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HIGGS BUNDLES OVER ELLIPTIC CURVES

EMILIO FRANCO, OSCAR GARCIA-PRADA AND P. E. NEWSTEAD

Abstract. In this paper, we study G-Higgs bundles over an el-
liptic curve when the structure group G is a classical complex

reductive Lie group. Modifying the notion of family, we define a

new moduli problem for the classification of semistable G-Higgs

bundles of a given topological type over an elliptic curve and we

give an explicit description of the associated moduli space as a

finite quotient of a product of copies of the cotangent bundle of

the elliptic curve. We construct a bijective morphism from this

new moduli space to the usual moduli space of semistable G-
Higgs bundles, proving that the former is the normalization of

the latter. We also obtain an explicit description of the Hitchin

fibration for our (new) moduli space of G-Higgs bundles and we
study the generic and non-generic fibres.

1. Introduction

A systematic study of vector bundles over elliptic curves was initiated
in 1957 by Atiyah [A], where he describes the set of isomorphism classes
of indecomposable vector bundles. After the development of GIT and the
introduction by Mumford [Mu] of the notions of stability for vector bun-
dles, Atiyah’s results were interpreted as the construction of an isomor-
phism M(GL(n,C))d ∼= SymhX , where M(GL(n,C))d is the moduli space
of semistable vector bundles of rank n and degree d over the elliptic curve X
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and h= gcd(n,d). In [Ra1], Ramanathan extended the notion of stability to
G-bundles where G is an arbitrary complex reductive connected Lie group.
Schweigert [S], Friedman, Morgan and Witten [FM1], [FM2], [FMW] and for
the topologically trivial case Laszlo [La] gave a description of the moduli space
of semistable G-bundles with topological invariant d over an elliptic curve X
in terms of a quotient

(1) M(G)d ∼= ZG,d/ΓG,d,

where ZG,d is the product of a certain number of copies of the curve and ΓG,d

is a finite group. When G is simple and simply connected with coroot lattice
Λ and Weyl group W , this quotient is (X ⊗Z Λ)/W . Friedman and Morgan
[FM1], and Laszlo [La] when the topological type d is trivial, constructed a
bijective morphism from ZG,d/ΓG,d to M(G)d which, since M(G)d is normal,
is an isomorphism by Zariski’s Main Theorem. Recall that (X ⊗Z Λ)/W is
isomorphic to a weighted projective space by a result of Looijenga [Lo] (see
also the work of Bernstein–Shvartzman [BS]).

In this paper, we study G-Higgs bundles over an elliptic curve for classical
complex Lie groups. If G is a complex reductive Lie group, a G-Higgs bundle
over a smooth projective curve is a pair (P,ϕ) where P is a principal G-bundle
and ϕ, called the Higgs field, is a section of the adjoint bundle adP tensored
by K, the canonical line bundle of the curve. When the structure group G
is a classical reductive complex Lie group, there is a bijective correspondence
between pairs (P,ϕ) and triples (E,θ,Φ) where E is a vector bundle, θ is
a reduction of structure group to G of the GL(n,C)-bundle associated to E
and Φ is a K-twisted endomorphism of E compatible with the reduction of
structure group θ. We shall work with this latter description of Higgs bundles
rather than the former.

Hitchin introduced G-Higgs bundles and their stability conditions in [Hi1].
The existence of the moduli space of semistable Higgs bundles M(GL(n,C))d
was proved by Hitchin in the case of rank 2, and by Simpson [Si1] and Nitsure
[Ni] in arbitrary rank. In [Si2], [Si3], Simpson proved the existence of the
moduli space M(G)d of semistable G-Higgs bundles when G is an arbitrary
complex reductive Lie group.

Let Γ denote the universal central extension by Z of the fundamental group
π1(X) of a compact Riemann surface, and set ΓR =R×ZΓ. The moduli space
of representations of ΓR in G with topological type d is the GIT quotient

R(G)d =Homc(ΓR,G)d//G,

where Homc(ΓR,G) is the space of central representations (i.e., those repre-
sentations ρ ∈Hom(ΓR,G) satisfying ρ(R)⊂ ZG(G)0).

As a consequence of a chain of theorems by Narasimhan and Seshadri [NS],
Ramanathan [Ra1], Donaldson [D], Corlette [Co], Hitchin [Hi1] and Simpson
[Si1], [Si2], [Si3], there exists a homeomorphism M(G)d �R(G)d.
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In [Si3], Simpson proved the Isosingularity Theorem which implies that
M(G)0 is normal if and only ifR(G)0 is normal. He proves that R(GL(n,C))0
is normal for compact Riemann surfaces of genus g ≥ 2, and therefore, in that
case, M(G)0 is normal. His proof does not apply for the genus 1 case but
one can use results of Popov [Po] and computations made by the computer
program Macaulay (see [Hr]) to prove that R(GL(n,C))0 and M(GL(n,C))0,
hence also M(SL(n,C)) and M(PGL(n,C))0, are normal for n≤ 4 (see Sec-
tion 3.4). For the rest of the cases, the normality of the moduli space M(G)d
of Higgs bundles on elliptic curves is a question that remains open.

A key result in our study of G-Higgs bundles for classical complex Lie
groups over an elliptic curve X is that a G-Higgs bundle is (semi)stable if and
only if the underlying principal bundle is (semi)stable. This is a consequence
of the fact that the canonical bundle of an elliptic curve is trivial, that is,
K ∼=O. Taking the underlying bundle of a semistable Higgs bundle, we have
a surjective morphism

aG,d : M(G)d →M(G)d.

Since the fibres of this surjective morphism are connected and so is M(G)d,
it follows that M(G)d is connected.

We obtain an explicit description of semistable, stable and polystable G-
Higgs bundles over an elliptic curve thanks to the previous result and the
description of (semi)stable vector bundles and G-bundles given in [A] and
[FM1], respectively. The structure group of a polystable G-Higgs bundle can
be reduced to a Levi subgroup L of G giving a stable L-Higgs bundle. In the
elliptic case, the conjugacy class of L is the same for every polystable G-Higgs
bundle with a given topological type. Let ZG,d and ΓG,d be as in (1). Using
families of stable L-Higgs bundles, we can construct families of polystable G-
Higgs bundles E parametrized by T ∗ZG,d such that every polystable G-Higgs
bundle of topological type d is isomorphic to Ez for some z ∈ T ∗ZG,d and
Ez1 ∼= Ez2 if and only if there exists γ ∈ ΓG,d giving z2 = γ · z1. This family
induces a bijective morphism

(2) T ∗ZG,d/ΓG,d
1:1−→M(G)d.

If M(G)d were normal, this bijection would be an isomorphism by Zariski’s
Main Theorem. However, normality of M(G)d for g = 1 is an open question
except in the topologically trivial cases of G = GL(n,C), G = SL(n,C) and
G=PGL(n,C) when n≤ 4 (see Section 3.4).

In view of this, we construct a new moduli functor. The usual moduli
functor associates to any scheme T the set of families of G-Higgs bundles
parametrized by T . We will consider a new moduli functor that associates a
smaller set of families of G-Higgs bundles, the set of locally graded families
(defined in Sections 4.3, 4.4 and 4.5). For this new moduli functor the family
E of polystable G-Higgs bundles constructed above has the local universal
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property. For the moduli space of Higgs bundles N (G)d associated to this
moduli functor, we have

(3) N (G)d ∼= T ∗ZG,d/ΓG,d.

From (2), we observe that there exists a bijective morphism N (G)d →M(G)d;
thus our new moduli space is not classifying extra structure. Furthermore,
since N (G)d is normal, it is the normalization of M(G)d.

The Hitchin map is defined in [Hi2] by evaluating a basis of the invariant
polynomials q1, . . . , q� on the Higgs field,

bG,d : N (G)d −→
⊕

H0
(
X,O⊗ri

)
,

(E,Φ) 
−→
(
q1(Φ), . . . , q�(Φ)

)
.

