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MARTINGALES ARISING FROM MINIMAL
SUBMANIFOLDS AND OTHER GEOMETRIC CONTEXTS

ROBERT W. NEEL

Abstract. We consider a class of martingales on Cartan–
Hadamard manifolds that includes Brownian motion on a mini-
mal submanifold. We give sufficient conditions for such martin-
gales to be transient, extending previous results on the transience

of minimal submanifolds. We also give conditions for the al-
most sure convergence of the angular component (in polar coordi-
nates) of a martingale in this class, including both the negatively

pinched case (using earlier results on martingales of bounded di-
lation), and the radially symmetric case with quadratic decay of

the upper curvature bound. Applied to minimal submanifolds,

this gives curvature conditions on the ambient Cartan–Hadamard

manifold under which any minimal submanifold admits a non-
constant, bounded, harmonic function. Though our discussion

is primarily motivated by minimal submanifolds, this class of

martingales includes diffusions naturally associated to ancient

solutions of mean curvature flow and to certain sub-Riemannian
structures, and we briefly discuss these contexts as well. Our

techniques are elementary, consisting mainly of comparison ge-
ometry and Ito’s rule.

1. Introduction

We study a class of degenerate martingales on Cartan–Hadamard mani-
folds, specifically their transience and angular behavior in large time. The
results we obtain (as well as the methods of proof) are similar to those for
Brownian motion on Cartan–Hadamard manifolds. The motivation is that
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such martingales arise in multiple geometric contexts, such as Brownian mo-
tion on minimal submanifolds, Brownian motion along a smooth mean curva-
ture flow, and the canonical diffusion associated with certain sub-Riemannian
geometries. This allows us to reprove and extend geometric results, such as re-
sults on the transience of minimal submanifolds, and also provides a common
perspective on what might otherwise seem like disparate objects in geometry,
at least at the level of these relatively coarse properties.

Our discussion is motivated by the case of minimal submanifolds. In par-
ticular, let M be a (smooth, complete) Cartan–Hadamard manifold of di-
mension m. Markvorsen and Palmer [15] prove that if N is a complete,
n-dimensional, minimally immersed submanifold of M and either n = 2 and
the sectional curvatures of M are bounded above by −a2 < 0, or n≥ 3, then
N is transient. They prove this result by first deriving non-trivial capacity
estimates. The more restrictive case when n ≥ 2 and the sectional curva-
tures of M are bounded above by −a2 < 0 also follows from estimates on
the first Dirichlet eigenvalue (or the fundamental tone) of submanifolds of a
Cartan–Hadamard manifold, as discussed in more detail by Bessa and Fábio
[3]. In addition, we mention that Stroock (see Theorem 5.23 of [20]) proves
that minimal submanifolds of dimension 3 or more of Euclidean space are
transient (that is, the case n≥ 3 and M = R

m) using a simple stochastic ar-
gument which is very much in the spirit of the present work. (For general
background on the role of transience in geometry and analysis, consult [8].)

We wish to further this line of inquiry. Our first main result (concerning
transience), applied to minimal submanifolds, yields the following.

Corollary 1. Let M be a Cartan–Hadamard manifold of dimension
m≥ 3, and let N be a properly immersed minimal submanifold of dimen-
sion n, for 2≤ n <m. Then if either of the following two conditions hold:

(1) n = 2 and, in polar coordinates around some point, M satisfies the cur-
vature estimate

K(r, θ,Σ)≤− 1 + 2ε

r2 log r
for r > R, and for all θ and Σ � ∂r

for some ε > 0 and R> 1, or
(2) n≥ 3,

we have that N is transient.

Here K(r, θ,Σ) is the sectional curvature of a plane Σ in T(r,θ)M (in polar
coordinates). Our choice of 2ε rather than ε in the bound in the n = 2 is
simply for convenience.

Obviously, this improves the curvature bound in the case n = 2. Indeed,
the bound given above is sharp (in the sense that the theorem is not true for
ε= 0), as discussed after Theorem 5. Further, this result is a special case of
a transience result for a broader class of martingales (given in Theorem 5,
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of which the above is an immediate corollary) that we call rank-n martin-
gales and that also includes diffusions associated to ancient solutions of mean
curvature flow and to certain sub-Riemannian structures (more on this in a
moment).

Our second main class of results consists of theorems giving conditions for
the almost sure angular convergence of a rank-n martingales. Using previous
results on martingales of bounded dilation (more on this in a moment), we see
that rank-n martingales in Cartan–Hadamard manifolds of negatively pinched
curvature have (random) angular limits. Applying this result to rank-n mar-
tingales arising from minimal submanifolds gives the following corollary.

Corollary 2. Suppose that M is Cartan–Hadamard manifold of dimen-
sion m ≥ 3, and that the sectional curvatures of M are bounded above and
below by negative constants. Let N be an n-dimensional, properly immersed
minimal submanifold (in M ), for n ≥ 2. Then N admits a non-constant,
bounded, harmonic function.

In order to explore the possibility of relaxing the upper curvature bound,
we analyze the angular process in more detail, in the case when n ≥ 3. We
give complementary results on the finiteness or lack thereof of the quadratic
variation of the martingale part of the angular process in Theorems 9 and 10.
The role of the drift of the angular process is more subtle. Restricting our at-
tention to radially symmetric Cartan–Hadamard manifolds, we show that the
angular process converges even if some quadratic decay of the upper curvature
bound is allowed (see Theorem 12). Applying this to minimal submanifolds,
we have

Corollary 3. Suppose that M is Cartan–Hadamard manifold of dimen-
sion m≥ 4, and that M is radially symmetric around some point p. Let (r, θ)
be polar coordinates around p. Let N be an n-dimensional, properly immersed
minimal submanifold (in M ), with 3≤ n <m. Then if M satisfies the curva-
ture estimate

−a2 ≤K(r, θ,Σ)≤−2 + ε

r2
when r > R, and for all θ and Σ � ∂r,

for some a > 0, ε > 0, and R > 1, we have that N admits a non-constant,
bounded, harmonic function.

As mentioned, the properties of rank-n martingales which we establish
are motivated by minimal submanifolds, one consequence being that the ap-
plications in other geometric contexts, namely to mean curvature flow and
certain sub-Riemannian structures, appear less immediately compelling. For
example, it’s not clear how the transience of an associated diffusion along an
ancient solution to mean curvature flow fits into the theory of such flows. In
the sub-Riemannian case, the transience of the associated diffusion is a more
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natural property (akin to the transience of Brownian motion on a Riemann-
ian manifold), but our discussion only applies to a rather restricted class of
sub-Riemannian structures (ones equipped with an extension to a Riemann-
ian metric which makes the diffusion generated by the sub-Laplacian a rank-n
martingale, as explained in Section 4.3). Nonetheless, we explain how these
results apply in these two cases to the extent feasible, for a couple of reasons.
We hope that this demonstrates the natural use of stochastic methods in these
areas and indicates that further developments might be possible. It also high-
lights the common aspects of these geometric situations, in terms of basic
properties accessible to stochastic analysis, and clarifies the role of various
hypotheses. For instance, the fact that the proof of transience for a mini-
mal submanifold applies unchanged to a class of sub-Riemannian structures
shows that, in a sense, only the minimality of the submanifold is relevant, and
not the fact that it’s a submanifold. (Said differently, the integrability of the
tangent spaces or lack thereof, in the sense of Frobenius, is irrelevant.)

From a technical point of view, not only are we able to treat a variety of geo-
metric objects simultaneously, but our techniques are more or less completely
elementary. On the geometric side, we use standard comparison results to
pass from curvature estimates to estimates on Jacobi fields and their indices.
In terms of stochastic analysis, Ito’s rule (with the right choice of function to
compose with our rank-n martingale) and basic stopping time arguments are
all that we use.

We have already alluded to a relationship between this work and previ-
ous work on Brownian motion on Cartan–Hadamard manifolds, such as the
work of March [14] or Hsu [9], which will become clear as we go. We now
close this section with a further discussion of the connection with work on
bounded-dilation martingales in geometry. Indeed, any rank-n martingale
with n ≥ 2 is a special case of a martingale of bounded dilation (in fact, of
1-bounded dilation); see Definition 2.2.10 of Kendall’s informative article [13]
and the surrounding discussion for the precise definition. Such martingales
arise in the study of harmonic maps from one Riemannian manifold to an-
other, as the image of a Brownian motion on the domain under the mapping.
Various natural properties of such martingales have been studied, such as
upper bounds on exit times from geodesic balls in Darling [5] and proper-
ties of the radial part in Kendall [12]. A central application of martingales
of bounded dilation is to prove generalized Picard little theorems for har-
monic maps (again, see Theorem 2.3.6 of [13] and the references therein for
an overview of such results). In fact, it was in the process of proving Picard
little theorems that the result on angular convergence of bounded-dilation
martingales on Cartan–Hadamard manifolds with negatively-pinched curva-
tures, as mentioned above, was established (see Theorem 2.3.5 of [13]). Since
rank-n martingales are a narrower class of processes, we attempt to give more
precise results than might be possible in more generality, such as the sharp
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curvature decay rate for transience of rank-2 martingales and the quadratic
decay of the upper curvature bound for angular convergence of a rank-n (with
n≥ 3) martingale on a radially symmetric Cartan–Hadamard manifold. This
perspective emphasizes the difference in the stochastic setting between pre-
vious work on bounded-dilation martingales and what we establish here for
the more specialized situation of rank-n martingales, but of course this re-
flects the fact that minimal submanifolds, and the other geometric situations
we consider, are a different geometric problem than that of a harmonic map
(even one of bounded dilation) from a given domain manifold into another
manifold.

Finally, we mention that results showing that one can find a martingale
on a manifold with a prescribed limit under some geometric constraints have
been given by Darling [6] and Arnaudon [2]. These can be used to give a
probabilistic construction of a solution to the harmonic mapping problem
with given boundary values in certain cases. Unfortunately, such results do
not apply in any obvious way to the construction of, say, a solution to the
mean curvature flow, since that requires constructing a rank-n martingale, for
the appropriate value of n, which is a much more restricted class than that of
just a martingale. Indeed, for an idea of how one might construct a solution
to mean curvature flow via stochastic methods, see Soner and Touzi [19].

