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BAIRE CLASSES OF L1-PREDUALS AND C∗-ALGEBRAS

PAVEL LUDVÍK AND JIŘÍ SPURNÝ

Abstract. LetX be a separable real or complex L1-predual such
that its dual unit ball BX∗ has the set extBX∗ of its extreme
points of type Fσ. We identify intrinsic Baire classes of X with

the spaces of odd or homogeneous Baire functions on extBX∗ .

Further, we answer a question of S. A. Argyros, G. Godefroy

and H. P. Rosenthal by showing that there exists a separable

C∗-algebra X (the so-called CAR-algebra) for which the second

intrinsic Baire class of X∗∗ does not coincide with the second
Baire class of X∗∗.

1. Introduction

A real (or complex) Banach space X is called an L1-predual (sometimes a
Lindenstrauss space) if its dual X∗ is isometric to a real (or complex) space
L1(X,S, μ) for a measure space (X,S, μ). Real L1-preduals were in depth
investigated in papers [6], [9], [10], [3], [18], [25], [11], [26], [12], [4] or [5]. The
complex variant of L1-preduals was studied for example, in [14], [28], [20],
[29], [8] or recently, in [27]. It has turned out that a real Banach space V is
an L1-predual if and only if its dual unit ball BV ∗ satisfies a “simplex-like”
condition (see [19]). A complex version of this “simplex-like” characterization
was provided by Effros in [7]. It is mentioned in this paper that “we have
reason to believe that this result will make theory of complex Lindenstrauss
spaces as accessible as that for real spaces.”
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The goal of our paper is to support this belief by results on real and complex
L1-predual spaces and their Baire classes. The significance of Effros’s char-
acterization becomes apparent especially from the comparison of Sections 2
and 3 of the paper in hand.

Let F denote the field R or C.
For a topological space K, let B(K,F) be the space of all Borel functions

with values in F and Bb(K,F) be the space of all bounded Borel functions
on K with values in F. For a compact (Hausdorff) topological space K, let
C(K,F) stand for the space of all continuous functions on K with values in F.
In case K is compact, we write M(K,F) for the space of Radon measures on
K and M1(K) for Radon probability measures on K.

Let H be a subset of C(K,F). Then we set B0(H) =H and, for α ∈ (0, ω1),
let Bα(H) consist of all pointwise limits of elements from

⋃
β<αBβ(H). Fur-

ther, we denote by Bα,b(H) the set of all bounded elements from Bα(H). The
symbol Bα,bb(H) denotes the inductive families created by means of pointwise
limits of bounded sequences of lower classes.

If we start the inductive procedure from the space of all continuous func-
tions, we write simply Bα(K,F) and Bα,b(K,F) for the obtained spaces of
Baire-α functions. Then we have Bα,b(K,F) = Bα,bb(K,F). Let us remind
that for a metrizable K holds Bb(K,F) =

⋃
α<ω1

Bα,b(K,F). Having started

with the space A(K,F) of all continuous affine functions on a compact con-
vex set K in a locally convex space, we obtain spaces Aα(K,F), Aα,b(K,F)
and Aα,bb(K). As a consequence of the uniform boundedness principle we
get Aα,bb(K,F) = Aα,b(K,F) = Aα(K,F) (see, e.g., [24, Lemma 5.36]) and
elements of this set we call functions of affine class α.

If X is a Banach space over F and BX∗ is its dual unit ball endowed
with the weak* topology, X is isometrically embedded in C(BX∗ ,F) via the
canonical embedding. We recall definitions of Baire classes of X∗∗ from [2].
For α ∈ [0, ω1), we call Bα(X) the intrinsic α-Baire class of X∗∗. Following
[2, p. 1044], we denote the intrinsic αth Baire class as X∗∗

α . Let us remark,
that our definition is formally slightly different from the one introduced in [2].
While in our case elements of X∗∗

α are restrictions of the uniquely determined
elements from X∗∗ to the closed unit ball BX∗ , the functions considered in
[2] are precisely these extensions. This is substantiated by Lemma 2.2.

Still considering X as a subspace of C(BX∗), the αth Baire class of X∗∗ is
defined as

X∗∗
Bα

=
{
x∗∗ ∈X⊥⊥;x∗∗|B∗

X
∈ Bα(BX∗ ,F)

}
.

It can be verified that x∗∗ ∈ X∗∗
Bα

if and only if x∗∗|BX∗ ∈ Bα(BX∗ ,F) and
x∗∗|BX∗ satisfies the barycentric calculus, that is,

x∗∗
(∫

BX∗
id dμ

)
=

∫
BX∗

x∗∗ dμ
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for every probability measure μ ∈M1(BX∗). Where no confusion can arise,
we do not distinguish between X∗∗

Bα
and X∗∗

Bα
|BX∗ .