We observe that bG,d is not surjective in general. In order to preserve the
surjectivity of the Hitchin map we redefine for each d the Hitchin base B(G,d)
as the image of bG,d. The explicit description of the moduli space N (G)d
allows us to study in detail the two fibrations

N (G)d
aG,d bG,d

M(G)d B(G,d).

In particular, we describe all the fibres of the Hitchin fibration, not only the
generic ones. Two Langlands dual groups have the same Hitchin base. For
the two pairs of dual groups, SL(n,C) and PGL(n,C), and Sp(2m,C) and
SO(2m + 1,C), the Hitchin fibres over a non-generic point of the base are
fibrations of projective spaces (in some cases quotients of projective spaces by
finite groups) over isomorphic self-dual Abelian varieties.

By means of the quotients (1) and (3) we define natural orbifold struc-

tures on M(G)d and N (G)d and the projection N (G)d
a−→ M(G)d can be

understood as the projection of the orbifold cotangent bundle.
The paper is structured as follows:
Section 2 is a review on vector bundles and principal bundles for clas-

sical groups over an elliptic curve. It contains the description of stable and
polystable bundles derived from [A] and [FM1] and the subsequent description
of the moduli spaces. This section is included not only to set up notation, but
also to emphasize the isomorphism (1) which will be used in the description
of the moduli spaces of G-Higgs bundles.

In Section 3, we give the definitions of G-Higgs bundles for classical groups
and their stability notions. We discuss normality of the moduli space M(G)d
in Section 3.4 proving that M(GL(n,C))0, M(SL(n,C)) and M(PGL(n,C))0
are normal for n≤ 4 (Theorem 3.7).
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Section 4 contains the explicit description of the moduli spaces of Higgs
bundles. In Section 4.1, we establish the equivalence between the stability of
a Higgs bundle and the stability of its underlying bundle. This fact allows us
to give a complete descrition of the polystable Higgs bundles.

We construct in Section 4.2 a family En,d parametrizing all such bundles.

The family En,d is parametrized by T ∗X × h· · · × T ∗X in such a way that two
points parametrize isomorphic polystable Higgs bundles if and only if one is
a permutation of the other. Using En,d we obtain a bijection between the

symmetric product Symh T ∗X of the cotangent bundle of the curve and the
moduli space of Higgs bundles M(GL(n,C))d (Theorem 4.19). We also study
the smooth points of the moduli space M(GL(n,C))d and its singular locus
(Theorem 4.20).

We define locally graded families in Section 4.3 and we consider the mod-
ified moduli problem given by taking the image of the moduli functor to be
the set of S-equivalence classes of locally graded families. We prove that En,d
has the local universal property among locally graded families which implies
that the moduli space associated to the new moduli functor N (GL(n,C))d is

isomorphic to Symh T ∗X (Theorem 4.24).
The work of Sections 4.2 and 4.3 allows us to study in Section 4.4 the

moduli spacesM(SL(n,C)) andM(PGL(n,C))d̃ for the usual moduli problem
(Theorems 4.27 and 4.28) and N (SL(n,C)) and N (PGL(n,C))d̃ for the new
moduli problem (Theorem 4.29).

In Section 4.5, we study the usual moduli spaces M(Sp(2m,C)), M(O(n,
C))k,a and M(SO(n,C))w2 (Theorem 4.34). Following an analogous proce-
dure of that of Section 4.3 we obtain an explicit description of N (Sp(2m,C)),
N (O(n,C))k,a and N (SO(n,C))w2 (Theorem 4.37).

We study the Hicthin map for these moduli spaces in Section 5, and we
describe the generic and non-generic fibres explicitly.

Finally in the Appendix, we define an action of the groups of torsion points
of an Abelian variety on a product of copies of the Abelian variety. We study
properties of this action and its quotient space. These results are used in
Section 5.3 to describe the Hitchin fibres for PGL(n,C) (Proposition 5.6 and
Remark 5.7) (see also Remarks 2.2 and 4.30).

We work in the category of algebraic schemes over C. All the bundles
considered are algebraic bundles. The slope μ(E) of a vector bundle E of
rank n and degree d is defined by μ(E) := d/n.

2. Review on principal bundles over elliptic curves
for classical groups

2.1. Vector bundles. Let X be a smooth projective curve of genus g = 1
and let x0 be a distinguished point on it; we call the pair (X,x0) an elliptic
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curve. However, by abuse of notation, we usually refer to the elliptic curve
simply as X .

The Abel–Jacobi map ajh : SymhX → Pich(X) sends the tuple [x1, . . . ,
xh]Sh

to the line bundle L(D), where D is the divisor associated to the tuple
of points. For h > 2g − 2 = 0, the map is surjective and the inverse image
of L ∈ Pich(X) is given by the zeroes of the sections of L, that is, it is the
projective space

(4) aj−1
h (L) = PH0(X,L)∼= Ph−1.

For h = 1 this inverse image is a point and then aj1 : X
∼=−→ Pic1(X) is an

isomorphism. The distinguished point x0 of the elliptic curve gives an iso-
morphism between Picd(X) and Picd−h(X),

tx0

h : Picd−h(X)−→ Picd(X),

L 
−→ L⊗O(x0)
h.

(5)

For every d, we define an isomorphism

(6) ςx0

1,d : X −→ Picd(X),

given by ςx0

1,d = tx0

d−1 ◦ aj1. In particular, (ςx0
1,0)

−1 : Pic0(X)
∼=−→X defines an

Abelian group structure on X with x0 as the identity. The elliptic curve
(X,x0) with this Abelian group structure is an Abelian variety and the dia-
gram

(7) [x1, . . . , xh]Sh
SymhX

sumh
X

SymhX

ajh

[x1, . . . , xh]Sh

∑h
i=1 xi X

∼=
ς
x0
1,h

Pich(X) O(x1)⊗ · · · ⊗O(xh)

commutes.
The vector bundle E is semistable if every subbundle F of E satisfies

μ(F )≤ μ(E).

The vector bundle is stable if the above inequality is strict for every proper
subbundle and it is polystable if it decomposes into a direct sum of stable
vector bundles, all of the same slope.

Every semistable vector bundle E possesses a Jordan–Hölder filtration

0 =E0 �E1 �E2 � · · ·�Em =E,

where every quotient Ei/Ei−1 is stable of slope μ(Ei/Ei−1) = μ(E). The
associated graded vector bundle of E is defined by

grE :=
⊕
i

(Ei/Ei−1).
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Although the Jordan–Hölder filtration of a given semistable vector bundle E
might not be unique, one can prove that the isomorphism class of grE is
unique. Two semistable vector bundles E1 and E2 are said to be S-equivalent
if grE1

∼= grE2.
A family of vector bundles over X parametrized by a scheme Y is a vector

bundle V over X × Y . We write Vy := V|X ×{y}. Given a property of vector
bundles which is satisfied by Vy for all y ∈ Y , we shall say that the family
V satisfies the property pointwise. Two families of semistable vector bundles
parametrized by the same variety Y will be said to be S-equivalent if they are
pointwise S-equivalent.

The moduli functor that associates to every scheme Y the set of S-
equivalence classes of families of semistable vector bundles of rank n and
degree d parametrized by Y possesses a coarse moduli space, which we de-
note by M(GL(n,C))d. (The notation is justified by the fact that there is
a bijective correspondence between GL(n,C)-bundles and vector bundles of
rank n.) Every point of the moduli space represents a S-equivalence class of
semistable vector bundles (or equivalently an isomorphism class of polystable
vector bundles). The moduli space M st(GL(n,C))d of isomorphism classes of
stable vector bundles is a smooth Zariski open subset of M(GL(n,C))d. Note
also that, when gcd(n,d) = 1, every semistable vector bundle is stable and
then M st(GL(n,C))d =M(GL(n,C))d.