2. Definitions and preliminary results

2.1. Rank-n martingales. Let M be a Cartan–Hadamard manifold of
dimension m; we will always assume that M is smooth and complete.
The main object of study is what we will call a rank-n martingale, where
n ∈ {1, . . . ,m − 1}. This is a (continuous) process Xt on M , possibly de-
fined up to some explosion time ζ, which (informally) is infinitesimally a
Brownian motion on Λt, where Λt is a (path) continuous, adapted choice of
n-dimensional subspace of TXtM . To be more specific, we suppose that Xt

locally (in space and time) satisfies an SDE of the form

(1) dXt =

n∑
i=1

vi,t dW
i
t ,

where (v1,t, . . . , vn,t) is a continuous, adapted n-tuple of orthonormal vectors
in TXtM . (Note that we’re not claiming that a unique solution necessarily
exists for any such choice of vi,t, just that Xt is a solution to such an equation.)
Naturally, we think of the vi,t as a orthonormal basis for the n-dimensional
subspace Λt mentioned above. We generally think of Xt as starting from
a single point X0, but this is not necessary (and it’s occasionally useful to
consider a more general initial distribution).

For clarity, consider a particularly nice example of such a process, Brow-
nian motion on a (properly embedded) n-dimensional minimal submanifold.
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In that case, we can, on some local chart, let vi,t = vi(Xt) for a smooth, or-
thonormal frame v1, . . . , vn. Alternatively, if we want a smooth global (but
non-Markov) choice of vi,t, we can let them be given by the parallel transport
of an orthonormal frame at X0 along Xt, in the spirit of the Ells–Elworthy–
Malliavin construction of Brownian motion on a manifold.

Returning to the general case of equation (1), note that the differentials
are Ito differentials, and thus Xt is in fact an M -martingale (see [9] for basic
definitions in stochastic differential geometry). Also note that the law of Xt

should generally be thought of as depending on Λt, rather than on the specific
choice of frame vi,t. In particular, let ṽi,t be another set of orthonormal frames
for Λt. Then write ṽi,t =

∑n
j=1 ci,j,tvj,t for i, j = 1, . . . , n, where [ci,j ]t is a

continuous, adapted O(n)-valued process, and suppose that W̃ i
t for i= 1, . . . , n

are independent Brownian motions satisfying the system⎡
⎢⎣
dW̃ 1

t
...

dW̃n
t

⎤
⎥⎦= [ci,j ]t

⎡
⎢⎣
dW 1

t
...

dWn
t

⎤
⎥⎦ .

Then we see that Xt also satisfies the SDE

dXt =

n∑
i=1

ṽi,t dW̃
i
t .

Finally, we mention that our results extent in a natural way to the situa-
tion where our rank-n martingale is (possibly) stopped at some stopping time
prior to explosion. In particular, our results will apply on the set of paths that
survive until explosion (which may mean they survive for all time, if the explo-
sion time is infinite). We discuss this a bit further after the proof of Lemma 4
and at the end of Section 4.1. Note that this is a fairly natural situation.
For example, if N is a minimal submanifold-with-boundary, then Brownian
motion on N stopped at the boundary will be a rank-n martingale stopped
at the first hitting time of the boundary, as was used in [17]. Nonetheless, to
make the exposition cleaner, we will simply deal with rank-n martingales as
introduced above, aside from the two brief mentions just indicated.

2.2. Comparison geometry. Again, let M be a (smooth, complete)
Cartan–Hadamard manifold of dimension m. For some point p ∈ M , let
(r, θ) ∈ [0,∞)×S

m−1 be polar coordinates; this gives a global coordinate sys-
tem for M . Let Xt be a rank-n martingale on M , started at some point X0.
We can write Xt in coordinates as (rt, θt) = (r(Xt), θ(Xt)).

We wish to understand the behavior of rt in terms of the SDE it satisfies.
We note that r is smooth everywhere on M except for p. We’ll see in a
moment (in Lemma 4) that if Xt starts at p it immediately leaves, and that,
from anywhere else, the process almost surely never hits p. Thus, we will
assume that the process is not at p (equivalently that rt is positive), so that
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the behavior of r at p won’t bother us. (The situation is exactly analogous
to what one sees for the radial component of Brownian motion on Euclidean
space.) As usual, let ∂r =∇r be the unit radial vector field. Since we’re free
to rotate our orthonormal frame without changing the law of Xt, as discussed
above, assume for convenience that v2,t, . . . , vn,t are perpendicular to ∂r. Next,
let ϕt be the angle between v1,t and ∂r, so that 〈v1,t, ∂r〉= cosϕt. (While ϕt

is not uniquely determined, cosϕt is, and we will see that it is only cosϕt that
matters in what follows. Nonetheless, we find it geometrically appealing to
make reference to ϕt, and it causes no harm.)

Applying Ito’s formula, we first see that martingale part of rt evolves as
cosϕt dWt for some Brownian motion Wt. (If we always choose our orthonor-
mal frame as just discussed, then Wt =W 1

t , but in general we only care about
the law of rt, so this isn’t necessary. More generally, Wt is adapted to the fil-
tration generated by W 1

t , . . . ,W
n
t , and ϕt is the angle between Λt and ∂r.) In

order to understand the bounded variation (or drift) term in the SDE, let γ be
the (unique) geodesic from p to Xt. Then for i= 2, . . . , n, let Ji(s), s ∈ [0, rt]
be the (unique) Jacobi field along γ with Ji(0) = 0 and Ji(rt) = vi,t. For i= 1
let J1(s), s ∈ [0, rt] be the Jacobi field which is 0 at p and equal to the projec-
tion of v1,t onto the orthogonal complement of ∂r (as a subspace of TrtM ).
In particular, J1(rt) has length sinϕt (assuming ϕt is chosen to make this
non-negative). Let I(Ji) be the index of the Jacobi field Ji. Since the Hessian
of r is given in terms of these indices, we see that rt satisfies the SDE

(2) drt = cosϕt dWt +
1

2

(
n∑

i=1

I(Ji)

)
dt.

We will deal with the indices I(Ji) via standard comparison geometry (see
Theorem 1.1 of [18] for the relevant version of the Hessian comparison theorem,
and see Section 3.4 of [9] for the application to Brownian motion). Since we
will work with Cartan–Hadamard manifolds, we assume that all sectional
curvatures are non-positive, and thus we take our comparison functions to
be non-positive as well. In particular, let K̂(r) be a continuous, non-positive
function on [0,∞) such that

K̂(r)≥ max
θ,Σ�∂r

K(r, θ,Σ),

where the maximum is taken over all θ ∈ S
m−1 and all two-planes Σ in the

tangent space at (r, θ) that contain ∂r (so that we deal with estimates on what

are commonly called the radial curvatures). Further, let Ĝ(r) be the solution
to the (scalar) Jacobi equation

Ĝ′′(r) + K̂(r)Ĝ(r) = 0, Ĝ(0) = 0, Ĝ′(0) = 1, on r ∈ [0,∞).
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Then we have the comparison

I(Ji)≥
∣∣Ji(rt)∣∣2 Ĝ′(rt)

Ĝ(rt)
for each i= 1, . . . , n.

Similarly, let Ǩ(r) be a continuous, non-positive function on [0,∞) such that

Ǩ(r)≤ min
θ,Σ�∂r

K(r, θ,Σ),

and let Ǧ(r) be the solution to the (scalar) Jacobi equation

Ǧ′′(r) + Ǩ(r)Ǧ(r) = 0, Ǧ(0) = 0, Ǧ′(0) = 1, on r ∈ [0,∞).

Then we have the comparison

I(Ji)≤
∣∣Ji(rt)∣∣2 Ǧ′(rt)

Ǧ(rt)
for each i= 1, . . . , n.

(We can think of Ĝ or Ǧ as giving the analogous Jacobi fields of a radially
symmetric comparison manifold.) Observe that |Ji(rt)|2 = 1 for i = 2, . . . , n
and |J1(rt)|2 = sin2ϕt. Thus, we have that (refer to equation (2))

1

2

(
n∑

i=1

I(Ji)

)
≥ n− 1 + sin2ϕt

2

Ĝ′(rt)

Ĝ(rt)
or

1

2

(
n∑

i=1

I(Ji)

)
≤ n− 1 + sin2ϕt

2

Ǧ′(rt)

Ǧ(rt)
.

(Of course, we also have that Ĝ gives a lower bound, and Ǧ an upper bound,
on the lengths of the corresponding Jacobi fields, by the Rauch comparison
theorem.) Note that Ĝ and Ǧ depend only on the geometry of M (and r).
Further, these expressions depend only on Λt and not on the particular choice
of the vi,t (so they are “invariant” in the geometric language sometimes used),
which justifies the local (or even pointwise) nature of our choice of frame.

As mentioned, we will frequently denote 1
2 (
∑n

i=1 I(Ji)) by vt. We now
collect the specific estimates on the lengths of Jacobi fields (given in terms of

Ĝ and Ǧ) and on vt that we will use. To make the notation less cumbersome,
throughout the rest of the paper we will write log(2) r for log(log r) and log(3) r

for log(log(log r)).

2.3. Constant curvature estimates. First, because we assume that M is
a Cartan–Hadamard manifold, we can always take K̂ ≡ 0, for which we have

Ĝ(r) = r and vt ≥
n− 1 + sin2ϕt

2rt

(and with equality for vt if K ≡ 0, that is, if M is in fact Euclidean space).

This also shows that our comparison functions Ĝ and Ǧ are always increasing
and positive for positive r.
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Next, suppose that, for some R> 0 and some a > 0,

K(r, θ,Σ)≥−a2 when r > R, and for all θ and Σ � ∂r.

Then we can take Ǩ(r) to be non-positive and equal to −a2 when r ≥A, for
some A>R. We compute that

Ǧ(r) =
c1
a
sinh(ar) +

c2
a
cosh(ar) =

1

a

(
c2 + c1 tanh(ar)

)
cosh(ar) for r ≥A

for some constants c1 and c2. If c3 = c1 + c2, then c3 > 0, using that Ǧ(r) is
positive for positive r. Further, an elementary computation shows that, for
any δ > 0, there exists B >A such that

Ǧ′(r)

Ǧ(r)
≤ a(1 + δ) for r ≥B.

2.4. A variable curvature estimate useful when n= 2. The following
estimate, though stated in general, will be used in the case n= 2.

Suppose that for some ε > 0 and some R> 1, we have

K(r, θ,Σ)≤− 1 + 2ε

r2 log r
when r > R, and for all θ and Σ � ∂r.