Obviously, X∗∗
α ⊂ X∗∗

Bα
but the converse need not hold by [36, Theorem]

(for a detailed exposition on Baire classes of Banach spaces we refer the reader
to [2, pp. 1043–1048]).

The first goal of our paper is the extension of the following result by Lin-
denstrauss and Wulbert proved in [21, Theorem 1]:

Let X be a real L1-predual and T stand for the closure of extreme points
extBX∗ of BX∗ . If T = extBX∗ , then X = CΣ(T,R), where Σ(x∗) = −x∗,
x∗ ∈ T and CΣ(T,R) consists of real continuous functions on T satisfying
f(x∗) =−f(−x∗).

We show in Theorem 2.10 that for a real L1-predual X the space X∗∗
α

can be identified with the space Bα,b
σ (extBX∗ ,R) of all odd bounded Baire-α

functions in case extBX∗ is of type Fσ . An analogous result for complex
L1-predual is also valid.

The second goal of the paper is to extend to the complex setting the fol-
lowing result from [23] (see [23, Theorem 1.4]):

Let X be a real L1-predual and let x∗∗ ∈ X∗∗ satisfy f = x∗∗|BX∗ ∈
Bα(BX∗ ,R) for α ∈ [2, ω1). Then f ∈X∗∗

α+1 if α< ω0 and f ∈X∗∗
α if α≥ ω0.

Our technique allows us to fulfill our intentions at least for separable com-
plex L1-preduals. This is achieved by a complex variant of Proposition 2.6
(see Section 3 or [22, Proposition 3.3.6]).

Finally, a question posed in [2, p. 1048] asks whether for a separable C∗-
algebra X holds X∗∗

Bα
=X∗∗

α . We answer this question in the negative, more
precisely we prove using [27] and [34] that there is a separable C∗-algebra X
satisfying X∗∗

B2
�=X∗∗

2 .
Throughout the paper, we work within separable Banach spaces, since our

methods are based on the metrizability of their dual unit balls. The question
of validity of the presented results for the case of nonseparable spaces is still
open.

2. Real L1-preduals

Let K be a compact convex set in a locally convex topological vector space.
To a point x ∈K, we can assign the set M1

x(K) consisting of all probabil-
ity measures on K satisfying

∫
K
id dμ= x (equivalently, μ(h) = h(x) for any

continuous affine function h on K). A function f on K is strongly affine
if f is μ-measurable for each μ ∈ M1(K) and f(x) = μ(f) for any x ∈ K
and μ ∈ M1

x(K). Any strongly affine function is bounded (see, e.g., [24,
Lemma 4.5]).

The usual dilation order ≺ on M1(K) is defined as μ ≺ ν if and only if
μ(f)≤ ν(f) for any convex continuous function f on K. We write Mmax(K)
for the set of all probability measures on K which are maximal with respect
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to ≺. A measure μ ∈M(K,F) is boundary if either μ= 0 or the probability

measure |μ|
‖μ‖ is maximal.

For a function f ∈ C(K,R), let

f̂(x) = sup
{
μ(f);μ ∈M1

x(K)
}
.

By the Choquet representation theorem, for any x ∈ K there exists μ ∈
M1

x(K) ∩Mmax(K) (see [17, p. 192, Corollary]). The set K is termed sim-
plex if this measure is uniquely determined for each x ∈ K (see [17, §20,
Theorem 3]). In case K is metrizable, maximal measures are carried by the
Gδ set extK of extreme points of K (see [17, §20, Theorem 5]).

Let X be a real Banach space. Then σ(x∗) =−x∗, x∗ ∈BX∗ , is a natural
affine homeomorphism of BX∗ onto itself. A set B ⊂ BX∗ is symmetric if
σ(B) =B. An example of a symmetric set is the set extBX∗ . For a function
f defined on a symmetric set B ⊂BX∗ we define

(oddf)
(
x∗)= 1

2

(
f
(
x∗)− f

(
−x∗)), x∗ ∈B.

A function f defined on a symmetric subset is odd if oddf = f .
For μ ∈M(BX∗ ,R), let oddμ ∈M(BX∗ ,R) be defined as

(oddμ)(f) = μ(oddf), f ∈ C(BX∗ ,R).

The following characterization of L1-preduals is due to Lazar (see [19, The-
orem] or [17, §21, Theorem 7]):

Let X be a Banach space. Then X is an L1-predual if and only if oddμ=
oddν for each x∗ ∈BX∗ and μ, ν ∈M1

x∗(BX∗)∩Mmax(BX∗).
Let X be a real separable L1-predual and f be a bounded Borel function

f defined on a Borel subset of BX∗ containing extBX∗ . We define

(2.1) Tf
(
x∗)= (oddμ)(f), x∗ ∈BX∗ , μ ∈M1

x∗(BX∗)∩Mmax(BX∗).

Notice that Tf is well defined because of Lazar’s characterization and be-
cause oddμ, as a boundary measure, is carried by the Gδ set extBX∗ .