These moduli spaces were described implicitly by Atiyah [A], who did not
have the notion of stability available. In 1991, Tu [Tu] interpreted Atiyah’s
results to give an explicit description of the moduli spaces (see also [LeP]).
The following properties of vector bundles over elliptic curves are contained
in [A] or [Tu] (with some changes of notation).

• If gcd(n,d) = 1,
– the morphism given by the determinant

det : M
(
GL(n,C)

)
d

∼=−→ Picd(X)

is an isomorphism;
– a stable vector bundle E of rank n and degree d satisfies E⊗L∼=E if and
only if L is a line bundle in Pic0(X)[n] (i.e., L is such that L⊗n ∼=O);

– writing ςx0

n,d = det−1 ◦ ςx0

1,d where ςx0

1,d is the map given in (6), we have

(8) ςx0

n,d : X
∼=−→M

(
GL(n,C)

)
d
;

– there exists a family Vx0

n,d of stable vector bundles of rank n and degree
d parametrized by X such that for every x ∈X ,

(9) ςx0

n,d(x) =
[(
Vx0

n,d

)
x

]
S
.

Every family F → X × Y of semistable (and therefore stable) vec-
tor bundles with rank n and degree d defines naturally a morphism
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νF : Y →M(GL(n,C))d. The composition with (ςx0

n,d)
−1 gives us a mor-

phism f : Y → X , which is canonically defined (up to the choice of
x0 ∈ X). Thanks to (9) we know that f∗F ∼S Vx0

n,d, so Vx0

n,d is a uni-
versal family in this sense.

• There exists a unique indecomposable bundle Fn of degree 0 and rank n
such thatH0(X,Fn) �= 0. Moreover, dimH0(X,Fn) = 1 and Fn is a multiple
extension of copies of O. In particular Fn is semistable.

• Every indecomposable bundle of degree 0 and rank n is of the form Fn ⊗L
for a unique line bundle L of degree 0.

• If gcd(n,d) = h > 1,
– the fibre product over X of h copies of the family Vx0

n′,d′ gives us a family

Vx0

n,d of polystable vector bundles parametrized by Zh =X × h· · · ×X ;

– every indecomposable bundle of rank n and degree d is of the form E′⊗Fh

for a unique stable bundle E′ of rank n′ = n
h and degree d′ = d

h ;
– every semistable bundle of rank n and degree d is isomorphic to one of
the form

⊕s
j=1(E

′
j ⊗Fhj ), where each E′

j is stable of rank n′ and degree

d′ and
∑s

j=1 hj = h;

– every polystable bundle of rank n and degree d is of the form E′
1⊕· · ·⊕E′

h,
where each E′

i is stable of rank n′ and degree d′;
– as a consequence M st(GL(n,C))d is empty and the map to the moduli
space induced by Vx0

n,d,

(10) νVx0
n,d

: Zh =X × h· · · ×X −→M
(
GL(n,C)

)
d
,

is surjective and factors through SymhX giving an isomorphism

(11) ςx0

n,d : SymhX
∼=−→M

(
GL(n,C)

)
d
.

• If E is stable, EndE ∼=
⊕

Li∈Pic0(X)[n]Li.

• Fn
∼= F ∗

n and Fn⊗Fm is a direct sum of various F�. In particular EndFn
∼=

F1 ⊕ F3 ⊕ · · · ⊕ F2n−1.

2.2. Special linear and projective bundles. A special linear or SL(n,C)-
bundle over the elliptic curve X is a pair (E,τ), where E is a vector bundle
and τ is a never vanishing section of detE. An isomorphism between the
SL(n,C)-bundles (E1, τ1) and (E2, τ2) is an isomorphism of vector bundles
f : E1 → E2 such that τ2 = detf(τ1). It follows that (E,τ) is isomorphic to
(E,1). Therefore, a SL(n,C)-bundle is completely determined by a vector
bundle E with trivial determinant. Note that, since h= n, there are no stable
SL(n,C)-bundles for n≥ 2.

A SL(n,C)-bundle is semistable or polystable if it is, respectively, a
semistable or polystable vector bundle. Two semistable SL(n,C)-bundles
are S-equivalent if they are S-equivalent vector bundles. Again, we define
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S-equivalence for families pointwise. The moduli functor for SL(n,C)-bundles
under S-equivalence possesses a coarse moduli space M(SL(n,C)).

By [Tu] and the commutativity of (7), the diagram

SymhX

sumh
X

ς
x0
n,d

∼=
M(GL(n,C))d

det

X
∼=
ς
x0
1,d

Picd(X)

commutes. When d= 0, we have h= gcd(n,d) = n, so

M
(
SL(n,C)

) ∼= (det)−1(O)∼=
(
sumn

X

)−1
(x0) = aj−1

n

(
(O)

) ∼= Pn−1.

Take An to be the subvariety of Zn =X × n· · · ×X given by

(12) An =
{
(x1, . . . , xn)|x1 + · · ·+ xn = x0

}
.

Let un : An → Zn−1 be the projection on the first n − 1 factors; this
morphism is an isomorphism and its inverse u−1

n sends (x1, . . . , xn−1) to
(x1, . . . , xn−1,−

∑
xi). Since the symmetric group Sn preserves An ⊂ Zn,

we can use un to define an action of Sn on Zn−1 =X × n−1· · · ×X . This action
gives an isomorphism between Zn−1/Sn and An/Sn: composing this with
the restriction of ςx0

n,0 gives

(13) ς̂x0
n : Zn−1/Sn =X × n−1· · · ×X/Sn

∼=−→M
(
SL(n,C)

)
.

On a curve, every projective bundle or PGL(n,C)-bundle is the projec-
tivization of a vector bundle and we denote by P(E) the projective bundle
associated to E. It is well known that two vector bundles E1 and E2 give
isomorphic projective bundles if and only if there exists a line bundle L such
that E2

∼= L⊗E1. Note that the projectivization of a vector bundle of rank

n and degree d is a PGL(n,C)-bundle of degree d̃= (d mod n).
A PGL(n,C)-bundle P(E) is semistable, stable or polystable if E is respec-

tively a semistable, stable or polystable bundle. When P(E) is semistable,
we define its associated graded object as the projectivization P(grE). Two
semistable PGL(n,C)-bundles are S-equivalent if they have isomorphic graded
objects. A family of projective bundles over X parametrized by Y is a pro-
jective bundle over X × Y . We define S-equivalence of families of semistable
PGL(n,C)-bundles pointwise. Let us consider the moduli functor that as-
sociates to every scheme Y the set of S-equivalence classes of families of

semistable PGL(n,C)-bundles of degree d̃ = (d mod n) parametrized by Y .
There exists a coarse moduli space M(PGL(n,C))d̃ associated to this functor.
Since they are no stable vector bundles if the rank n and the degree d are
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not coprime, the stable locus M st(PGL(n,C))d̃ is empty in that case, and

M st(PGL(n,C))d̃ =M(PGL(n,C))d̃ if n is coprime to d̃.

Remark 2.1. Since the dimension of X × Y is greater than 1, not every
projective bundle over X × Y comes from a vector bundle, that is, not every
family of PGL(n,C)-bundles comes from a family of vector bundles. If we
modify the notion of family of projective bundles, allowing only those that
come from families of vector bundles, we obtain a different moduli functor. It
can be proved that the two moduli problems have isomorphic coarse moduli
spaces. Working with the second picture, one sees that M(PGL(n,C)) is the
quotient of M(GL(n,C)) by the action of Pic(X) given by (L,E) 
→ L⊗ E.
One can always fix the determinant by tensoring by some element of Pic(X)
and the only elements of Pic(X) that preserve the determinant are the nth
roots of the trivial bundle, so

M
(
PGL(n,C)

)
d̃
∼= det−1

(
O(x0)

⊗d
)
/Pic0(X)[n].