(Here we use “2ε” rather than “ε” simply to have a more convenient constant

in the following estimates.) Then we can take K̂(r) to be non-positive and
equal to

− 1 + ε

r2 log r

(
1 +

ε

log r

)
for r ≥A

for some A>R. We see that

G1(r) = r(log r)1+ε and G2(r) =G1(r)

∫ r 1

s2(log s)2+2ε
ds

are a basis for the space of solutions to the Jacobi equation over r ∈ [A,∞).
Thus

Ĝ(r) = c1G1(r) + c2G2(r) for r ∈ [A,∞),

for some constants c1 and c2. These constants are determined by the initial
conditions at r = A. Nonetheless,

∫ r
1/(s2(log s)2+2ε)ds is increasing and

bounded, so let α ∈ (0,∞) be its limit as r→∞. Then

Ĝ(r)∼ (c1 + c2α)G1(r) as r→∞,

where “∼” means that the ratio of the two sides approaches 1. We know that
Ĝ(r) is positive and increasing for positive r, so if we let c3 = c1 + c2α, then

c3 > 0. Explicit computation shows that Ĝ′(r) is given by(
c1 + c2

∫ r 1

s2(log s)2+2ε
ds

)
(1 + ε)(log r)ε

(
log r

1 + ε
+ 1

)
+

c2
r(log r)1+ε

∼ c3
[
(log r)1+ε + (1+ ε)(log r)ε

]
as r→∞.
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Dividing this by Ĝ (and considering the large r behavior) shows that for some
B >A and c > 0, we have

vt ≥ c
(
n− 1 + sin2ϕ

)( 1

2rt
+

1+ ε

2rt log rt

)
for rt ≥B.

2.5. Variable curvature estimates useful when n ≥ 3. The previous
estimate will be useful to us in the n = 2 case. We now develop similar
estimates for use in the n≥ 3 case.

Suppose that for some ε > 0 and some R> 1, we have

K(r, θ,Σ)≤−
1
2 + ε

r2 log r
when r > R, and for all θ and Σ � ∂r.

We may as well assume that ε < 1/2, since if the above holds for some ε, it

holds for any smaller ε. Then we can take K̂(r) to be non-positive and equal
to

−
1
2 + ε

r2 log r

(
1−

1
2 − ε

log r

)
for r > R.

We see that

G1(r) = r(log r)
1
2+ε and G2(r) =G1(r)

∫ r 1

s2(log s)1+2ε
ds

are a basis for the space of solutions to the Jacobi equation over r ∈ (R,∞).
As before,

∫ r
1/(s2(log s)1+2ε)ds is increasing and bounded, so let α ∈ (0,∞)

be its limit. Then

Ĝ(r)∼ (c1 + c2α)G1(r) as r→∞.

We know that Ĝ(r) is positive and increasing for positive r, so if we let
c3 = c1+ c2α, then c3 > 0. Explicit computation analogous to the above gives

Ĝ′(r)∼ c3

[
(log r)

1
2+ε +

(
1

2
+ ε

)
1

(log r)
1
2−ε

]
as r→∞.

Dividing this by Ĝ (and considering the large r behavior) shows that for some
B >R, we have

vt >
3
4 (n− 1 + sin2ϕ)

2rt

(
1 +

1
2 + ε

log r

)
for rt ≥B.

(The 3/4 could be replaced by any positive real less than 1 by changing B,
but it’s less hassle for us to just pick an explicit coefficient here.)

In a complementary direction, assume that for some R> 1, we have

K(r, θ,Σ)≥− 1/2

r2 log r
when r > R, and for all θ and Σ � ∂r.
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Then we can take Ǩ(r) to be equal to

− 1/2

r2 log r

[
1 +

1

log(2) r
− 1

2 log r
− 1

2 log r log(2) r

]
for r > A

for some A>R.
We see that

G1(r) = r(log r log(2) r)
1
2 and G2(r) =G1(r)

∫ r 1

s2 log s log(2) s
ds

are a basis for the space of solutions to the Jacobi equation over r ∈ (A,∞).
Just as above, there is c3 > 0 such that

Ǧ(r) = c1G1(r) + c2G2(r)∼ c3G1(r) as r→∞.

Another explicit computation gives

Ǧ′(r)∼ c3(log r)
1
2 (log(2) r)

1
2

[
1 +

1/2

log r
+

1/2

log r log(2) r

]
as r→∞.

Dividing this by Ǧ (and considering the large r behavior) shows that for some
B >A, we have

vt ≤
5

4

n− 1 + sin2ϕt

2rt

[
1 +

1/2

log rt
+

1/2

log rt log(2) rt

]
for rt ≥B.

(Again, the 5/4 is chosen for convenience; any positive real greater than 1
could be used by changing B.)

Finally, suppose that for some ε > 0 and some R> 0, we have

K(r, θ,Σ)≤−2 + ε

r2
when r > R, and for all θ and Σ � ∂r.

Then for δ > 0 such that 2 + ε = (2 + δ)(1 + δ), we can take K̂(r) to be
non-positive and equal to

− (2 + δ)(1 + δ)

r2
for r > R.

We find that

G1(r) = r2+δ and G2(r) =

∫ r 1

s4+2δ
dsG1(r)

are a basis for the space of solutions to the Jacobi equation over r ∈ (R,∞). As

before, we see that there is c3 > 0 such that Ĝ(r)∼ c3G1(r), and we compute

Ĝ′(r)∼ c3(2 + δ)r1+δ.

It follows that for some B >R and c > 0, we have

vt > c
n− 1 + sin2 φ

rt
for rt >B.
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2.6. Basic properties. We now give a lemma showing that rank-n martin-
gales share several basic properties of Brownian motion.

Lemma 4. Let M be a Cartan–Hadamard manifold of dimension m, and
let Xt be a rank n martingale on M (for 2≤ n <m), started from any initial
point X0. For any p ∈M , let (r, θ) be polar coordinates around p. Then

(1) limsupt→ζ rt =∞, almost surely, and
(2) rt > 0 for all t ∈ (0, ζ), almost surely.

Proof. Note that the sectional curvatures of M are all non-positive, and
thus we have that

drt = cosϕt dWt + vt dt,

where, as just discussed, vt =
∑n

i=1 I(Ji) is time-continuous (and adapted, of
course) and satisfies

(3) vt ≥
n− 1 + sin2ϕt

2rt
.

Let σx be the first hitting time of {r = x}, for x≥ 0. Ito’s rule gives that

d
(
r2
)
t
= 2rt cosϕt dWt +

(
2rtvt + cos2ϕt

)
dt.

Equation (3) implies 2rtvt + cos2ϕt ≥ n, and thus, for C > r0,

E
[
r2σC∧t

]
≥ r20 + nE[σC ∧ t].

Using that E[r2σC∧t]≤C2, dominated convergence lets us take t→ ζ, and since
σC ≤ ζ we see that

E[σC ]≤
1

n

(
C2 − r20

)
.

In particular, P(σC <∞) = 1. Because σC = ζ can only happen if both are
infinite by path continuity, we also have P(σC < ζ) = 1. Since this holds for all
C > r0, and since rt has continuous paths, we conclude that limsupt→ζ rt =∞,
almost surely.

The proof of the second part mimics that of Proposition 3.22 of [11]. It is
immediate from equation (1) (say, by using normal coordinates around p) that
if X0 = p, the process immediately leaves p, almost surely, which is equivalent
to rt immediately becoming positive, almost surely. Thus it is enough to prove
the result under the assumption that r0 > 0, and we now assume this.

From the first part and the definition of explosion, we see that

(4) P

(
σk < ζ for all integers k > r0, and lim

k→∞
σk = ζ

)
= 1.

Ito’s rule shows that

(5) d(log r)t =
1

rt
cosϕt dWt +

(
1

rt
vt −

1

2r2
cos2ϕt

)
dt,



MARTINGALES ARISING FROM MINIMAL SUBMANIFOLDS, ETC. 335

at least when r > 0, which is all we will need. Equation (3) implies that the
coefficient of dt is greater than or equal to

n− 1 + sin2ϕt − cos2ϕt

2r2t
,

and n≥ 2 means that this is always non-negative. So log rt is a (local) sub-
martingale.

Thus, if k is an integer such that (1/k)k < r0 < k (which will be true
for all sufficiently large k), by the first part of the lemma, we know that
P(σ(1/k)k ∧ σk <∞) = 1. So dominated convergence and the fact that log rt
is a (local) sub-martingale give

log r0 ≤ E[log rσ
(1/k)k

∧σk
]

= −k logkP(σ(1/k)k ≤ σk) + logk
(
1− P(σ(1/k)k ≤ σk)

)
.

Algebra yields

P(σ(1/k)k ≤ σk)≤
logk− log r0
(k+ 1) logk

,

and letting k→∞ shows that

(6) lim
k→∞

P(σ(1/k)k ≤ σk) = 0.

Now σ0 is the first hitting time of {rt = 0}, and we see that σ0 ≤ σ(1/k)k

for all k. Then equations (4) and (6) imply that

P(σ0 < ζ) = lim
k→∞

P(σ0 < σk)≤ lim
k→∞

P(σ(1/k)k ≤ σk) = 0.

This is equivalent to the desired result, namely that rt > 0 for all t ∈ (0, ζ),
almost surely. �

The first part of the lemma says that a rank-n martingale almost surely
leaves every compact set. We will routinely use this, in much the way that
we did in the second part of the proof where it implied that log rt left any
interval of the form ((1/k)k, k) (prior to ζ). Since p was arbitrary, the second
part means that, like Brownian motion, a rank-n martingale does not charge
points. It also justifies our assertion from the introduction that, since are
interested in the long-time behavior of our rank-n martingales, we need not
worry about the singularity of our polar coordinates at p, because the process
will avoid p at all positive times almost surely.

We also note that, in light of the above lemma and its proof, our earlier
comment about allowing our rank-n martingales to be stopped prior to (pos-
sible) explosion becomes clearer. In this case, if η is such a stopping time,
then (for example) the first part of the lemma becomes the statement that
limsupt→ζ rt =∞ almost surely on the set of paths with η =∞. The proof is
a straightforward modification of the above.
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3. Transience of rank-n martingales

Our goal here is to determine conditions for Xt to be transient, that is,
conditions such that limt→ζ r(Xt) =∞ almost surely.

Theorem 5. Let M be a Cartan–Hadamard manifold of dimension m, and
let Xt be a rank-n martingale on M (for 2 ≤ n < m). Then if either of the
following two conditions hold:

(1) n = 2 and, in polar coordinates around some point, M satisfies the cur-
vature estimate

K(r, θ,Σ)≤− 1 + 2ε

r2 log r
for r > R, and for all θ and Σ � ∂r,

for some ε > 0 and R> 1, or
(2) n≥ 3,

we have that Xt is transient.

Proof. Note that the sectional curvatures of M are all non-positive, and
thus in either case we have that

drt = cosϕt dWt + vt dt

where vt =
∑n

i=1 I(Ji) is time-continuous (and adapted, of course) and satis-
fies

vt ≥
n− 1 + sin2ϕt

2rt
.

For n≥ 3, this is enough. In particular, in this case we have that

(7) vt ≥
2 + sin2ϕt

2rt
≥ 1

rt
.