The described mapping T is a natural generalization of the dilation map-
ping defined in the simplicial case for example, in [24, Definition 6.7].

Proposition 2.1. Let X be a real separable L1-predual and T be defined
as in (2.1).

(a) If f ∈ C(BX∗ ,R), then Tf is Baire-1.
(b) If f ∈ Bb(extBX∗ ,R), then Tf is an odd Borel strongly affine function

on BX∗ .

Proof. Since X is separable, BX∗ is a metrizable compact convex set (see
[30, Theorems 3.15, 3.16]), and thus there exists a mapping S : BX∗ →
Mmax(BX∗) such that Sx∗ = νx∗ ∈ M1

x∗(BX∗) and the function Sf : x∗ 
→
νx∗(f) is a Baire-1 function on BX∗ for each continuous function f on BX∗

(see [35, Théoréme 1] or [24, Theorem 11.41]).
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(a) Let f ∈ C(BX∗ ,R) be given. Then oddf is a continuous function on
BX∗ and, for a fixed x∗ ∈BX∗ , we have

Tf
(
x∗)= (oddνx∗)(f) = νx∗(oddf) = S(oddf)

(
x∗).

Thus, Tf = S(oddf) is a Baire-1 function on BX∗ .
(b) Let now

F =
{
f ∈ Bb(BX∗ ,R);Tf is Borel

}
.

Then F is closed under the taking pointwise limits of bounded sequences by
the Lebesgue dominated convergence theorem and contains C(BX∗ ,R). Hence,
it contains any bounded Borel function on BX∗ .

Let f be a bounded Borel function on extBX∗ . Since extBX∗ is a Borel
set, we can consider f to be a bounded Borel function on BX∗ . Hence f ∈ F
and Tf is Borel.

Let us show that Tf is strongly affine, that is, that ν(Tf) = Tf(y∗) for each
y∗ ∈BX∗ and ν ∈M1

y∗(BX∗). Given y∗ and ν as above, let μ ∈M1(BX∗) be
defined as

μ(g) =

∫
BX∗

νx∗(g)dν
(
x∗), g ∈ C(BX∗ ,R).

If g is a convex continuous function and ĝ is its upper envelope, due to Moko-
bodzki’s maximality test (e.g., [17, §20, Theorem 2]), we have νx∗(g) = νx∗(ĝ),
x∗ ∈BX∗ , and thus

μ(ĝ) =

∫
BX∗

νx∗(ĝ)dν
(
x∗)= ∫

BX∗
νx∗(g)dν

(
x∗)= μ(g).

Hence, μ is maximal. Further, for an affine continuous function h on BX∗ we
have

μ(h) =

∫
BX∗

νx∗(h)dν
(
x∗)= ∫

BX∗
h
(
x∗)dν(x∗)= h

(
y∗
)
,

and thus μ ∈M1
y∗(BX∗). Hence, Tf(y∗) = (oddμ)(f) and it follows that

ν(Tf) =

∫
BX∗

Tf
(
x∗)dν(x∗)= ∫

BX∗
νx∗(oddf)dν

(
x∗)

= μ(oddf) = (oddμ)(f) = Tf
(
y∗
)
.

Hence, ν(Tf) = Tf(y∗) and Tf is strongly affine.
Finally, we show that Tf is odd. Since Tf is affine, it is enough to show

that Tf(0) = 0. Let x∗ be an extreme point of BX∗ . Then the combination
μ= 1

2 (εx∗ +ε−x∗) of the Dirac measures εx∗ , ε−x∗ is contained in M1
0(BX∗)∩

Mmax(BX∗). Because oddf is an odd function,

Tf(0) = (oddμ)(f) = μ(oddf) =
1

2

(
(oddf)

(
x∗)+ (oddf)

(
−x∗))= 0.

Hence, Tf is odd. �
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Lemma 2.2. Let X be a real Banach space and let f be an odd strongly
affine function on the closed unit ball BX∗ . Then f is a restriction of a
uniquely determined element of X∗∗.

Proof. This simple observation is based on the fact that a strongly affine
function f on BX∗ is bounded (e.g., [24, Lemma 4.5]). Thus, the uniquely
defined linear extension of f is an element of X∗∗. �

Proposition 2.3. Let X be a real separable L1-predual and f ∈
Bb(extBX∗ ,R). If h is an odd strongly affine function on BX∗ extending f ,
then h= Tf .

Proof. The function f , being extended by an odd function h, is odd as well.
Let y∗ ∈BX∗ be given. We choose a maximal measure μ ∈M1

y∗(BX∗) and
compute

Tf
(
y∗
)
= (oddμ)(f) = μ(oddf) = μ(f) =

∫
extBX∗

h
(
x∗)dμ(x∗)= h

(
y∗
)
.