Take h= gcd(n,d) and set n′ = n
h and d′ = d

h . Consider the following action

of X on SymhX with weight n′,

X × Symh −→ SymhX,(
x, [x1, . . . , xh]Sh

)

−→

[
x1 + n′x, . . . , xh + n′x

]
Sh

.
(14)

By Atiyah’s results, the diagram constructed using (14)

(15) X × SymhX

ς
x0
1,0×ς

x0
n,d

∼=

SymhX

ς
x0
n,d

∼=

Pic0(X)×M(GL(n,C))d
−⊗−

M(GL(n,C))d

commutes. The action of X[n] with weight n′ corresponds to the action
of X[h] with weight 1. Recall that (ςx0

n,d)
−1(det−1(O(x0)

⊗d)) is Ah/Sh
∼=

Zh−1/Sh and clearly the action (with weight 1) of X[h] on Ah corresponds
naturally to the action (with weight 1) of X[h] on Zh−1. For every x ∈X[h],
one has that x=−(h− 1)x, and then the action of X[h] commutes with the
action of the symmetric group Sh. Therefore, we have an isomorphism

(16) ς̌x0

n,d̃
: Zh−1/Sh×X[h] =X × h−1· · · ×X/Sh×X[h]

∼=−→M
(
PGL(n,C)

)
d̃
,

induced by the restriction of ςx0

n,d to (sumh
X)−1(x0).

Remark 2.2. Since Zh−1/(Sh×X[h]) = (Zh−1/X[h])/Sh, Lemma A.2
implies that

M
(
PGL(n,C)

)
d̃
∼= Zh−1/Sh =X × h−1· · · ×X/Sh,
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although the action of Sh is different from the action used in (13). Note that
the action of X[h] on Zh−1 is free by Lemma A.1.

Remark 2.3. Recalling (7) one has (sumh
X)−1(x)∼= Ph−1 for every x ∈X .

The Abelian group structure of X gives an action of X[h] on SymhX that
preserves the fibres of sumh

X and hence an action of X[h] on Ph−1. Using this
action, we have

M
(
PGL(n,C)

)
d̃
∼= Ph−1/X[h].

2.3. Symplectic and orthogonal bundles. A symplectic bundle or
Sp(2m,C)-bundle over the elliptic curve X is a pair (E,Ω), where E is a
vector bundle of rank 2m over X and Ω ∈H0(X,Λ2E∗) is a non-degenerate
symplectic form on E. The Sp(2m,C)-bundles (E,Ω) and (E′,Ω′) are iso-
morphic if there exists an isomorphism f : E′ →E such that Ω′ = f tΩf .

Similarly, an orthogonal bundle or O(n,C)-bundle over X is a pair (E,Q),
where E is a vector bundle of rank n and Q ∈ H0(X,Sym2E∗) is a non-
degenerate symmetric form on E. Again, two O(n,C)-bundles (E,Q) and
(E′,Q′) are isomorphic if there exists an isomorphism f : E′ → E such that
Q′ = f tQf .

A special orthogonal bundle or SO(n,C)-bundle is a triple (E,Q, τ) such
that (E,Q) is a O(n,C)-bundle and τ is a trivialization of detE (a never
vanishing section of detE) compatible with Q, that is τ2 = (detQ)−1. An
isomorphism between the SO(n,C)-bundles (E1,Q1, τ1) and (E2,Q2, τ2) is an
isomorphism of the underlying O(n,C)-bundles that sends τ1 to τ2. Note that
the existence of a trivialization of detE implies that detE ∼=O. A direct sum
of various SO(ni,C)-bundles is the SO(n,C)-bundle given by the O(n,C)-
bundle which is the direct sum of the underlying O(ni,C)-bundles plus the
trivialization of the determinant induced by those of the SO(ni,C)-bundles.

Symplectic and orthogonal bundles are particular cases of pairs (E,Θ),
where E is a vector bundle and Θ : E →E∗ is an isomorphism that satisfies
Θ = bΘt. If b= 1, we have an O(n,C)-bundle, and if b=−1 it is a Sp(2m,C)-
bundle.

Given the isomorphism Θ : E → E∗, for every subbundle F of E we can
define its orthogonal complement with respect to Θ,

F⊥Θ =
{
v ∈E|Θ(v)(u) = 0 for every u ∈ F

}
.

A subbundle is isotropic with respect to Θ if F ⊆ F⊥Θ . It is coisotropic if
F⊥Θ ⊆ F . Since E ∼=E∗, the exact sequence

0−→ F⊥Θ −→E −→ F ∗ −→ 0

implies that

(17) deg
(
F⊥Θ

)
= deg(F ).
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Let (E,Θ) be a Sp(2m,C)-bundle or an O(n,C)-bundle. Note that μ(E) =
0 since E ∼= E∗. We say that (E,Θ) is semistable if and only if, for any
isotropic subbundle F of E,

μ(F )≤ μ(E) = 0,

and it is stable if the above inequality is strict for any proper isotropic sub-
bundle. Recall that every parabolic subgroup of O(n,C) or Sp(2m,C) may
be described as the subgroup that preserves a partial flag of isotropic sub-
spaces in the standard representation (see for instance [FH, Section 23.3]). By
[Ra2, Proposition 3.12], if (E,Θ) is a semistable Sp(2m,C)-bundle or O(n,C)-
bundle, there exists a reduction of structure group to a parabolic subgroup
giving a Jordan–Hölder filtration,

0 =E0 �E1 � · · ·�Ek−1 �Ek ⊆E⊥Θ

k �E⊥Θ

k−1 � · · ·�E⊥Θ
1 �E⊥Θ

0 =E,

where for every i≤ k, Ei/Ei−1 and E⊥Θ

i−1/E
⊥Θ

i are stable vector bundles and

Θ induces an isomorphism θi : Ei/Ei−1

∼=−→ (E⊥Θ
i−1/E

⊥Θ
i )∗. If E⊥Θ

k /Ek is non-

zero, Θ induces a non-degenerate quadratic form Θ̃ on it in such a way that

(E⊥Θ

k /Ek, Θ̃) is a stable Sp(2m′,C) or O(n′,C)-bundle.
For every semistable Sp(2m,C) or O(n,C)-bundle (E,Θ) we define its as-

sociated graded object

gr(E,Θ) :=
(
E⊥Θ

k /Ek, Θ̃
)
⊕

k⊕
i=1

(
(Ei/Ei−1)⊕

(
E⊥Θ

i−1/E
⊥Θ
i

)
,

(
0 bθti
θi 0

))
,

where b=−1 for Sp(2m,C)-bundles and b= 1 for O(n,C)-bundles. As hap-
pens in the case of vector bundles, the Jordan–Hölder filtration may not be
unique but gr(E,Θ) is unique up to isomorphism. We say that a semistable
Sp(2m,C) or O(n,C)-bundle (E,Θ) is polystable if (E,Θ) ∼= gr(E,Θ). The
notion of S-equivalence is clear.

The stability notions of principal bundles were introduced by Ramanathan
[Ra1] in terms of the degrees of line bundles constructed with antidominant
characters applied to the reduction of the structure group of the bundle to
parabolic subgroups. By [Ra1, Remark 3.1] and [R, Remark 4.3] the notions
of stability, semistability and polystability of O(n,C) and SO(n,C)-bundles
are equivalent to those described above. This statement can be extended to
the case of symplectic bundles.

Since SO(2,C)∼=C∗ is Abelian, every SO(2,C)-bundle is stable. Whenever
n > 2 we have that Z(SO(n,C)) is a subgroup of Z(O(n,C)) and then by
[Ra1, Proposition 7.1 and Corollary to Theorem 7.1], a SO(n,C)-bundle is
semistable, stable or polystable if it is semistable, stable or polystable as
an O(n,C)-bundle. The graded object of a SO(n,C)-bundle is given by the
graded object of the underlying O(n,C)-bundle:

gr(E,Q, τ) =
(
gr(E,Q), τ

)
.
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S-equivalence of families of symplectic, orthogonal and special orthogonal
bundles is defined pointwise, as in the case of families of vector bundles. The
moduli functor associating to any scheme Y the set of S-equivalence classes of
families of semistable Sp(2m,C), O(n,C) or SO(n,C)-bundles parametrized
by Y posseses a coarse moduli space, which we denote by M(Sp(2m,C)),
M(O(n,C)) orM(SO(n,C)). Although Ramanathan works in [Ra2] and [Ra3]
with principal bundles over smooth projective curves of genus g ≥ 2, his con-
struction can be extended to the g = 1 case and therefore these moduli spaces
exist and are normal projective varieties.