(The intuitive point is that the drift is at least as large as for a 3-dimensional
Bessel process, while the quadratic variation of the martingale part grows no
faster than for a 3-dimensional Bessel process, and thus one expects rt to be
“at least as transient” as a 3-dimensional Bessel process.) Ito’s rule followed
by an application of inequality (7) and algebra gives

d

(
1

r

)
t

= − 1

r2t
cosϕt dWt +

(
1

r3t
cos2ϕt −

vt
r2t

)
dt where

1

r3t
cos2ϕt −

vt
r2t

≤ − sin2ϕt

r3t
≤ 0.

In particular, 1/rt is a (local) supermartingale, at least for r > 0.
We know that σk is finite for all integers k > r0, almost surely. Choose any

a > 0. Then the event lim inft→ζ rt ≤ a coincides, up to a set of probability
zero, with the event that rt hits the level a after σk for all k that are also
larger than a. Choose such a k and a b > k. Let σ̃a be the first hitting time
of a (for rt) after σk, and similarly for σ̃b. We know that σ̃b is almost surely
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finite. This, along with the fact that 1/rt is a (local) supermartingale and our
choice of stopping times implies

1

k
= E

[
1

rσk

]
≥ E

[
1

rσ̃a∧σ̃b

]
=

1

a
P(σ̃a < σ̃b) +

1

b

(
1− P(σ̃a < σ̃b)

)
.

This, in turn, yields

P(σ̃a < σ̃b)≤
1
k − 1

b
1
a − 1

b

.

If σ̃a is finite, it must be less than σ̃b for all sufficiently large b (up to a set of
probability zero), so letting b→∞ shows that

P(σ̃a <∞)≤ a

k
.

Because the right-hand side of the above goes to zero as k→∞, we see that the
probability of rt returning to the level a after every σk (for sufficiently large k)
is zero. It follows that lim inft→ζ rt > a almost surely. Since a was arbitrary,
we conclude that lim inft→ζ rt =∞ almost surely. Then limt→ζ rt =∞ almost
surely, which is equivalent to the transience of Xt.

The first part (the n= 2 case) is similar, the difference being that we must
replace 1/r with a more suitable function. Using the curvature bound and
the results of Section 2.4, we see that, for some B > 1, we have

vt ≥
(
1 + sin2ϕt

)( 1

2rt
+

1+ ε

2rt log rt

)
for rt >B.

Now Ito’s rule gives (for rt > 1)

d

(
1

(log r)ε

)
t

=
−ε cosϕt

r(log rt)(1+ε)
dWt

+
ε

r(log rt)(1+ε)

[
cos2ϕt

2rt

(
1 + ε

log rt
+ 1

)
− vt

]
dt.

Combing this with the upper bound for vt, we see that, for rt > B, the co-
efficient of dt (in other words, the infinitesimal drift) is less than or equal
to

ε

2r2(log rt)(1+ε)

(
1 +

1+ ε

log rt

)(
cos2ϕt − sin2ϕt − 1

)
≤ 0.

It follows that 1/(log rt)
ε is a (local) supermartingale for rt >A.

If we now choose k, a, and b (and the corresponding notation) as above,
with the additional stipulation that a >B, similar logic gives

1

(logk)1+ε
= E

[
1

(log rσk
)1+ε

]
≥ E

[
1

(log rσ̃a∧σ̃b
)1+ε

]

=
1

(loga)1+ε
P(σ̃a < σ̃b) +

1

(log b)1+ε

(
1− P(σ̃a < σ̃b)

)
.
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It follows that

P(σ̃a < σ̃b)≤
1

(logk)1+ε − 1
(log b)1+ε

1
(loga)1+ε − 1

(log b)1+ε

,

and letting b → ∞ shows that P(σ̃a < ∞) ≤ (loga/ logk)1+ε. Since this
last quantity goes to zero as k → ∞, just as before we conclude that
lim inft→ζ rt > a almost surely. Because this holds for any a > B, it fol-
lows that limt→ζ rt =∞ almost surely, which is equivalent to the transience
of Xt. �

Note that the estimates used in the proof of the n≥ 3 case are not sharp.
This indicates that some positive curvature could be allowed in this case. This,
however, would take us outside the context of Cartan–Hadamard manifolds
and thus require additional topological assumptions in order to have global
polar coordinates, and for this reason we prefer to restrict our attention to
Cartan–Hadamard manifolds.

In the n= 2 case, however, the above is sharp, in the sense that the result
does not hold for ε= 0. This follows from known results for transience and
recurrence of Brownian motion on surfaces, once we observe that a radially
symmetric surface can be realized as a totally geodesic submanifold of a radi-
ally symmetric 3-manifold, so that Brownian motion on a radially symmetric
surface is included as a special case of the above (see also Section 6.2).

4. Transience in geometric contexts

We now establish the connection between rank-n martingales and various
geometric objects.

4.1. Minimal submanifolds. First, let N be an n-dimensional, properly
immersed, minimal submanifold of M . Let Xt be Brownian motion on N ,
viewed as a process in M (under the immersion, of course). Then Xt is a
rank-n martingale in M , as mentioned in the introduction.

To see this, let ṽi,t ⊂ TN be such that the solution to

dX̃t =

n∑
i=1

ṽi,t dW
i
t

is Brownian motion on N . (Locally, we can just let ṽi,t = ṽi(X̃t) for a smooth
orthonormal frame ṽ1, . . . , ṽn. Alternatively, we can let the ṽi,t be given by

the parallel transport of an orthonormal frame at X̃0 along X̃t, in the spirit of
the Ells–Elworthy–Malliavin construction of Brownian motion on a manifold.)

Now let Xt and vi,t be the images of X̃t and ṽi,t under the immersion. Then
in general, Ito’s rule shows that they satisfy the SDE

dXt =

n∑
i=1

vi,t dW
i
t −

1

2
H(Xt)dt,
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where H is the mean curvature vector of N (as a submanifold of M ). Here,
we normalize H so that, if y1, . . . , ym are normal coordinates for M centered
at a point p in (the image of) N , then

H(p) =−
m∑
i=1

(ΔNyi|N )∂yi .

Since we’re assuming that N is minimal (and, of course, the vi,t are orthonor-
mal since the immersion is isometric), H ≡ 0, and we see that Xt is a rank-n
martingale.

Properness of N implies that Xt explodes relative to the topology of N
if and only if it explodes relative to the topology of M . (In particular, ζ is
independent of whether we view Xt as a process on N or on M .) Thus
Theorem 5, applied to this case, implies Corollary 1. Note that the assumption
of properness can be dropped, via a natural application of allowing a rank-n
martingale to be stopped prior to explosion. If N is not properly immersed,
then Brownian motion on N might explode (relative to the topology of N )
without also exploding in M (relative to the topology of M ). Let η be the
explosion time relative to the topology of N . Clearly η is a stopping time, and
we consider Xt run until η. On the set of paths where η = ζ, Theorem 5 (or
more precisely, a simple modification of its proof) shows that Xt is transient
(noting that it’s still true that transience on M implies transience on N ). On
the set of paths where η < ζ (which is the only other possibility), we have in
particular that η <∞. Thus Xt is almost surely transient on this set as well,
and the claim that the assumption of properness can be dropped follows.

4.2. Mean curvature flow. Next, we note that this idea generalizes to
mean curvature flow. To describe this, for a manifold N , with a smooth
structure, of dimension n (for 2≤ n <m), let

fτ (y) : (−∞,0]×N →M

be an ancient solution to mean curvature flow. (The term “ancient” refers
to the fact that the solution is defined at all past times. Solutions defined
for τ ∈ [0,∞) are called immortal, and solutions defined for all τ , eternal.)
In particular, let gτ be the (smoothly-varying) metric induced on N at time
τ by the immersion, let Δτ be the associate Laplacian, and let Hτ be the
associated mean curvature vector (with the same normalization as above, for
any fixed time) for fτ (N). Then fτ is a smooth function, proper as a map
from N to M at every fixed time τ , satisfying the differential equation

∂τfτ (y) =−1

2
Hτ (y) for all τ ∈ [0,∞) and y ∈N .

Note that the factor of 1/2 in front of Hτ is non-standard. This is the same
difficulty as encountered in normalizing the heat equation; the factor of 1/2 is
better suited to stochastic analysis, but analysts and geometers prefer not to
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include it. Rescaling time allows one to recover the standard normalization.
Since our results are all for the asymptotic behavior of our process, though,
rescaling time doesn’t change them, and thus the unusual normalization causes
no particular trouble.

Note that we don’t require the solution to develop a singularity at some
positive time (so that eternal solutions are a special case of ancient solutions).
Further, we assume that the solution is smooth even at time 0 (which is the
meaning of our assumption τ ∈ [0,∞)). In other words, if there is a singularity
(such as collapse to a “round point”), we don’t start our rank-n martingale
from there. This is so that we can make our choice of Λt continuous, in keeping
with our desire to avoid technical difficulties here.

Now suppose that X̃t satisfies

dX̃t =

n∑
i=1

ṽi,t dW
i
t ,

where the ṽi,t are an orthonormal frame at X̃t with respect to the metric g−t.
We can always find such a process; for example, by letting the ṽi,t come from
a local (in both space and time) smooth choice of time-varying orthonormal

frame. We think of X̃t as being Brownian motion along the mean curvature
flow, run backwards in time. Indeed, note that X̃t is the (inhomogeneous)
diffusion associated to 1

2Δ−t.

If we again let Xt be the image of X̃t under f−t, then Xt is a rank-n
martingale (on M ). To see this, let vi,t be the pushforward of ṽi,t, and note
that the vi,t are orthonormal since f−t is an isometric immersion for all t.
Then Ito’s formula gives

dXt =

n∑
i=1

vi,t dW
i
t −

1

2
H−t(Xt)dt−

∂f

∂τ

∣∣∣∣
τ=−t

(X̃t)dt.

But using that fτ is a solution to the mean curvature flow, this reduces to

dXt =

n∑
i=1

vi,t dW
i
t

as desired. (The minimal submanifold situation above is just the special case
of a constant solution to the mean curvature flow.) This also explains why we
consider our “inhomogeneous Brownian motion” to be run backwards in time
with respect to the flow. This phenomenon (namely, “process time” running
in the opposite direction from “PDE time”) is familiar, even arising in the
standard approach to the heat equation on the real line via Brownian motion.