This concludes the proof. �
Proposition 2.4. Let X be a real separable L1-predual and assume that

f ∈ Bα,b(extBX∗ ,R).

(a) If α ∈ [1, ω0), then Tf ∈X∗∗
α+1.

(b) If α ∈ [ω0, ω1), then Tf ∈X∗∗
α .

(c) If α ∈ [1, ω1) and extBX∗ is of type Fσ , then Tf ∈X∗∗
α .

Proof. (a) If α = 1, f can be extended to a bounded Baire-1 function
on BX∗ ([1, Corollary I.4.4] and [16, §35, VI, Theorem]). Let (fn) be a
bounded sequence in C(BX∗) converging to this extension on BX∗ . For a
given x∗ ∈BX∗ , let μ ∈M1

x∗(BX∗)∩Mmax(BX∗) be chosen. Then we have

Tfn
(
x∗)= (oddμ)(fn)→ (oddμ)(f) = Tf

(
x∗).

Since Tfn = oddfn on extBX∗ , each Tfn is a continuous function on extBX∗ .
By Proposition 2.1 and [23, Theorem 5.2], each Tfn is an odd Baire-1 strongly
affine function on BX∗ . By the Mokobodzki theorem ([2, Theorem II.1.2(a)]),
Tfn ∈X∗∗

1 . Hence Tf ∈X∗∗
2 .

The rest of the proof follows by induction.
(b) Let α= ω0 and f ∈ Bα,b(extBX∗ ,R). Let (fn) be a bounded sequence

of functions from Bαn,b(extBX∗ ,R), where αn < α, converging to f . Then
Tfn → Tf and Tfn ∈ X∗∗

αn+1 by (a). Hence Tf ∈ X∗∗
α . For higher Baire

classes the proof follows by transfinite induction.
(c) Let extBX∗ is of type Fσ . If f ∈ B1,b(extBX∗ ,R), then also oddf ∈

B1,b(extBX∗ ,R). Because a restriction of Tf to extBX∗ is equal to oddf , it
is of Baire class 1. By Proposition 2.1 and [23, Theorem 1.3], Tf is a strongly
affine function in B1,b(BX∗ ,R), and it is in X∗∗

1 by the Mokobodzki theorem
(see [2, Theorem II.1.2(a)]).
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For functions of higher Baire classes we proceed by transfinite induc-
tion. �

We follow with a result based on [18, Theorem 4.4] which could serve as a
motivation for Proposition 2.6.

Proposition 2.5. Let X be a real separable L1-predual with extBX∗ ∪{0}
closed. If α ∈ [0, ω1) and f is an odd strongly affine function on BX∗ such
that f |extBX∗∪{0} is a function of Baire class α, then f ∈X∗∗

α .

Proof. Let α = 0 and let f be as in the hypothesis. By Theorem 2.3,
then f = Tf . Due to [18, Theorem 4.4] there exists an odd continuous affine
function g such that g = f on extBX∗ . Employing Theorem 2.3 again we get
g = Tf , hence f = g and therefore f ∈X .

If α > 0, let F = extBX∗ ∪ {0}. Since X is separable, the set {0} is of
type Gδ . Then extBX∗ = F \ {0} is of type Fσ . Applying Proposition 2.4(c)
to a Baire-α function f |extBX∗ we get that Tf is of Baire class-α. Since
f = Tf due to Proposition 2.3, the proof is finished. �

Proposition 2.6. Let X be a real separable L1-predual, f an odd strongly
affine function on BX∗ such that f |extBX∗ is of Baire class α on extBX∗ .

(a) If α ∈ [0, ω0), then f ∈X∗∗
α+1.

(b) If α ∈ [ω0, ω1), then f ∈X∗∗
α .

(c) If α ∈ [1, ω1) and extBX∗ is of type Fσ , then f ∈X∗∗
α .

Proof. (a) Let α ∈ [0, ω0) and f be an odd strongly affine function on BX∗

such that f |extBX∗ is of Baire class α. If α = 0, that is, f is continuous on
extBX∗ , then f is Baire-1 on BX∗ by [23, Theorem 5.2]. As an odd strongly
affine Baire-1 function, f is in X∗∗

1 by [2, Theorem II.1.2(a)]. If α ∈ [1, ω0),
f = Tf due to Proposition 2.3. By Proposition 2.4(a), f ∈X∗∗

α+1. This finishes
the proof of (a).

(b) If α ∈ [ω0, ω1), f is an odd strongly affine function and f |extBX∗ is
of Baire class α, then f = Tf by Proposition 2.3. It follows from Proposi-
tion 2.4(b) that f ∈X∗∗

α .
(c) It suffices to use Propositions 2.3 and 2.4(c). �

Theorem 2.7. Let X be a real separable L1-predual and let f be an odd
function in Bα,b(extBX∗ ,R).