Let us recall the following well known result about symplectic and othog-
onal bundles over smooth projective curves of arbitrary genus.

Proposition 2.4. Let (E,Θ) be a semistable Sp(2m,C) or O(n,C)-bundle.
Then E is semistable. Let n > 2 and let (E,Q, τ) be a semistable SO(n,C)-
bundle. Then E is semistable.

Proof. The proof of the semistability of the underlying vector bundle of a
semistable orthogonal bundle is given in [R, Proposition 4.2] (see also Propo-
sition 4.6 below). The same proof applies to semistable symplectic bundles.
Since for n > 2 a SO(n,C)-bundle is semistable if and only if its underlying
orthogonal bundle is semistable, the result can be extended to special orthog-
onal bundles. �

We denote the elements of Pic0(X)[2] by O (= J0), J1, J2 and J3.

Theorem 2.5. Suppose n > 4. We have

M st
(
O(1,C)

)
=

3⊔
a=0

{(
Est

1,a,Q
st
1

)}
,

M st
(
O(2,C)

)
=

5⊔
a′=0

{(
Est

2,a,Q
st
2

)}
,

M st
(
O(3,C)

)
=

3⊔
a=0

{(
Est

3,a,Q
st
3

)}
,

M st
(
O(4,C)

)
=

{(
Est

4,0,Q
st
4

)}
,

M st
(
O(n,C)

)
= ∅,

where (Est
k,a,Q

st
k ) are defined in (18), (19), (20) and (21). For every m> 0,

M st
(
Sp(2m,C)

)
= ∅.

Proof. By [R, Proposition 4.5], the orthogonal bundle (E,Q) is stable if and
only if (E,Q) is an orthogonal direct sum of subbundles (Ei,Qi) which are
mutually non-isomorphic with each Ei stable. The only stable vector bundles
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with degree 0 are the line bundles, so Ei are line bundles. Every O(1,C)-
bundle is isomorphic to (Ja,1) so the only possible stable O(n,C)-bundles
are (

Est
1,a,Q

st
1

)
= (Ja,1),(18) (

Est
2,a′ ,Qst

2

)
= (Jbi ,1)⊕ (Jbj ,1),(19)

where a′ indexes the pairs {i, j} such that bi �= bj ,

(20)
(
Est

3,a,Q
st
3

)
= (Jb1 ,1)⊕ (Jb2 ,1)⊕ (Jb3 ,1),

where bi �= a and bi �= bj if i �= j, and

(21)
(
Est

4,0,Q
st
4

)
= (J0,1)⊕ (J1,1)⊕ (J2,1)⊕ (J3,1).

The proof of [R, Proposition 4.5] can be extended to symplectic bundles.
Then, since there are no stable vector bundles of even rank and degree 0,
there are no stable Sp(2m,C)-bundles. �

Corollary 2.6. Let n �= 2. Any stable SO(n,C)-bundle is isomorphic to
one of

(1) the SO(1,C)-bundle (Est
1,0,Q

st
1 ,1) = (O,1,1),

(2) the SO(3,C)-bundle (Est
3,0,Q

st
3 ,1),

(3) the SO(4,C)-bundle (Est
4,0,Q

st
4 ,1).

The following is immediate after the definition of the associated graded
object, Theorem 2.5 and Corollary 2.6.

Corollary 2.7. Let (E,Θ) be a polystable Sp(2m,C), O(n,C) or
SO(n,C)-bundle. Then E is polystable.

Every SO(2,C)-bundle is stable and isomorphic to

(E,Q, τ)∼=
(
L⊕L∗,

(
1

1

)
,
√
−1

)
,

where L is a line bundle. The degree of a SO(2,C)-bundle is the degree of L.
We can now give a description of the polystable Sp(2m,C), O(n,C) and

SO(n,C)-bundles.

Proposition 2.8. A Sp(2m,C)-bundle over an elliptic curve is polystable
if and only if it is isomorphic to a direct sum of polystable Sp(2,C)-bundles.

An O(n,C)-bundle is polystable if and only if it is isomorphic to a di-
rect sum of polystable O(2,C)-bundles or it is isomorphic to a direct sum of
polystable O(2,C)-bundles and a stable O(m,C)-bundle (where m= 1,3 or 4).

Let n > 2. Let (E,Q, τ) be a polystable SO(n,C)-bundle with Stiefel–
Whitney class w2,

(1) if n= 2n′ and w2 = 0, then (E,Q, τ) is a direct sum of mn,w2 = n′ stable
SO(2,C)-bundles of trivial degree,
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(2) if n= 2n′ + 1 and w2 = 0, then (E,Q, τ) is a direct sum of (Est
1,0,Q

st
1 ,1)

and mn,w2 = n′ stable SO(2,C)-bundles of trivial degree,
(3) if n= 2n′ + 1 and w2 = 1, then (E,Q, τ) is a direct sum of (Est

3,0,Q
st
3 ,1)

and mn,w2 = n′ − 1 stable SO(2,C)-bundles of trivial degree,
(4) if n= 2n′ and w2 = 1, then (E,Q, τ) is a direct sum of (Est

4,0,Q
st
4 ,1) and

mn,w2 = n′ − 2 stable SO(2,C)-bundles of trivial degree.

Proof. By definition (E,Θ) is polystable if and only if it is isomorphic to
gr(E,Θ) and then decomposes as follows,

(E,Θ)∼=
(
E⊥Θ

k /Ek, Θ̃
)
⊕

k⊕
i=1

(
(Ei/Ei−1)⊕

(
E⊥Θ

i−1/E
⊥Θ
i

)
,

(
0 bθti
θi 0

))
,

where (E⊥Θ

k /Ek, Θ̃) is stable (if it is not zero) and (Ei/Ei−1) and (E⊥Θ
i−1/E

⊥Θ
i )

are stable vector bundles of degree 0 and therefore have rank 1. So the factors(
(Ei/Ei−1)⊕

(
E⊥Θ

i−1/E
⊥Θ
i

)
,

(
0 bθti
θi 0

))
are polystable Sp(2,C) or O(2,C)-bundles. This, together with Theorem 2.5,
proves the statement for Sp(2m,C) and O(n,C)-bundles.

Every SO(2,C)-bundle is stable. Recall that for n > 2, a SO(n,C)-bundle
is polystable if and only if the underlying O(n,C)-bundle is polystable.

Let us take n > 2. By the description of polystable O(n,C)-bundles we have
given above, a SO(n,C)-bundle is polystable if and only if it is a direct sum
of stable SO(2,C)-bundles of trivial degree and perhaps a SO(m,C)-bundle
with stable underlying O(m,C)-bundle. From Theorem 2.5, we see that the
only possible SO(m,C)-bundles with stable underlying O(m,C)-bundles are
the stable SO(m,C)-bundles given in Corollary 2.6.

Thanks to [FM1, Proposition 7.7 and Theorem 7.8], if (E,Q, τ) is a
semistable SO(2n′,C)-bundle that lifts to a Spin(2n′,C)-bundle, then the un-
derlying vector bundle of gr(E,Q, τ) is isomorphic to

⊕m
i=1(Li ⊕L∗

i ). On the
other hand, if (E,Q, τ) does not lift to the group Spin(2n′,C), its underlying
vector bundle is isomorphic to O⊕ J1 ⊕ J2 ⊕ J3 ⊕

⊕m−2
i=1 (Li ⊕L∗

i ). This im-
plies that the SO(2n′,C)-bundles of type 1 lift to Spin(2n′,C) and therefore
they have trivial Stiefel–Whitney class, while the SO(2n′,C)-bundles of type
4 do not lift to Spin(2n′,C) and they have non-trivial Stiefel–Whitney class.

