,u) = 1.
(b) If V is the trivial representation twisted by a cubic unramified character

χ of F , then Q(V,u) = 1
1−qχ(π)u and mV = 1.

(c) If V is the Steinberg representation twisted by a cubic unramified char-
acter χ of F , then Q(V,u) = 1− χ(π)u and mV = χ(XΓ)− 1.

(d) If V the irreducible subrepresentation of Ind(χ| |−1/2, χ| |1/2, χ−2), where
χ is an unramified unitary character of F×. Then Q(V,u) = 1/(1 −
q1/2χ(π)u). Moreover, V is not tempered.

(e) The irreducible subrepresentation of Ind(χ| |1/2, χ| |−1/2, χ−2), where χ
is an unramified unitary character of F×. Then we have Q(V,u) =
1− q1/2χ(π)u.

We summarize the above in the following theorem.

Theorem 5.1. With the above notation we have

Z2,+(−u)

Z1,+(u2)
=

(1− u3)χ−1P1(u)

(1− q3u3)P2(u)
,

where P1(u) =
∏

α(1− αu) and P2(u) =
∏

β(1− βu) with |α|= |β|= q1/2.

Corollary 5.2. When BΓ is a Ramanujan complex, then

Z2,+(−u)

Z1,+(u2)
=
(
1− u3

)χ P1(u)

(1− u3)(1− q3u3)
,

where P1(u) =
∏

α(1−αu) with |α|= q1/2 of degree N1− 3N0+6. Here Ni is
the number of i-simplex in BΓ. In this case, we say the complex zeta functions
of BΓ satisfy the Riemann hypothesis.
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