(a) If α ∈ [0, ω1), then there exists a function h such that h= f on extBX∗

and h ∈X∗∗
α+1 in case α ∈ [0, ω0) and h ∈X∗∗

α in case α ∈ [ω0, ω1).
(b) If extBX∗ is of type Fσ , then for any α ∈ [1, ω1) and an odd function

f ∈ Bα,b(extBX∗ ,R) there exists a function h ∈X∗∗
α such that h = f on

extBX∗ .
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Proof. (a) Let f be an odd bounded Borel function on extBX∗ . Thus by
Proposition 2.1, the function Tf is an odd Borel strongly affine function on
BX∗ satisfying

Tf
(
x∗)= (odd εx∗)(f) = εx∗(oddf) = f

(
x∗), x∗ ∈ extBX∗ .

By Proposition 2.6(a), (b), the function h= Tf is in X∗∗
α+1 in case α ∈ [0, ω0)

and h ∈X∗∗
α in case α ∈ [ω0, ω1).

(b) We argue as above, only we use Proposition 2.6(c) instead. �

Theorem 2.8. Let X be a real separable L1-predual. If the set extBX∗ is
not of type Fσ , then there exists an odd function f ∈ B1,b(extBX∗ ,R) that is
not extensible to a function from X∗∗

1 .

Proof. Assume that extBX∗ is not of type Fσ . Since it is a Gδ subset of a
compact metrizable space, by the Hurewicz theorem (see [15, Theorem 21.18])
there exists a closed set A⊂BX∗ satisfying

A∩ extBX∗ =A \ extBX∗ =A

with A\extBX∗ countable. Let {x∗
n;n ∈N} be an enumeration of A\extBX∗ .

For each n ∈ N we select a maximal measure μn ∈M1
x∗
n
(BX∗) and using the

regularity of Radon measures we find a compact set Kn ⊂ extBX∗ such that
μn(Kn)> 1− 1

n . Without loss of generality, we may assume that Kn =−Kn.
The set

⋃
nKn is of type Fσ and A∩ extBX∗ \

⋃
Kn cannot be Fσ-separated

from A \ extBX∗ (i.e., there does not exist any Fσ set F ∈ BX∗ such that
A ∩ extBX∗ \

⋃
Kn ⊂ F and F ∩ A \ extBX∗ = ∅), otherwise A ∩ extBX∗

would be an Fσ set which is impossible. An application of [15, Theorem 21.22]
then provides a closed set B ⊂A \

⋃
nKn such that

B ∩ extBX∗ =B \ extBX∗ =B.

Let b∗ ∈ B be distinct from 0 and V be its closed neighborhood satisfying
V ∩−V = ∅. Set C =B ∩ V . Then

C ∩ (−C)⊂ V ∩ (−V ) = ∅.

Let

f
(
x∗)= 1

2

(
χC

(
x∗)− χ−C

(
x∗)), x∗ ∈BX∗ .

Then f is a bounded odd Baire-1 function on BX∗ , and thus its restriction
to extBX∗ is also a bounded odd Baire-1 function on extBX∗ . We show that
there is no odd Baire-1 strongly affine extension of f |extBX∗ to BX∗ .

Let h be such an extension. Then h= Tf by Proposition 2.3. Let n ∈ N

be such that

x∗
n ∈C \ extBX∗ ⊂A \ extBX∗ =

{
x∗
k;k ∈N

}
.
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Since Kn =−Kn and C ∩Kn = ∅, (C ∪−C)∩Kn = ∅. Thus, μn(C ∪−C)< 1
n

by the choice of the set Kn. Then we get∣∣Tf(x∗
n

)∣∣ = ∣∣(oddμn)(f)
∣∣= ∣∣μn(f)

∣∣
≤ 1

2

(
μn(C) + μn(−C)

)
≤ 1

n
.

On the other hand, if x∗ ∈ C ∩ extBX∗ , then x∗ /∈ −C as C ∩ −C = ∅.
Hence, it follows that

∣∣Tf(x∗)∣∣= ∣∣(odd εx∗)(f)
∣∣= ∣∣εx∗(f)

∣∣= ∣∣∣∣12(1− 0)

∣∣∣∣= 1

2
.

Since both C ∩ extBX∗ and C \ extBX∗ are dense in C, h = Tf has no
point of continuity on C. In particular, h is not a Baire-1 function on BX∗

by [15, Theorem 24.14], which concludes the proof. �

By a rephrasing a part of the previous results, we get an analogue of [18,
Theorem 4.4].

Corollary 2.9. Let X be a separable real Banach space. Then the fol-
lowing statements are equivalent.

(i) A space X is a real L1-predual and extBX∗ is an Fσ set.
(ii) Every odd function f ∈ B1,b(extBX∗ ,R) can be extended to a function

in X∗∗
1 .