The odd case is analogous. �

Theorem 2.9. We have

M st
(
SO(1,C)

)
0
=

{[(
Est

1,0,Q
st
1 ,1

)]
∼=

}
,

M st
(
SO(1,C)

)
1
= ∅,

M st
(
SO(2,C)

)
d
=M

(
SO(2,C)

)
d
∼=X,

M st
(
SO(3,C)

)
0
= ∅,
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M st
(
SO(3,C)

)
1
=

{[(
Est

3,0,Q
st
3 ,1

)]
∼=

}
,

M st
(
SO(4,C)

)
0
= ∅,

M st
(
SO(4,C)

)
1
=

{[(
Est

4,0,Q
st
4 ,1

)]
∼=

}
.

Suppose n > 4 and let w2 be either 0 or 1, then

M st
(
SO(n,C)

)
w2

= ∅.

Proof. This is a straightforward consequence of Corollary 2.6 and Propo-
sition 2.8. The description of M(SO(2,C)) follows from the isomorphism
SO(2,C)∼=C∗. �

Lemma 2.10. Let (E1,Θ1) and (E2,Θ2) be two polystable Sp(2m,C) or
O(n,C)-bundles. If E1

∼=E2, then (E1,Θ1)∼= (E2,Θ2).

Proof. If (Ej ,Θj) are polystable O(n,C)-bundles, then by Proposition 2.8
they have, up to isomorphism, the form

(Ej ,Θj)∼=
⊕
i

(Jaj,i ,1)⊕
⊕
k

(
Lj,k ⊕L∗

j,k,

(
1

1

))
.

If E1
∼= E2, we have, after possible reordering, that Ja1,i = Ja2,i and L1,k =

L2,k or L1,k = L∗
2,k. Since(
Lj,k ⊕L∗

j,k,

(
1

1

))
∼=

(
L∗
j,k ⊕Lj,k,

(
1

1

))
,

it follows that (E1,Θ1) and (E2,Θ2) are isomorphic O(n,C)-bundles. The
statement for Sp(2m,C)-bundles follows from the discussion above and the
fact that (

Lj,k ⊕L∗
j,k,

(
−1

1

))
∼=

(
L∗
j,k ⊕Lj,k,

(
−1

1

))
,

where the isomorphism is given by(√
−1

−
√
−1

)
. �

Lemma 2.11. Let (E1,Q1, τ1) and (E2,Q2, τ2) be two polystable SO(n,C)-
bundles with invariants (n,w2) equal to (2n′,1), (2n′ +1,0) or (2n′ +1,1). If
(E1,Q1)∼= (E2,Q2), then (E1,Q1, τ1)∼= (E2,Q2, τ2).

Proof. By Proposition 2.8, a SO(n,C)-bundle whose invariants (n,w2) are
equal to (2n′,1), (2n′ + 1,0) or (2n′ + 1,1), has the form

(Ej ,Qj , τj)∼=
(
Est

k,0,Q
st
k ,1

)
⊕

⊕
i

(Ei,j ,Qi,j , τi,j),

where k = 1, 3 or 4 and the (Ei,j ,Qi,j , τi,j) are stable SO(2,C)-bundles of
trivial degree.
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Recall that an isomorphism of SO(n,C)-bundles is an isomorphism of
O(n,C)-bundles that preserves the trivialization τ . If (E1,Q1) ∼= (E2,Q2),
then the O(2,C)-bundles (E1,j ,Q1,j) and (E2,j ,Q2,j) are isomorphic, possi-
bly after reordering of the factors. For this order, either

(E1,j ,Q1,j , τ1,j)∼= (E2,j ,Q2,j , τ2,j),

or

(E1,j ,Q1,j , τ1,j)∼= (E2,j ,Q2,j ,−τ2,j).

On the other hand, for k = 1, 3 and 4, we have(
Est

k,0,Q
st
k ,1

) ∼= (
Est

k,0,Q
st
k ,−1

)
since both SO(k,C)-bundles are stable and by Theorem 2.9 there is a unique
stable SO(k,C)-bundle up to isomorphism.

As a consequence, we can construct a morphism that inverts the trivial-
ization τj combined with the morphism that inverts the trivialization of the
stable factor. This leaves the trivialization τ of the total SO(n,C)-bundle
unchanged. �

Lemma 2.12. Let (E1,Q1, τ1) and (E2,Q2, τ2) be two polystable SO(2m,C)-
bundles with w2 = 0 of the form

(Ei,Qi, τi)∼=
m⊕
j=1

(Ei,j ,Qi,j , τi,j),

where the (Ei,j ,Qi,j , τi,j) are SO(2,C)-bundles of degree 0. The SO(n,C)-
bundles are isomorphic if and only if one can form m pairs of the form(

(E1,i� ,Q1,i� , τ1,i�), (E2,j� ,Q2,j� , τ2,j�)
)

such that for every 
, we have (E1,i� ,Q1,i�)
∼= (E2,j� ,Q2,j�) and the number of

pairs such that

(E1,i� ,Q1,i� , τ1,i�)� (E2,j� ,Q2,j� , τ2,j�)

is even.

Proof. If (E1,Q1) and (E2,Q2) are isomorphic O(2m,C)-bundles, one can
form m pairs of isomorphic O(2,C)-bundles (E1,i� ,Q1,i�) and (E2,j� ,Q2,j�).
The associated SO(2,C)-bundles, (E1,i� ,Q1,i� , τ1,i�) and (E2,j� ,Q2,j� , τ2,j�),
satisfy

(E1,i� ,Q1,� , τ1,�)
∼= (E2,j� ,Q2,j� , τ2,j�)

or

(E1,i� ,Q1,� , τ1,�)
∼= (E2,j� ,Q2,j� ,−τ2,j�).

In the second situation, the SO(2,C)-bundles are not isomorphic unless Lj
∼=

L∗
j . If we have an isomorphism of O(2m,C)-bundles that inverts an even

number of τj then the product of all of them remains unchanged and then the
SO(2m,C)-bundles are isomorphic.



60 E. FRANCO, O. GARCIA-PRADA AND P. E. NEWSTEAD

If our isomorphism of O(2m,C)-bundles inverts an odd number of τj , then
the product of all of them changes its sign and then the SO(2m,C)-bundles
cannot be isomorphic. �

Recall the universal family of line bundles Vx0
1,0 of degree 0. Let us note

that Λ2(Vx0
1,0 ⊕ (Vx0

1,0)
∗)∼= Vx0

1,0 ⊗ (Vx0
1,0)

∗ ∼=OX×X and take the non-vanishing

section of Λ2(Vx0
1,0 ⊕ (Vx0

1,0)
∗),

Ω =

(
0 −1
1 0

)
.

Then

Ṽx0
2 =

(
Vx0
1,0 ⊕

(
Vx0
1,0

)∗
,Ω

)
is a family of polystable Sp(2,C)-bundles parametrized by X . If, instead of
Ω, we take the non-vanishing section of Sym2(Vx0

1,0 ⊕ (Vx0
1,0)

∗),

Q=

(
0 1
1 0

)
,

we obtain a family of polystable O(2,C)-bundles parametrized by X ,

V̊x0
2 =

(
Vx0
1,0 ⊕

(
Vx0
1,0

)∗
,Q

)
.

We see that (detQ)−1 is the section −1 of OX×X . Then the section τ of
det(Vx0

1,0 ⊗ (Vx0
1,0)

∗) can be taken to be the imaginary number
√
−1 or −

√
−1.

We fix τ =
√
−1 and we construct the following family of SO(2,C)-bundles of

degree 0

Vx0

2 =
(
Vx0
1,0 ⊕

(
Vx0
1,0

)∗
,Q,

√
−1

)
.