Of course, for a non-ancient solution to the mean curvature flow, the same
procedure leads to a rank-n martingale run for a finite time. However, since
all of our results in the current paper concern the asymptotic behavior of
rank-n martingales, we don’t consider this case.
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A geometric interpretation of the transience of this process is less obvious
than it was for minimal submanifolds. Certainly, though, it contains some
information about the flow, such as the (fairly basic) fact that an ancient
solution cannot be contained in a compact subset of M (for all time). For
a refinement of this idea, we mention the following. In [17], rank-2 martin-
gales in R

3 = {(x1, x2, x3) : xi ∈R} were studied, with an eye toward classical

minimal surfaces. Let r =
√
x2
1 + x2

2. It was proved that for any c > 0, there
is a positive integer L such that any rank-2 martingale (as considered in the
present paper) exits the region

A=

{
r > eL and |x3|<

cr√
log r log(2) r

}

in finite time, almost surely (this is a restatement of Theorem 2 of [17]). Thus,
we see that an ancient solution to mean curvature flow, for surfaces in R

3,
cannot be contained in A for all τ ∈ (−∞,0].

Finally, we (again) mention that the relationship between rank-n martin-
gales and mean curvature flow can be used to represent mean curvature flow
in terms of a type of stochastic target problem. This is done, in the case when
the ambient space is Rn, in [19].

4.3. Sub-Riemannian geometry. Our final example of rank-n martingales
arising in geometry is as follows. Again, starting with a Cartan–Hadamard
manifold M (of dimension m≥ 3), choose a smooth rank-n distribution satis-
fying the bracket-generating property. That is, let D be a smooth map which
assigns an n-dimensional subspace Dy of TyM to each y ∈M . Further, if

Dk
y = span

{[
w1,

[
. . . [wk−1,wk]

]]
y
: wi(z) ∈Dz ∀z ∈M and wi is smooth

}
,

we assume that for each y ∈ M , there exists an integer k(y) ≥ 2 such that

TyM = Dk(y)
y (this is the bracket-generating property). Each subspace Dy

can be given a Riemannian metric by restricting the metric on M to Dy .
This gives a sub-Riemannian structure on M . (See [16] for background on
sub-Riemannian geometry.)

Further, suppose we choose a smooth volume form on M (in general, there
is no canonical volume associated to a sub-Riemannian structure, although
intrinsic choices, such as the Popp volume, can be considered). Then let Δs

be the associated sub-Laplacian (defined as the divergence of the horizontal
gradient). In general, if v1, . . . , vn is a local orthonormal frame for D, then
the sub-Laplacian will be locally given by

∑
v2i plus a first-order term.

We are interested in the case when the sub-Laplacian turns out to be a
rank-n martingale with respect to the ambient Riemannian metric. (In our
earlier notation, we will then have Λt = DXt .) This will happen if, at any
point, we can find normal coordinates such that the sub-Laplacian can be
written as a sum of squares of coordinate vector fields at that point. (This
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is an Ito-type sum of squares condition, as opposed to the more common
Stratonovich-type sum of squares condition, in which one assumes that the
sub-Laplacian is a sum of squares of smooth vector fields, such as the vi as
above, on an open set.) While this will certainly not be true in general, one
can consider Carnot groups or unimodular Lie groups (as discussed in [1]).

At any rate, if the diffusion associated to 1
2Δs is a rank-n martingale (on M

with the original Riemannian metric), then by assumption our results apply
in this situation.

Corollary 6. Let M be a Cartan–Hadamard manifold of dimension
m ≥ 3. With 2 ≤ n < m, let the rank-n distribution D (as above) with the
restriction metric be a sub-Riemannian structure on M , and suppose this
sub-Riemannian structure is given a volume form such that the associated
sub-Laplacian Δs gives rise to a rank-n martingale. Then if either of the
following two conditions hold:

(1) n = 2 and, in polar coordinates around some point, M satisfies the cur-
vature estimate

K(r, θ,Σ)≤− 1 + 2ε

r2 log r
for r > R, and for all θ and Σ � ∂r

for some ε > 0 and R> 1, or
(2) n≥ 3,

we have that the diffusion associated to 1
2Δs (from any initial point) is tran-

sient.

5. The angular component

In the final two sections, we consider the asymptotic behavior of θt = θ(Xt),
and in particular, its relationship to the existence of non-constant bounded
harmonic functions on minimal submanifolds and sub-Riemannian structures
of the above type.

Because the asymptotic behavior of θt is only interesting in the case when
Xt is transient, in the remainder of the paper we assume that Xt is transient.

5.1. The negatively pinched case. As already mentioned, angular con-
vergence results for martingales of bounded dilation (which include rank-n
martingales with n ≥ 2 as a special case) have been given in the context of
the stochastic approach to harmonic maps. In particular, Theorem 2.3.5 of
[13], applied to our context, gives the following.

Theorem 7. If M is a Cartan–Hadamard manifold of dimension m ≥ 3
and with sectional curvatures pinched between two negative constants, and Xt

is a rank-n martingale on M with 2≤ n <m, then θt = θ(Xt) converges, al-
most surely, as t→ ζ. Further, the distribution of θ(ζ) on S

m−1 is “genuinely
random.”
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Let Xt be either Brownian motion on a minimal submanifold or the natural
diffusion on a sub-Riemannian structure. Suppose that E is an event in the
invariant (or tail) σ-algebra. Then it is well known that if, for any x on the
minimal submanifold or the sub-Riemannian manifold, we let

h(x) = P(E) given that X0 = x,

then h is a harmonic function, on either the minimal submanifold or the sub-
Riemannian manifold (with respect to the sub-Laplacian), which is clearly
bounded. If E is non-trivial, then h will be non-constant. The previous theo-
rem implies that, under these hypotheses, there will be a non-trivial invariant
event of the form θζ ∈ U ⊂ S

m−1 for some U . If we apply this to the case of
sub-Riemannian structures, we immediately get the following.

Corollary 8. Suppose that M is Cartan–Hadamard manifold of dimen-
sion m ≥ 3, and that M has all sectional curvatures bounded above and be-
low by some negative constants. Consider a rank-n sub-Riemannian structure
on M , with the restriction metric and a volume form such that Δs gives rise to
a rank-n martingale. Then we have that M admits a non-constant, bounded,
Δs-harmonic function.

Similarly, applying this result to minimal submanifolds gives Corollary 2.

5.2. Convergence of the martingale part. While the case of negatively
pinched curvature is quite natural, one would expect that the upper curvature
bound could be improved to allow some decay. Indeed, Goldberg and Mueller
[7] indicate that allowing sub-quadratic curvature decay is possible. In order
explore how much further one can go, we start by analyzing the martingale
part of the angular process θt, in the situation when n≥ 3.

We can write the metric on M in polar coordinates around some pole p as

follows. Choose a point θ̂ ∈ S
m−1 and let U be the open hemisphere around θ̂.

Then the metric on polar coordinates on (0,∞)×U is given by

dr2 +

m−1∑
i,j=1

gi,j(r, θ1, . . . , θm−1)dθi ⊗ dθj ,

where (θ1, . . . , θm−1) are normal coordinates on U around θ̂ (with respect to
the usual metric on S

m−1), and the gi,j are smooth, positive functions on
(0,∞) × U . Of course, this expression is most significant at points of the

form (r, θ̂) = (r,0, . . . ,0), since that is where the spherical normal coordinates
are centered. At such a point, the matrix [gi,j ] gives the inner products of
the natural Jacobi fields. To be more precise, let γ be the ray (from p)

through (r, θ̂) and let ji(r) be the Jacobi field along γ determined by the
initial conditions ji(0) = 0 and j′i(0) = ∂θi (and note that {∂θ1 , . . . , ∂θm−1}
gives an orthonormal basis for the subspace of TpM perpendicular to γ).
Then 〈ji(r), jj(r)〉 = gi,j(r,0, . . . ,0). Thus, the Rauch comparison theorem
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shows that we can bound the square roots of the eigenvalues of [gi,j ] from

below by a function Ĝ, and from above by a function Ǧ, as in Section 2.2.
Now we let w̃i,t be the component of vi,t orthogonal to ∂r (that is, the

component in the tangent space to {r = rt}). Further, suppose, as before,
that we rotate our vector fields at some instant so that v2,t, . . . , vn,t are per-
pendicular to ∂r, and we let ϕt be the angle between v1,t and ∂r, so that
〈v1,t, ∂r〉= cosϕt. Then, at this instant, w̃2,t, . . . , w̃n,t all have length 1, while
w̃1,t has length sinϕt. Next, we let wi,t be the image of w̃i,t on S

m−1 with the
usual (round) metric given by the identification of Sm−1 with {r = rt} coming
from the polar coordinates. The inner products of the wi,t can be computed
from [gi,j(rt, θt)]

−1, but we don’t need the precise details. The wi,t won’t, in
general, be orthogonal, but they will be independent (except possibly for w1,t

if sinϕ= 0). More to the point, for Ĝ or Ǧ as above, we see that

|w1,t| ≤
| sinϕt|
Ĝ(rt)

and |wi,t| ≤
1

Ĝ(rt)
for i ∈ {2, . . . , n}, or

(8)

|w1,t| ≥
| sinϕt|
Ǧ(rt)

and |wi,t| ≥
1

Ǧ(rt)
for i ∈ {2, . . . , n}.

Next, Ito’s rule show the process θt satisfies the SDE

(9) dθt =
n∑

i=1

wi,t dW
i
t + {some vector-valued process}dt.

In other words, we’ve identified the martingale part of θt. In general, the drift
term will depend on the derivative of the metric, and we won’t have pointwise
control of it. (Although see [10] for an approach to angular convergence of
Brownian motion on a Cartan–Hadamard manifold.) In this section, we focus
on just the martingale part.

We’re interested in determining conditions under which “the martingale
part converges.” We put this in quotes because θt takes values in S

m−1, not a
vector space, and thus there is no decomposition of θt as a (local) martingale
plus a process of (locally) bounded variation (rather, the Ito SDE above gives
a “differential” version of such a decomposition). Nonetheless, the quadratic
variation, which is given by the increasing process

(10) 〈θ〉t∧ζ =

∫ t∧ζ

0

n∑
i=1

|wi,s|2 ds,

remains the object of interest. If we consider the anti-development of θt,
whether the martingale part converges or not is given by whether the total
quadratic variation (that is, 〈θ〉ζ ∈ (0,∞]) is finite. We won’t make use of the
anti-development here (though see Section 2.3 of [9]) for details, so we don’t
explore this further. For our purposes, it’s more direct to take the following
point of view. Let y1, . . . , ym be standard Euclidean coordinates on R

m, and
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thus also functions on S
m−1 via the standard embedding. Then all of the yj

have gradient bounded by 1 on S
m−1. It follows that if 〈θ〉ζ is finite, then

each yj(θt) has finite quadratic variation and hence convergent martingale
part, and further, each yj(θt) has quadratic variation bounded above by 〈θ〉ζ .
In the other direction, there is a positive constant κ(m− 1), depending only
on the dimension, such that for any unit vector v at any point of Sm−1, there
is a j ∈ {1, . . . ,m} such that |〈v,∇yj〉| ≥ κ(m − 1) (where the gradient and
inner product are taken on S

m−1 with the standard metric, of course). It
follows from this (and the pigeonhole principle) that if 〈θ〉ζ is infinite, so is
the quadratic variation of at least one of the yj,t, and this yj,t thus has non-
convergent martingale part. (That a martingale on a Riemannian manifold
converges if and only if its quadratic variation is finite is true in general, see
[4] and [21].)