Proof. (i) =⇒ (ii). Due to Theorem 2.7(b).
(ii) =⇒ (i). Assume x∗ ∈ X∗ and let μ, ν ∈ M1

x∗(BX∗) ∩Mmax(BX∗).
For any f ∈ C(BX∗ ,R) then there exists by (ii) a function h ∈X∗∗

1 extending
oddf |extBX∗ . Maximal measures are carried by extBX∗ and h is a strongly
affine function, hence

(oddμ)(f) = μ(oddf) = μ(h) = h
(
x∗)= ν(h) = ν(oddf) = (oddν)(f).

Thus oddμ = oddν and using Lazar’s characterization of the real Linden-
strauss spaces (see [19, Theorem] or [17, §21, Theorem 7]) we get that X is
an L1-predual.

Finally, due to Theorem 2.8, the set extBX∗ is of type Fσ . �

For a symmetric set B and α ∈ [0, ω1), we denote a space of all bounded
odd Baire-α function on B by Bα,b

σ (B,R).
The following result extends [21, Theorem 1] of Lindenstrauss and Wulbert.

Theorem 2.10. Let X be a real separable L1-predual such that extBX∗ is
an Fσ set. Then for any α ∈ [1, ω1), the space X∗∗

α is isometric to the space
Bα,b
σ (extBX∗ ,R).
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Proof. A function f ∈X∗∗
α is bounded, Baire-α and strongly affine. The

restriction mapping r : X∗∗
α →Bα,b

σ (extBX∗ ,R) is therefore an isometric iso-
morphism due to Theorem 2.7(b) and the minimum principle exposed by [24,
Theorem 3.86]. �

Further, one can be tempted to investigate whether a topological quality
of extBX∗ can characterize possibility of extending Baire functions of higher
classes. Theorem 2.11 below shows that this is not the case.

Let K be a compact convex set in a locally convex space and set X =
A(K,R). Then we can make the natural identifications

BX∗ = conv(K ∪−K),
(2.2)

extBX∗ = extK ∪− extK

using an affine homeomorphism ϕ : conv(K ∪ −K) → BX∗ defined by the
formula ϕ(λk1 − (1− λ)k2)(h) = λh(k1)− (1− λ)h(k2), λ ∈ [0,1], k1, k2 ∈K
and h ∈X .

Further, we need to establish a mapping I from the space Aα(K,R) to a
space of all affine functions on BX∗ by setting

If(s) = μ(f), where μ ∈BM(K,R) is any measure extending s ∈BX∗ .

For more detailed information concerning the mapping I consult for exam-
ple, [34, Theorem 2.5] or [24, Chapter 5.6].

Theorem 2.11. There exist real separable L1-preduals X,Y with the fol-
lowing properties.

(a) The set extBX∗ is homeomorphic to extBY ∗ and they are of type Gδ .
(b) For any α ∈ [2, ω1) and any function f ∈ Bα,b

σ (extBY ∗ ,R) there exists a
function h ∈ Y ∗∗

α such that h= f on extBY ∗ .
(c) There exists a function f ∈ B2,b

σ (extBX∗ ,R) not extensible to an element
of X∗∗

2 .

Proof. By [33, Theorem 1.1], there exists a couple of metrizable simplices
K,L with the following properties:

• The set extK is homeomorphic to extL.
• The sets extK and extL are of type Gδ .
• For α ∈ [2, ω1), any bounded Baire-α function on extL can be extended to
a function of affine class α on L.

• There exists a bounded function g on extK of Baire-2 class that is not
extensible to a function on K of affine class 2.

We set X =A(K,R) and Y =A(L,R). Then X and Y are separable L1-
preduals (see [17, §19, Theorem 2]).

(a) The assertion follows from the identification (2.2) and the metrizability
of BX∗ (see [1, Corollary I.4.4]).
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(b) We claim that, for any α ∈ [2, ω1), every function f ∈ Bα,b
σ (extBY ∗ ,R)

can be extended to a function h ∈ Y ∗∗
α .

Indeed, let f ∈ Bα,b
σ (extBY ∗ ,R). Using the identification (2.2), we may

assert that f |extL ∈ Bα,b(extL,R) and set g = f |extL. Due to the hypotheses
there exists a function g̃ ∈Aα(L,R) extending g. Then Ig̃|L = g̃ and applying
[34, Theorem 2.5(f)] (see also [24, Theorem 5.40(f)]) we get that Ig̃ ∈ Y ∗∗

α .
Hence, Ig̃ = f on extBY ∗ and we may define h= Ig̃ as the desired function.

(c) Let g ∈ B2,b(extK,R) be a function not extensible to a function from
A2(K,R). The function g can be nevertheless naturally extended to an odd
function g̃ defined on extK ∪ − extK. Due to the identification (2.2), we
may see g̃ as a function from B2,b

σ (extBX∗ ,R). We claim that the function g̃
cannot be extended to an element of X∗∗

2 .