Remark 2.13. The restriction of Ṽx0
2 and V̊x0

2 to two different points of

X , x1 and x2, give S-equivalent (isomorphic) bundles (Ṽx0
2 )x1 ∼S (Ṽx0

2 )x2 and

(V̊x0
2 )x1 ∼S (V̊x0

2 )x2 if and only if x1 =−x2.

Now we define Ṽx0
2m to be the family of polystable Sp(2m,C)-bundles in-

duced by taking the fibre product of m copies of Ṽx0
2 , which is parametrized

by Zm =X× m· · ·×X . By Proposition 2.8, this family includes representatives
of all S-equivalence classes of semistable Sp(2m,C)-bundles. It follows that
M(Sp(2m,C)) is connected.

Recall the stable O(k,C)-bundle (Est
k,a,Q

st
k ) appearing in Theorem 2.5. De-

fine V̊x0

n,k,a to be the family of polystable O(n,C)-bundles given by the direct

sum of (Est
k,a,Q

st
k ) and mk =

n−k
2 copies of V̊x0

2 . This family is parametrized

by Zmk
=X ×mk· · · ×X .

Analogously, for all values of (n,w2), we define families of polystable

SO(n,C)-bundles Vx0

n,w2
as follows:



HIGGS BUNDLES OVER ELLIPTIC CURVES 61

• Vx0

2m,0 is given by m copies of Vx0

2 and therefore it is parametrized by Zm =

X × m· · · ×X ,
• Vx0

2m+1,0 is given by the direct sum of (Est
1,0,Q

st
1 ,1) and m copies of Vx0

2 and

therefore it is parametrized by Zm =X × m· · · ×X ,
• Vx0

2m+1,1 is given by the direct sum of (Est
3,0,Q

st
3 ,1) and m− 1 copies of Vx0

2

and therefore it is parametrized by Zm−1 =X ×m−1· · · ×X ,

• Vx0

2m,1 is given by the direct sum of (Est
4,0,Q

st
4 ,1) and m− 2 copies of Vx0

2

and therefore it is parametrized by Zm−2 =X ×m−2· · · ×X .

It follows from Proposition 2.8 that M(SO(n,C)) has two connected com-
ponents, denoted by M(SO(n,C))w2 , where w2 = 0,1.

The symmetric group Sm acts naturally on (Z2 ×
m· · · ×Z2) permuting the

factors. Using this action, we define Γm as the semidirect product

(22) Γm := (Z2 ×
m· · · ×Z2)�Sm

determined by the commutation relations σc= (σ · c)σ, for any σ ∈Sm and

any c ∈ (Z2 ×
m· · · ×Z2).

The permutation action of the symmetric group and the action of Z2 on

X given by −1 · x=−x induce an action of Γm on Zm =X × m· · · ×X . The
quotient of this space by Γm under this action is

Zm/Γm =X × m· · · ×X/Γm = Symm(X/Z2)∼= Symm
(
P1

) ∼= Pm.

Let Dm be the subgroup of Z2×
m· · ·×Z2 given by the tuples c= (ci, . . . , cm)

such that only an even number of ci are equal to −1. We recall that Γm is

the semidirect product of (Z2×
m· · ·×Z2) and Sm. We define Δm ⊂ Γm as the

subgroup

(23) Δm := {σc ∈ Γm such that c ∈Dm}.

The action of Γm on X × m· · · ×X induces an action of Δm.

Remark 2.14. Consider the families Ṽx0
2m, V̊x0

n,k,a and Vx0

n,w2
when (n,w2)

is (2m,1), (2m + 1,0) or (2m + 1,1). These families are parametrized by

Zm′ =X×m′

· · ·×X for somem′. By Remark 2.13 and Lemma 2.11 we have that
any two points z1, z2 ∈ Zm′ parametrize isomorphic (S-equivalent) bundles if
and only if z1 = γ · z2 for some γ ∈ Γm.

Remark 2.15. Let z1, z2 ∈ Zm =X × m· · · ×X . It follows by Lemma 2.12
that (Vx0

2m,0)z1 is isomorphic (S-equivalent) to (Vx0

2m,0)z2 if and only if there
exists γ ∈Δm such that γ · z1 = z2.

Proposition 2.16. The connected components of M(O(2m + 1,C)) are
indexed by k = 1,3 and a= 0, . . . , nk − 1 where n1 = 4, and n3 = 4.
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The connected components of M(O(2,C)) are indexed by k = 0,2 and a=
0, . . . , nk − 1 where n0 = 1 and n2 = 6.

If m > 1, the connected components of M(O(2m,C)) are indexed by k =
0,2,4 and a= 0, . . . , nk − 1 where n0 = 1, n2 = 6 and n4 = 1.

Proof. Since the families V̊x0

n,k,a are parametrized by the connected va-

riety Z(n−k)/2, all the S-equivalence classes of semistable O(n,C)-bundles
parametrized by V̊x0

n,k,a lie in the same connected component of M(O(n,C)).
On the other hand if (Est

k,a,Q
st
k ) � (Est

k′,a′ ,Qst
k′), we observe that there

is no family of semistable O(n,C)-bundles connecting an S-equivalence

class parametrized by V̊x0

n,k,a and an S-equivalence class parametrized by

V̊x0

n,k′,a′ . �

Theorem 2.17. Denote the connected components of M(O(n,C)) by
M(O(n,C))k,a where k, a are as in Proposition 2.16. There are natural iso-
morphisms

ς̃x0
m : Zm/Γm = Symm(X/Z2)

∼=−→M
(
Sp(2m,C)

)
,

ς̊x0

n,k,a : Z(n−k)/2/Γ(n−k)/2 = Sym(n−k)/2(X/Z2)
∼=−→M

(
O(n,C)

)
k,a

,

ςx0
2m,0 : Zm/Δm

∼=−→M
(
SO(2m,C)

)
0
.

For (n,w2) = (2m+1,0), (2m+1,1) and (2m,1) we set respectively m′ =m,
m− 1 and m− 2. There are natural isomorphisms

ςx0
n,w2

: Zm′/Γm′ = Symm′
(X/Z2)

∼=−→M
(
SO(n,C)

)
w2

.

Proof. The family Ṽx0
m induces a morphism

νṼx0
m

: Zm =X × m· · · ×X −→M
(
Sp(2m,C)

)
,

and by Remark 2.14 it factors through ς̃x0
m . By Zariski’s Main Theorem, this

map is an isomorphism since it is bijective and M(Sp(2m,C)) is normal.

Using V̊x0

n,k,a and Vx0

n,w2
, we describe M(O(n,C))k,a and M(SO(n,C))w2 .

�

3. Higgs bundles over elliptic curves

3.1. Higgs bundles. A Higgs bundle over an elliptic curve X is a pair
(E,Φ), where E is a vector bundle on X and Φ is an endomorphism of E called
the Higgs field. Two Higgs bundles, (E1,Φ1) and (E2,Φ2), are isomorphic if
there exists an isomorphism of vector bundles f : E1 → E2 such that Φ2 =
f ◦Φ1 ◦ f−1.

Given the Higgs bundle (E,Φ), we say that a subbundle F ⊂ E is Φ-
invariant if Φ(F ) is contained in F . A Higgs bundle (E,Φ) is semistable if
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the slope of any Φ-invariant subbundle F satisfies

μ(F )≤ μ(E).

The Higgs bundle is stable if the above inequality is strict for every proper
Φ-invariant subbundle and polystable if it is semistable and isomorphic to a
direct sum of stable Higgs bundles.

If (E,Φ) is semistable, then it has a Jordan–Hölder filtration of Φ-invariant
subbundles

0 =E0 �E1 �E2 � · · ·�Em =E,

where the restriction of the Higgs field to every quotient Ei/Ei−1 induces a

stable Higgs bundle (Ei/Ei−1, Φ̃i) with slope μ(Ei/Ei−1) = μ(E). For every
semistable Higgs bundle (E,Φ), we define its associated graded object

gr(E,Φ) :=
⊕
i

(Ei/Ei−1, Φ̃i).