Before proving our next theorem, we make one technical observation. Sup-
pose we show that, for any β > 0, there exists B̃ > 0 and ρ > B̃ such that

E
[
〈θ〉σB̃∧ζ

]
< β

whenever r0 > ρ. Then this is enough to prove that θt has finite quadratic
variation almost surely, in the sense just described. Further, for any δ > 0, we
can find ρ (perhaps larger than before), such that

P
(
〈θ〉ζ > δ

)
> 1− δ,

whenever r0 > ρ. To see this, recall that we’re assuming that Xt is transient,
and thus for any B̃, we can make P(σB̃ < ∞) as close to zero as we wish
by making r0 large. Since our previous observations apply (up to a set of
probability zero) on the set {σB̃ =∞}, we see that 〈θ〉ζ is almost surely finite
on {σB̃ =∞}. Further, for any δ > 0, we can choose ρ so that

P
(
σB̃ =∞ and 〈θ〉σB̃∧ζ > δ

)
> 1− δ

whenever r0 > ρ (here we’ve used Markov’s inequality to pass from a bound on
the expectation of 〈θ〉· to a bound on the probability it exceeds some level). So
the only issue that remains is seeing that θt also has finite quadratic variation
on the set {σB̃ <∞}. Again by transience, if Xt hits {r = B̃}, then it almost
surely hits, say, {r = ρ+1} at some later time. At this point, the same result

applies, so that rt stays above B̃ at all future times, and thus 〈θ〉· stays finite,
with probability at least 1−δ. Since having finite quadratic variation is a tail-
measurable property, by iterating this argument, we see that 〈θ〉ζ is almost
surely finite, as desired.

Theorem 9. Suppose that M is Cartan–Hadamard manifold of dimension
m≥ 4. Let (r, θ) be polar coordinates around some p, and let Xt be a rank-n
martingale, for 3≤ n <m. Then if M satisfies the curvature estimate

K(r, θ,Σ)≤−
1
2 + ε

r2 log r
when r > R, and for all θ and Σ � ∂r
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for some ε > 0 and R > 1, we have that θt = θ(Xt) almost surely has finite
quadratic variation. Further, for any 0< δ < 1, there exists ρ (depending only
on M and n) such that, if r0 > ρ, then 〈θ〉ζ < δ with probability at least 1− δ.

Proof. First note that Theorem 5 implies that Xt is transient.
Without loss of generality, we can assume that ε < 1/2. Then the estimates

in Section 2.5 show that, for some c > 0 and B > 1, we can take

Ĝ(r) = cr(log r)
1
2+ε for r > B.

Thus equation (10) and inequality (8) imply that

E
[
〈θ〉σB̃∧ζ

]
≤ n

c2
E

[∫ σB̃

0

1

r2s(log rs)
1+2ε

ds

]

for any B̃ > B. Choose β > 0. In light of the discussion preceding the theorem,
it’s enough to show that for some B̃ ≥B, there exists ρ > B̃ such that

E

[∫ σB̃∧ζ

0

1

r2s(log rs)
1+2ε

ds

]
< β,

whenever r0 > ρ.
Recall that, in this case,

vt >
3
4 (n− 1 + sin2ϕ)

2rt

(
1 +

1
2 + ε

log r

)
for rt ≥B.

Then for α > 0, Ito’s rule plus the bound on vt gives (for rt >B)

d

(
−1

(log rt)α

)
t

=
α cosϕt

r(log r)1+α
dWt + γt dt where

γt ≥
α

2r2t (log rt)
1+α

×
[
3

4

(
1 +

1
2 + ε

log rt

)(
n− 1 + sin2ϕt

)
− cos2ϕt

(
1 +

α+ 1

log rt

)]
.

We now take α < 2ε. Then using that n≥ 3, it’s easy to see that we can find
B̃ (depending only on α and ε) such that the quantity in brackets in the above

expression is at least 1/4 whenever rt > B̃. Since we also have 1+α < 1+2ε,
we see that for some D> 0,

E

[∫ σB̃∧ζ

0

1

r2s(log rs)
1+2ε

ds

]
<DE

[∫ σB̃∧ζ

0

γs ds

]
.

We further have, using a standard dominated converge argument, that

E

[∫ σB̃∧ζ

0

γs ds

]
= E

[
−1

(log rσB̃∧ζ)α

]
− −1

(log r0)α

=
1

(log r0)α
− 1

(log B̃)α
P(σB̃ <∞),
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where in the last line we’ve used that limt→ζ rt =∞ to see that 1/(log rσB̃∧ζ)
α

is zero on the set where σB̃ =∞. Also note that it’s the first line where our
central idea of controlling an integral along paths by recognizing it as the drift
of a semi-martingale (with well-controlled asymptotic behavior) is used. At
any rate, the last line of the above is certainly less than 1/(log r0)

α (recall

that B̃ > 1), and that we can make the last line arbitrarily small by making

r0 large. Thus it’s clear that we can find ρ > B̃ such that

E

[∫ σB̃∧ζ

0

1

r2s(log rs)
1+2ε

ds

]
< β,

whenever r0 > ρ. This completes the proof. �

To get the complementary result for infinite quadratic variation of θt, we
again make a preliminary observation. Suppose we show that there exists
B̃ > 0 such that

〈θ〉σB̃∧ζ =∞ almost surely on the set {σB̃ =∞},

whenever r0 > B̃. Then this is enough to prove that θt has infinite quadratic
variation, almost surely. To see this, note that our earlier discussion shows
that θt has infinite quadratic variation on {σB̃ =∞} (up to a set of probability
zero), and thus we need to consider the set {σB̃ < ∞}. The point is that,
analogously to the above, transience implies that almost every path that hits
{r = B̃} subsequently hits {r = r0}. From there, the same result applies, so

that paths which don’t hit {r = B̃} again almost surely have the property that
θt has infinite quadratic variation. Iterating this argument (and noting that

almost every path eventually has a last exit time from {r ≤ B̃}), gives the
desired result.

Theorem 10. Suppose that M is Cartan–Hadamard manifold of dimension
m≥ 4. Let (r, θ) be polar coordinates around some p, and let Xt be a rank-n
martingale, for 3≤ n <m. Then if M satisfies the curvature estimate

K(r, θ,Σ)≥− 1/2

r2 log r
when r > R, and for all θ and Σ � ∂r

for some R > 1, we have that θt = θ(Xt) almost surely has infinite quadratic
variation.

Proof. Again, Theorem 5 implies that Xt is transient.
Using the estimates of Section 2.5, we have that, for some c > 0 and B >R,

we can take

Ǧ(r) ≤ cr(log r)
1
2 (log(2) r)

1
2 for r > B, and

3

4

n− 1 + sin2ϕt

2rt
≤ vt ≤

5

4

n− 1 + sin2ϕt

2rt
for rt >B.
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Hence, equation (10) and inequality (8) imply that

〈θ〉σB̃∧ζ ≥
n− 1

c2

∫ σB̃∧ζ

0

1

r2s(log rs)(log(2) rs)
ds.

Thus, in light of the discussion before the theorem, it’s enough for us to show
that for some B̃ > B,∫ σB̃∧ζ

0

1

r2s(log rs)(log(2) rs)
ds=∞ almost surely on the set {σB̃ =∞},

whenever r0 > B̃.
Note that

(log(3))
′(r) =

1

r(log r)(log(2) r)
and

(log(3))
′′(r) =

−1

r2(log r)(log(2) r)

(
1 +

1

log r
+

1

(log r)(log(2) r)

)
.

Then Ito’s rule plus the two-sided bound on vt lets us compute that, for
rt >B,

d(log(3))tr =
cosϕt

rt(log rt)(log(2) rt)
dWt + γt dt where

3
4 (n− 1 + sin2ϕt)− cos2ϕt(1 +

1
log rt

+ 1
(log rt)(log(2) rt)

)

2r2t (log rt)(log(2) rt)
≤ γt

≤
5
4 (n− 1 + sin2ϕt)− cos2ϕt(1 +

1
log rt

+ 1
(log rt)(log(2) rt)

)

2r2t (log rt)(log(2) rt)
.

Observe that we can find B̃ > B such that the lower bound on γt is positive
when rt > B̃. Thus log(3) rt is a (local) sub-martingale (on the set where

r > B̃). Further, the upper bound implies that, perhaps after increasing B̃,
we can find D> 0 such that

1

D

∫ σB̃∧ζ

0

γs ds≤
∫ σB̃∧ζ

0

1

r2s(log rs)(log(2) rs)
ds,

whenever r0 > B̃.
By the transience of rt, it follows that log(3) rσB̃∧ζ =∞ almost surely on

the set {σB̃ =∞} (we assume that r0 > B̃). Now a (local) submartingale can
diverge to ∞ only if its bounded variation part diverges to infinity (up to a set
of probability zero). This follows from the fact that the martingale part either
converges (if the quadratic variation remains bounded) or hits every real value
infinitely often (if the quadratic variation increases without bound), up to a
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set of probability zero. Thus,∫ σB̃∧ζ

0

γs ds=∞ almost surely on the set {σB̃ =∞},

whenever r0 > B̃. Since 1/D is just a positive constant, we’ve succeeded in
showing that∫ σB̃∧ζ

0

1

r2s(log rs)(log(2) rs)
ds=∞ almost surely on the set {σB̃ =∞},

whenever r0 > B̃. This completes the proof. �

6. Angular convergence in the radially symmetric case

As noted, while we have good control over the convergence or non-
convergence of the martingale part of the angular process θt, in general the
drift term will not be so easy to handle. If we restrict our attention to the ra-
dially symmetric case, the expression for the drift becomes more manageable.
Indeed, for the remainder of the paper, we assume the M is radially symmetric
and determine conditions under which the angular process converges.