Suppose the contrary and let f̃ ∈X∗∗
2 be an extension of g̃. Due to [34,

Theorem 2.5(f)] (see also [24, Theorem 5.40(f)]) there exists f ∈ A2(K,R)

such that If = f̃ . The definition of I immediately provides that f = g on
extK which gives us a contradiction with the properties of g. �

3. Complex L1-preduals

The validity of the most of the results of Section 2 can be essentially ex-
tended to the complex setting. The principal technical inconvenience consists
in the impossibility of using the notion of odd functions in the complex setting.
The role of odd functions play homogeneous functions here.

The following notions are due to Effros (see [7]). Let T stand for the unit
circle endowed with the unit Haar measure dα. Let X be a complex Banach
space. A set B ⊂ BX∗ is called homogeneous if αB = B for each α ∈ T. An
example of a homogeneous set is extBX∗ . A function f on a homogeneous
set B ⊂BX∗ is called homogeneous (see, e.g., [7, p. 53], [17, p. 240]) if

f
(
αx∗)= αf

(
x∗), (

α,x∗) ∈ T×B.

If f is a Borel function defined on a homogeneous Borel set B ⊂BX∗ , we set

(homf)
(
x∗)= ∫

T

α−1f
(
αx∗)dα, x∗ ∈B.

Then the function homf is homogeneous on B and it is easy to see that it
is continuous in case f ∈ Cb(B,C). By the Lebesgue dominated convergence
theorem, homf is well defined for each bounded Baire function on B and
homf is Baire-α whenever f ∈ Bα,b(B,C). A function f is homogeneous if
and only if homf = f .

The mapping hom provides a mapping on M(BX∗ ,C) defined as

(homμ)(f) = μ(homf), f ∈ C(BX∗ ,C), μ ∈M(BX∗ ,C).

For x∗ ∈ BX∗ , let M1
x∗(BX∗) be defined as in Section 2. Similarly, symbols

≺ and Mmax(BX∗) are defined as above.
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If X is a complex Banach space, then we have the following analogue of
[19, Theorem] due to Effros:

The Banach space X is an complex L1-predual if and only if, for any
x∗ ∈BX∗ and measures μ, ν ∈ M1

x∗(BX∗) ∩ Mmax(BX∗), it holds homμ =
homν (see [7, Theorem 4.3] or [17, §23, Theorem 5]).

This theorem permits to define a mapping T analogously as in the real
case (see Section 2). Namely, for a separable complex L1-predual X and a
bounded Borel function f defined at least on extBX∗ we set

(3.1) Tf
(
x∗)= (homμ)(f), μ ∈M1

x∗(BX∗)∩Mmax(BX∗).

Since homμ is a boundary measure if μ is maximal (see [7, Lemma 4.2] or
[17, §23, Lemma 10]), the mapping T is well defined.

Employing a newly defined mapping T and a notion of homogeneous func-
tion instead of odd function we claim that Propositions 2.1, 2.3, 2.6, Theo-
rems 2.7, 2.8, 2.10 and Corollary 2.9 are valid also in complex setting. Putting
aside some additional technical obstacles the proofs are similar to the real case.
For the proofs in full details, we refer the reader to [22, Chapter 3.3].

4. C∗-algebras

The main result of this section answers a question from [2, p. 1048].
In order to prove it, we need to recall a notion of a function space which is

a linear subspace of C(K,F) containing constants and separating points of K.
If H⊂ C(K,F) is a function space, we write H⊥⊥ for the set of all bounded
Borel functions on K satisfying μ(f) = 0 for each μ ∈H⊥.

Proposition 4.1. Let K be a metrizable compact space and f ∈ Bb(K,C).
Then the function F : BM(K,C) →C defined as F (μ) = μ(f), μ ∈BM(K,C), is
strongly affine on BM(K,C).

Proof. If f ∈ C(K,C), F is strongly affine on BM(K,C) by the definition. If
(fn) is a bounded sequence of Borel functions pointwise converging to f such
that the relevant functions Fn are strongly affine on BM(K,C), (Fn) converges
pointwise to F by the Lebesgue dominated convergence theorem. Since Fn

are strongly affine, F is strongly affine as well again due to the Lebesgue
dominated convergence theorem.

Hence, the family of all Borel functions f , for which F is strongly affine, is
closed under the taking pointwise limits of bounded sequences and contains
continuous functions. Hence, it contains any bounded Borel function. �

Next, we recall a result which is essentially from [32].

Proposition 4.2. Let π : K → L be a continuous affine surjection of a
compact convex set K onto a compact convex set L. Let g : L → C be a
bounded function. Then g is strongly affine on L if and only if g ◦π is strongly
affine on K.
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Proof. We notice that a function g : L→ C is strongly affine if and only
if both Reg and Img are strongly affine. Then use [32, Proposition 3.2] (see
also [24, Proposition 5.29]). �

Proposition 4.3. Let K be a metrizable compact space, A ⊂ C(K,C) be
a function space and let π : BM(K,C) → BA∗ be the restriction mapping. If

f ∈ Bα,b(K,C)∩A⊥⊥, then the function F : BA∗ →C defined as

F
(
a∗
)
= μ(f), μ ∈BM(K,C), π(μ) = a∗,

is a well defined homogeneous strongly affine function on BA∗ of Baire class α.