6.1. Basic computations. If M is radially symmetric around a point p,
we can write the metric on M in polar coordinates around p as

dr2 +G2(r)dθ2 where dθ2 is the standard metric on S
m−1

for a (smooth) function G : [0,∞) → [0,∞) with G(0) = 0 and G′(0) = 1.
Our notation is consistent in that G gives the length of the natural Jacobi
fields, is a solution to the (scalar) Jacobi equation for the radially symmetric
sectional curvature function K(r) = K(r, θ,Σ) for all θ and Σ � ∂r, and is

bounded above and below by the appropriate comparison functions Ǧ and Ĝ,
respectively.

If we let wi,t be as above, we note that now the wi,t are orthogonal (except
for w1,t if sinϕt = 0), and we have

|w1,t|=
| sinϕt|
G(rt)

and |w2,t|= · · ·= |wn,t|=
1

G(rt)
.

Of course, inequality (8) still holds.
The next step in computing the drift of θt is to compute the Hessian of θ, in

an appropriate sense. If we choose some θ̂ ∈ S
m−1 and again let (θ1, . . . , θm−1)

be normal coordinates on S
m−1 around θ̂, then at any point (r, θ̂) (with r > 0),

the metric is given in these coordinates by the diagonal matrix⎡
⎢⎢⎢⎣
1

G2(r) 0

0
. . .

G2(r)

⎤
⎥⎥⎥⎦
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up to first order. In particular, this is sufficient to compute the Christoffel

symbols at (r, θ̂), and thus also the Hessian of the coordinate functions at this
point (with respect to these coordinates).

If we use the sub/superscript r to denote the r coordinate and i to denote

the θi coordinate, then we have that (at the point (r, θ̂) with r > 0)

Γr
ii =

(
G ·G′)(r) and Γi

ir =Γi
ri =

(
G′

G

)
(r),

and all other Christoffel symbols are zero. From here we compute that the
Hessian of θi, as a bilinear form, is given by

−
(
G′

G

)
(r)(dr⊗ dθi + dθi ⊗ dr).

Assume that the process is at (r, θ̂). After potentially rotating our normal
coordinates, we can assume that w1,t = sinϕt∂θ1 . Since |∂θ1 |= 1/G(r) here,
at this instant we see that the martingale part of rt is generated by cosϕt dW

1
t

and the martingale part of θ1,t is generated by (sinϕt/G(rt))dW
1
t . Then Ito’s

rule implies that, at this instant, the drift of θ1,t is given by

−G′(rt)

G2(rt)
sinϕt cosϕt dt.

Globally, we see that θt satisfies the SDE

(11) dθt =

n∑
i=1

wi,t dW
i
t −

G′(rt)

G(rt)
cosϕtw1,t dt.

Thus the total quadratic variation of θt is given by

〈θ〉ζ =
∫ ζ

0

n− 1 + sin2ϕt

G2(rt)
dt,

although we won’t explicitly use this, since the results of the previous section
are sufficient here too. More important, the total drift (or total variation of
the bounded variation part) of θt is given by∫ ζ

0

| sinϕt cosϕt|
G′(rt)

G2(rt)
dt,

which may be infinite.
We see that, in contrast to the situation for the quadratic variation, whether

or not the total variation of the drift is finite or not depends in general on
the behavior of ϕt. Two special cases in which θt is a martingale are worth
mentioning.
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6.2. Vanishing angular drift. First, if ϕt ≡ 0, Xt is restricted to a to-
tally geodesic submanifold N of dimension n through p. In particular, we
can find normal coordinates (y1, . . . , ym) around p such that the N is the set
{yn+1 = · · · = ym = 0}, and N is simply a rotationally symmetric manifold
of dimension n with the metric given in polar coordinates by the same func-
tion G(r) as for M . Then Xt is just Brownian motion on N . (Thus we see
that Brownian motion on a radially symmetric Cartan–Hadamard manifold
is actually a special case of the above, in spite of our taking n < m in our
definition of a rank-n martingale.) The drift term in equation (11) vanishes
identically, so that the angular convergence or non-convergence of Xt is given
exactly by the conditions in Theorems 9 and 10. In light of this, it is unsur-
prising that the conditions on G in Theorems 9 and 10 are the same as those
found by March [14] for Brownian motion on radially symmetric Cartan–
Hadamard manifolds. However, the approach used to prove both of these
theorems differs from the method used to by March (and also in [9]), which
transforms the question of angular convergence to the question of whether
or not a certain one-dimensional diffusion, coming from a time-change of the
radial process, has finite lifetime (for which an answer is essentially known).
In the case of rank-n martingales, the appearance of ϕt (which functions here
mostly as a nuisance parameter) prevents us from being able to derive a sim-
ple one-dimensional diffusion, and it’s not immediately clear how to adapt
this method. Our approach gets around this, and also has the advantage of
(arguably) being somewhat more elementary. (On the other hand, this earlier
work is able to also get sharp curvature bounds in the n= 2 case, which we
don’t address here.)

The second case is when ϕ≡ π/2. Then again the drift term in equation
(11) vanishes identically, and further, the evolution of rt is deterministic. That
is, equation (2) reduces to an ODE (independent of θ), namely

drt =
n

2

G′(rt)

G(rt)
dt.

Thus Xt is supported on the (time-varying) sphere of radius r(t) that comes
from solving this ODE with the initial condition r(0) = r0 > 0 (where we
assume Xt doesn’t start at p to avoid degeneracy in the polar coordinates
and ensure that Λt is continuous). Further, in the case when n=m− 1, we
must have that Λt is the tangent plane to the sphere of radius R(t) around
p (at θt). Then we see that Xt is the inhomogeneous diffusion along the
backward mean curvature flow starting from the sphere of radius r0 around p
(and where the diffusion is started at (r0, θ0)). Further, θt is a time-changed
Brownian motion on S

m−1, where the time-change factor is a function of the
radius r(t). Finally, θt converges or not (corresponding to whether or not the
changed time remans bounded) according to Theorems 9 and 10.
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6.3. Results for rank-n martingales. When the drift does not vanish,
the situation is more complicated. Not only does the finiteness of the total
variation of the drift depend on ϕt, as already mentioned, but (focusing our
attention just on the drift) a path on the sphere of locally bounded variation
that accumulates infinite total variation over its lifetime may or may not
converge, depending on the particular “cancellations” that occur. The upshot
of these considerations is that we cannot give as complete a description of the
behavior of θt as we can for its martingale part alone.

We are able to give curvature bounds under which θt must converge, re-
gardless of the behavior of ϕt, and doing so is the goal of this section. This
is clearly a result of the same type as Theorem 7. The difference is that we
allow some quadratic decay of the upper curvature bound, which goes be-
yond the sub-quadratic decay mentioned by Goldberg and Mueller [7]. On
the other hand, we only consider the radially symmetric case (and where
n≥ 3). It would not be surprising if a similar result held in more generality,
but restricting ourselves to the rotationally symmetric case also allows us to
continue to use the sort of elementary stochastic techniques we have employed
through the paper.

We require a preliminary lemma.

Lemma 11. Let M be an m-dimensional Cartan–Hadamard manifold that
is rotationally symmetric about some point p, let r be the distance from p (as
usual), and let (x1, . . . , xm) be any set of normal coordinates around p. If
Xt is a rank-n martingale, for 2 ≤ n < m, with an initial distribution (not
necessarily a point mass) such that P(x1(X0) > 0 and r(X0) < A) > 0, for
some A> 0, then for any B >A

P
(
x1(XσB

)> 0 and σB <∞
)
> 0,

where σB is the first hitting time of the set {r =B}.

Proof. By radial symmetry, the hypersurface {x1 = 0} is totally geodesic.
Let ρ be the signed distance from {x1 = 0}, with ρ > 0 corresponding to
x1 > 0. Because all the sectional curvatures are non-negative, on the set
{ρ > 0}, the Hessian of ρ is bounded from below by 0 (which is the analogous
quantity for the comparison manifold, Euclidean space). In particular (writing
ρt = ρ(Xt) as usual), if ρ0 > 0 then ρt is a sub-martingale until the first hitting
time of {ρ = 0}. Denote this hitting time by η. Then if η is almost surely
finite, E[〈ρ〉η] must be infinite, simply by comparison with a (time-changed)
one-dimensional Brownian motion.

Now by conditioning on the event {x1(X0) > 0 and r(X0) < A}, we can
assume that this holds almost surely, without loss of generality. Then we
know from Lemma 4 that σB <∞ almost surely. Moreover, we showed, in
the proof of Lemma 4, that the expectation of σB is finite (in particular,
less than B2/n). Because ρ is a distance function, 〈ρ〉t∧σB

= t ∧ σB , and
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thus E[〈ρ〉σB
]<∞. Comparing this to the results for η above, it follows that

η > σB with positive probability. Since η > σB implies that x1(XσB
)> 0 (just

by the definitions of ρ and η), the lemma is now proved. �
Note that, applied to minimal submanifolds, this lemma gives a type of

maximum principle, relative to minimal hypersurfaces of the form {y1 = 0}.
Theorem 12. Suppose that M is Cartan–Hadamard manifold of dimension

m≥ 4, and that M is radially symmetric around some point p. Let (r, θ) be
polar coordinates around p, and let Xt be a rank-n martingale, for 3≤ n <m.
Further, assume that M satisfies the curvature estimate

−a2 ≤K(r, θ,Σ)≤−2 + ε

r2
when r > R, and for all θ and Σ � ∂r,

for some a > 0, ε > 0, and R > 1. Then we have that θt = θ(Xt) converges,
almost surely, as t→ ζ, and this limit θζ is not a point mass. Further, for any
0 < δ < 1, there exists ρ (depending only on M and n) such that, if r0 > ρ,
then θζ ∈Bδ(θ0)⊂ S

m−1 with probability at least 1− δ.

Proof. By Theorem 9 and the upper curvature bound, we know that the
martingale part of θt almost surely has finite quadratic variation and that this
quadratic variation can be made less than δ0 ∈ (0,1) with probability at least
1− δ0 by taking r0 large enough. We also see that Xt is transient. Next, we
wish to establish the analogous result for the total variation of the drift of θt.
In light of our earlier discussion of the drift, we see that the total variation is
pathwise bounded from above by∫ ζ

0

G′

G2
(rs)ds,

and we recall that the integrand is always positive.
The constant lower curvature bound and the results of Section 2.3 imply

that, for some C > 0 depending only on a and some B >R, we have

G′

G
(r)≤C whenever r > B.

(That G′/G can be estimated from above by Ǧ′/Ǧ is just the radially sym-
metric version of the Hessian comparison theorem, see Lemma 6.4.3 of [9].)
The upper curvature bound implies that, after possibly increasing B, for some
c > 0, we have both

1

G
(r)<

c

r2+δ1
for r > B and vt >

n− 1 + sin2ϕt

rt
for rt >B,

where δ1 depends on ε as in Section 2.5. One consequence is that

G′

G2
(rt)<

Cc

r2+δ1
for r > B.

Recall also that G′ > 0, and thus G′/G2 is always positive.
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Further, Ito’s rule gives, for rt >B,

d

(
−1

log r

)
t

=
cosϕt

r(log r)2
dWt + γt dt where

γt =
vt

r(log r)2
− cos2ϕt

2r2(log r)2

[
1 +

2

log r

]
.

Then the bound on vt and the assumption that n≥ 3 imply that, after possibly
increasing B,

γt ≥
1

r2(log r)2

{
n− 1 + sin2ϕt −

cos2ϕt

2

[
1 +

2

log r

]}

>
1

r2(log r)2
for r > B.

Thus, after possibly increasing B again, we have

γt >
Cc

r2+δ1
for r > B.

Then, just as in the proof of Theorem 9, we have, for any r0 >B,

E

[∫ σB∧ζ

0

G′

G2
(rs)ds

]
< E

[∫ σB∧ζ

0

γs ds

]

=
1

log r0
− 1

logB
P(σB <∞).

This last line can be made arbitrarily close to zero by taking r0 large. Thus
(again as in the proof of Theorem 9) the total variation of the drift of θt is
almost surely finite and, for any δ0 ∈ (0,1), we can find ρ >B (depending only
on M and n) such that if r0 > ρ, the total variation of the drift of θt is less
than δ0 with probability at least 1− δ0.

Next, we wish to see that θt converges almost surely. If we again let
y1, . . . , ym be standard Euclidean coordinates on R

m, and thus also functions
on S

m−1 via the standard embedding, all of the yi have bounded gradient and
bounded Hessian on S

m−1. It follows that yi(θt) has finite quadratic variation
and finite drift (for each i), and thus each yi(θt) converges almost surely (as
t→ ζ). So θt converges almost surely to some θζ ∈ S

m−1. Similarly, for any

δ̃ ∈ (0,1), it’s clear that if the quadratic variation and total variation of the
drift of θt are both small enough with high enough probability, then yi(θt)

stays within distance δ̃ of yi(θ0) with probability at least 1− δ̃. Then it follows
from our earlier estimates that for any 0 < δ < 1, there exists ρ (depending
only on M and n) such that, if r0 > ρ, then θζ ∈ Bδ(θ0) with probability at
least 1− δ, as desired.

Finally, to prove that θζ is not a point mass, we proceed by contradiction.

Namely, assume that θζ = θ̂, for some θ̂ ∈ S
m−1, almost surely. At any finite

time τ > 0, equation (11) implies that θτ cannot be a point mass. Thus,
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we can find normal coordinates (x1, . . . , xm) around p such that x1(r, θ̂)< 0
whenever r > 0 and x1(Xτ )> 0 with positive probability. Note that {x1 = 0}
corresponds to a great circle in the sphere at infinity, and thus the distance,

in S
m−1, between θ̂ and {x1 = 0} is positive (and θ̂ is in the “negative x1”

hemisphere). Denote this distance by d. By the previous parts of the theorem,
there exists A> 0 such that, if rt ≥A, then θζ ∈Bd/2(θt) with probability at
least 1/2.

After possibly increasing A, we know that we have x1(Xτ ) > 0 and
r(Xτ )<A with positive probability. Thus, Lemma 11 implies that
x1(XσA

) > 0 with positive probability; let the set of such paths be denoted

by S. Observe that for paths in S, the S
m−1-distance between θσA

and θ̂
is at least d. Further, by our choice of A, P(θζ ∈ Bd/2(θσA

)|S) ≥ 1/2, and

then by our choice of d and S, P(θζ /∈Bd/2(θ̂)|S)≥ 1/2. Since S has positive

probability, this contradicts our assumption that θζ = θ̂ almost surely, and
this contradiction finishes the proof. �

6.4. Geometric consequences. The geometric implications of Theorem 12
are not obvious in every context (such as for ancient solutions of the mean
curvature flow). Nonetheless, there are some things we can say.

First, again consider a rank-n sub-Riemannian structure on M , with the
restriction metric and a volume form such that Δs gives rise to a rank-n mar-
tingale (as discussed in Section 4.3). Then let Xt be the associated diffusion.
In this case, Xt is Markov (indeed, the vi,t in equation (1) can and should be
chosen to be locally smooth, so that the equation has a unique solution by
standard results for SDEs) and has a positive density with respect to the vol-
ume form at any positive time (by a famous result of Hörmander and later via
the Malliavin calculus). Assume that M (and the sub-Riemannian structure)
satisfy the hypotheses of Theorem 12. We now let U be an open, nonempty
subset of S

m−1 such that the complement U c has non-empty interior, and
let p(y) be the probability that the diffusion, started from any y =X0 ∈M ,
has θζ ∈ U . Then p is a non-constant, bounded Δs-harmonic function on M .
(The Δs-harmonicity is a consequence of the facts that Xt is Markov and the

event θζ ∈ U is tail-measurable.) Indeed, for θ̃ ∈ U , we see that p(r̃, θ̃)→ 1

as r̃ → ∞, and similarly, for θ̃ in the interior of U c, p(r̃, θ̃) → 0 as r̃ → ∞.
These observations form the basis for a probabilistic approach to a version
of the Dirichlet problem at infinity, relative to the sphere at infinity deter-
mined by the original Riemannian structure on M (see Proposition 6.1.1 of
[9]). However, we don’t pursue this any further (as already mentioned) and
instead simply give the following corollary of Theorem 12.

Corollary 13. Suppose that M is Cartan–Hadamard manifold of dimen-
sion m ≥ 4, and that M is radially symmetric around some point p. Let
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(r, θ) be polar coordinates around p. With 3≤ n <m, consider a rank-n sub-
Riemannian structure on M , with the restriction metric and a volume form
such that Δs gives rise to a rank-n martingale. Then if M satisfies the cur-
vature estimate

K(r, θ,Σ)≤−
1
2 + ε

r2 log r
when r > R, and for all θ and Σ � ∂r,

for some ε > 0 and R > 1, we have that M admits a non-constant, bounded,
Δs-harmonic function.

Similar logic shows that, under the same hypotheses on curvature, an n-
dimensional minimal submanifold N will admit a non-constant, bounded, har-
monic function (where the harmonicity is with respect to the induced Lapla-
cian on N , of course). Here, the relationship between harmonic functions and
the sphere at infinity (of M ) is less straightforward, since the accumulation
points of N in this sphere at infinity will generally have a more complicated
structure. However, in order to establish the existence of a non-constant,
bounded, harmonic function, we need only show there is some set U as above
such that we can always find points with θ-coordinates in each of U and the
interior of U c for arbitrarily large r-coordinates. The only way we could fail

to be able to find a set U as desired is if there were some θ̂ such that for all
sequences xi ∈ N with r(xi) → ∞, we had θ(xi) → θ̃. However, this would

imply that θζ = θ̂ for every path (since N is transient), contradicting the fact
that θζ is not a point mass. With this in mind, we have proven Corollary 3.
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MR 1411268

[7] S. I. Goldberg and C. Mueller, Brownian motion, geometry, and generalizations of

Picard’s little theorem, Ann. Probab. 11 (1983), no. 4, 833–846. MR 0714949

[8] A. Grigor’yan, Analytic and geometric background of recurrence and non-explosion of
the Brownian motion on Riemannian manifolds, Bull. Amer. Math. Soc. (N.S.) 36

(1999), no. 2, 135–249. MR 1659871

http://www.ams.org/mathscinet-getitem?mr=2502528
http://www.ams.org/mathscinet-getitem?mr=1452557
http://www.ams.org/mathscinet-getitem?mr=1996771
http://www.ams.org/mathscinet-getitem?mr=0716974
http://www.ams.org/mathscinet-getitem?mr=1176721
http://www.ams.org/mathscinet-getitem?mr=1411268
http://www.ams.org/mathscinet-getitem?mr=0714949
http://www.ams.org/mathscinet-getitem?mr=1659871


MARTINGALES ARISING FROM MINIMAL SUBMANIFOLDS, ETC. 357

[9] E. P. Hsu, Stochastic analysis on manifolds, Graduate Studies in Mathematics, vol. 38,
Amer. Math. Soc., Providence, RI, 2002. MR 1882015

[10] E. P. Hsu, Brownian motion and Dirichlet problems at infinity, Ann. Probab. 31
(2003), no. 3, 1305–1319. MR 1988474

[11] I. Karatzas and S. E. Shreve, Brownian motion and stochastic calculus, 2nd ed., Grad-
uate Texts in Mathematics, vol. 113, Springer, New York, 1991. MR 1121940

[12] W. S. Kendall, The radial part of a Γ-martingale and a non-implosion theorem, Ann.
Probab. 23 (1995), no. 2, 479–500. MR 1334158

[13] W. S. Kendall, From stochastic parallel transport to harmonic maps, New directions
in Dirichlet forms, AMS/IP Stud. Adv. Math., vol. 8, Amer. Math. Soc., Providence,
RI, 1998, pp. 49–115. MR 1652279

[14] P. March, Brownian motion and harmonic functions on rotationally symmetric man-
ifolds, Ann. Probab. 14 (1986), no. 3, 793–801. MR 0841584

[15] S. Markvorsen and V. Palmer, Transience and capacity of minimal submanifolds,
Geom. Funct. Anal. 13 (2003), no. 4, 915–933. MR 2006562

[16] R. Montgomery, A tour of subriemannian geometries, their geodesics and applications,
Mathematical Surveys and Monographs, vol. 91, Amer. Math. Soc., Providence, RI,

2002. MR 1867362
[17] R. W. Neel, On parabolicity and area growth of minimal surfaces, J. Geom. Anal. 23

(2013), no. 3, 1173–1188. MR 3078348
[18] R. Schoen and S. T. Yau, Lectures on differential geometry, Conference proceedings

and lecture notes in geometry and topology, I, Lecture notes prepared by Wei Yue Ding,
Kung Ching Chang [Gong Qing Zhang], Jia Qing Zhong and Yi Chao Xu, International

Press, Cambridge, MA, 1994. Translated from the Chinese by Ding and S. Y. Cheng,
preface translated from the Chinese by Kaising Tso. MR 1333601

[19] H. M. Soner and N. Touzi, A stochastic representation for mean curvature type geo-
metric flows, Ann. Probab. 31 (2003), no. 3, 1145–1165. MR 1988466

[20] D. W. Stroock, An introduction to the analysis of paths on a Riemannian manifold,
Mathematical Surveys and Monographs, vol. 74, Amer. Math. Soc., Providence, RI,

2000. MR 1715265
[21] W. A. Zheng, Sur la convergence des martingales dans une variété riemannienne,
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