Proof. Let f ∈ Bα,b(K,C) ∩A⊥⊥. First, we notice that F is well defined.
Indeed, if a∗ ∈ BA∗ , let μ ∈ BM(K,C) be extending a∗. If ν ∈ BM(K,C) is

another extension, then μ− ν ∈A⊥, and thus μ(f) = ν(f).
Let α ∈ T, a∗ ∈BA∗ and μ ∈BM(K,C) such that π(μ) = a∗. Then π(αμ) =

αa∗ and F (αa∗) = αF (a∗), thus F is homogeneous. For the verification of the
strong affinity of F , we use Proposition 4.2. Let G : BM(K,C) →C be defined
as G(μ) = μ(f), μ ∈BM(K,C). Then

G= F ◦ π.
Since π is a continuous affine surjection of the compact convex set BM(K,C)

onto the compact convex set BA∗ , the strong affinity of F follows from Propo-
sitions 4.1 and 4.2. If f is of Baire class α, G is of class α as well by the
Lebesgue dominated convergence theorem. Hence, F is of class α by [31] (see
also [24, Theorem 5.16]). �

Theorem 4.4. Let X be the CAR-algebra (see [27, p. 104]). Then
X∗∗

B2
�=X∗∗

2 .

Proof. A rather intricate construction in [34, Section 5] provides a function
space H⊂ C(K,R) such that,

• H is closed in C(K,R), and thus in C(K,C) (see [34, p. 1674]),
• K is metrizable (see [34, p. 1673]), and thus H is separable,
• H is a so-called simplicial function space (see [24, Section 6.1]), and thus a
real L1-predual (see [34, Lemma 6.1(a)] and [24, Theorem 6.25]), and,

• by [34, Lemmas 6.5, 6.6],

B2,bb(H)� B2,b(K,R)∩H⊥⊥.

Let

A=
{
g ∈ C(K,C);Reg, Img ∈H

}
.

Then A is selfadjoint and ReA=H is a real L1-predual. Thus, A is a complex
L1-predual by [13, Theorem 2] (see also [17, §23, Theorem 6]). We claim that
A∗∗

2 �A∗∗
B2
. Indeed, pick

f ∈
(
B2,b(K,R)∩H⊥⊥) \ B2,bb(H).
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Since f ∈H⊥⊥, clearly f ∈A⊥⊥ as well. Due to Proposition 4.3, we are able
to define F : BA∗ →C as

F
(
a∗
)
= μ(f), μ ∈BM(K,C), π(μ) = a∗,

such that F is a homogeneous strongly affine function on BA∗ of Baire class 2.
On the other hand, F /∈A∗∗

2 . Indeed, assume that F ∈A∗∗
2 . Let

S =
{
φ(k);k ∈K

}
⊂BA∗ ,

where φ(k)(a) = a(k), a ∈A. Then φ : K → S is a homeomorphic embedding
and f = F ◦ φ. Since F ∈A∗∗

2 , also f = F ◦ φ ∈ B2,bb(A). So let

{ank;n,k ∈N}
be a family in A such that

f = lim
n→∞

lim
k→∞

ank,

where (limk→∞ ank)n∈N is a bounded sequence as well as every sequence
(ank)k∈N for any given n ∈N. Since f is real,

f =Ref = lim
n→∞

lim
k→∞

Reank,

and thus f ∈ B2,bb(H), which is not the case. Thus F /∈A∗∗
2 .

Now we use [27, Theorem] asserting that A is a 1-complemented subspace
of the separable C∗-algebra X . We claim that X∗∗

B2
�=X∗∗

2 . Indeed, recall that
F ∈A∗∗

B2
\A∗∗

2 . Let P : X →A be a projection of norm 1 and π : BX∗ →BA∗

be the restriction mapping. Then(
π ◦ P ∗)(a∗)= a∗, a∗ ∈BA∗ .

Let

G= F ◦ π.
By Proposition 4.2, G ∈X∗∗

B2
. Suppose G ∈X∗∗

2 and let (xnk)n,k∈N witness
that G ∈X∗∗

2 . Then (Pxnk)n,k∈N witness that F ∈A∗∗
2 , because

F
(
a∗
)
= F

(
π
(
P ∗a∗

))
=G

(
P ∗a∗

)
= lim

n→∞
lim
k→∞

xnk

(
P ∗a∗

)
= lim

n→∞
lim
k→∞

Pxnk

(
a∗
)
, a∗ ∈BA∗ .

But this contradicts our choice of F . �
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