Although the Jordan–Hölder filtration may not be uniquely determined by
(E,Φ), the isomorphism class of gr(E,Φ) is. Two semistable Higgs bundles
(E,Φ) and (E′,Φ′) are said to be S-equivalent if gr(E,Φ)∼= gr(E′,Φ′). Denote
by [(E,Φ)]S the S-equivalence class of (E,Φ).

A family of Higgs bundles parametrized by Y is a pair E = (V ,Φ), where V
is a family of vector bundles parametrized by Y and Φ is a section of EndV .
For every y ∈ Y , we will write Ey for the Higgs bundle over X obtained by
restricting E to X × {y}. Two families of semistable Higgs bundles are S-
equivalent if they are pointwise S-equivalent.

Consider the moduli functor that associates to every scheme Y the set
of S-equivalence classes of families of semistable Higgs bundles parametrized
by Y . By [Ni] and [Si1] there exists a coarse moduli space M(GL(n,C))d
of S-equivalence classes of semistable Higgs bundles of rank n and degree d
associated to this moduli functor. The points of M(GL(n,C))d correspond
to S-equivalence classes of semistable Higgs bundles and can be identified
also with isomorphism classes of polystable Higgs bundles since in every S-
equivalence class there is always a polystable Higgs bundle which is unique
up to isomorphism. The locus of stable Higgs bundles Mst(GL(n,C))d is an
open subvariety of M(GL(n,C))d.

3.2. Special linear and projective Higgs bundles. A special linear or
SL(n,C)-Higgs bundle over the elliptic curve X is a triple (E,Φ, τ) where
(E,τ) is a SL(n,C)-bundle and Φ is an endomorphism of E such that trΦ = 0.
As we saw in Section 2.2, we can forget about τ and then a SL(n,C)-Higgs
bundle over X is a Higgs bundle (E,Φ) with trivial determinant and traceless
Higgs field, that is, detE ∼= O, trΦ = 0. Two SL(n,C)-Higgs bundles are
isomorphic if they are isomorphic Higgs bundles.

A SL(n,C)-Higgs bundle is semistable, stable or polystable if it is, re-
spectively, a semistable, stable or polystable Higgs bundle. Two semistable
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SL(n,C)-Higgs bundles are S-equivalent if they are S-equivalent Higgs bun-
dles, and two families of SL(n,C)-Higgs bundles are S-equivalent if they are
pointwise S-equivalent. Using the moduli problem for Higgs bundles, we de-
fine the moduli functor for SL(n,C)-Higgs bundles by restricting to trivial
determinant and traceless Higgs fields. We denote by M(SL(n,C)) the coarse
moduli space associated to this moduli problem and by Mst(SL(n,C)) the
stable locus, which is a Zariski open subset of M(SL(n,C)).

Take the morphism (det, tr) from M(GL(n,C))0 to Pic0(X) ×H0(X,O)
and note that

(24) M
(
SL(n,C)

) ∼= (det, tr)−1(O,0)⊂M
(
GL(n,C)

)
0
.

A PGL(n,C)-Higgs bundle over the elliptic curve X is a pair (P(E),Φ)
where P(E) is a projective bundle given by the vector bundle E and Φ is
an element of H0(X,EndE) with trΦ = 0. There exists a natural isomor-
phism between EndE and End(L⊗E) and then an isomorphism between the
PGL(n,C)-Higgs bundles (P(E1),Φ1) and (P(E2),Φ2) corresponds to an iso-

morphism f : E1

∼=−→ E2 ⊗ L, for some L ∈ Pic(X), such that f ◦Φ1 ◦ f−1 =
Φ2 ⊗ idL.

A PGL(n,C)-Higgs bundle (P(E),Φ) is semistable, stable or polystable
if (E,Φ) is respectively a semistable, stable or polystable Higgs bundle.
If (P(E),Φ) is semistable and gr(E,Φ) = (grE,grΦ), we define the associ-
ated graded object of (P(E),Φ) as the pair (P(grE),grΦ). Two semistable
PGL(n,C)-Higgs bundles are S-equivalent if they have isomorphic graded ob-
jects.

Following Remark 2.1, we require that a family of PGL(n,C)-Higgs bundles
(P(E),Φ) comes from a family of Higgs bundles (E ,Φ). Define S-equivalence
of families of semistable PGL(n,C)-Higgs bundles pointwise and consider the
moduli functor that associates to every scheme Y the set of S-equivalence
classes of families of semistable PGL(n,C)-Higgs bundles of topological type

d̃ parametrized by Y . There exists a coarse moduli space M(PGL(n,C))d̃
associated to this functor and, if d is a representative of d̃, it can be proved
that M(PGL(n,C))d̃ is the quotient of (tr)−1(0)⊂M(GL(n,C))d by Pic(X)0

and therefore

(25) M
(
PGL(n,C)

)
d̃
∼= (det, tr)−1

(
O(x0)

⊗d,0
)
/Pic0(X)[n].

3.3. Symplectic and orthogonal Higgs bundles. A Sp(2m,C)-Higgs
bundle over the elliptic curve X is a triple (E,Ω,Φ), where (E,Ω) is a
Sp(2m,C)-bundle and Φ ∈ H0(X,EndE) is an endomorphism of E which
anticommutes with Ω, that is, for every x ∈X and every u, v ∈Ex,

Ω
(
u,Φ(v)

)
=−Ω

(
Φ(u), v

)
.
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Two Sp(2m,C)-Higgs bundles, (E,Ω,Φ) and (E′,Ω′,Φ′) are isomorphic if
there exists an isomorphism of Sp(2m,C)-bundles f : (E′,Ω′)→ (E,Ω) such
that Φ′ = f−1Φf .

An O(n,C)-Higgs bundle (resp. a SO(n,C)-Higgs bundle) over X is a triple
(E,Q,Φ) (resp. a quadruple (E,Q,Φ, τ)), where (E,Q) is an O(n,C)-bundle
(resp. (E,Q, τ) is a SO(n,C)-bundle) and Φ ∈H0(X,EndE) is an endomor-
phism of E which anticommutes with Q, that is, for every x ∈X and every
u, v ∈Ex,

Q
(
u,Φ(v)

)
=−Q

(
Φ(u), v

)
.

We say that two O(n,C)-Higgs bundles (resp. SO(n,C)-Higgs bundles)
(E,Q,Φ) and (E′,Q′,Φ′) (resp. (E,Q,Φ, τ) and (E′,Q′,Φ′, τ ′)) are isomor-
phic if there exists an isomorphism of O(n,C)-bundles f : (E′,Q′)→ (E,Q)
(resp. an isomorphism of SO(n,C)-bundles f : (E′,Q′, τ ′) → (E,Q, τ)) such
that Φ′ = f−1Φf .

The following notions of stability, semistability and polystability of
Sp(2m,C), O(n,C) and SO(n,C)-Higgs bundles are the notions of stabil-
ity worked out in [GGM] (see also [AG] for the stability of SO(n,C)-Higgs
bundles).

Let (E,Θ,Φ) be a Sp(2m,C)-Higgs bundle or an O(n,C)-Higgs bundle.
Note that μ(E) = 0 since E ∼=E∗. We say that (E,Θ,Φ) is semistable if and
only if, for any Φ-invariant isotropic subbundle F of E,

μ(F )≤ μ(E) = 0,

and it is stable if the above inequality is strict for any proper Φ-invariant
isotropic subbundle. If (E,Θ,Φ) is a semistable Sp(2m,C)-Higgs bundle or
O(n,C)-Higgs bundle, we have a Jordan–Hölder filtration (see for instance
[GGM]) of Φ-invariant subbundles, consisting of

0 =E0 �E1 � · · ·�Ek−1 �Ek ⊆E⊥Θ

k �E⊥Θ

k−1 � · · ·�E⊥Θ
1 �E⊥Θ

0 =E,

such that, if we denote by Φi and Φ
′
i the Higgs fields on Ei/Ei−1 and

E⊥Θ
i−1/E

⊥Θ
i induced by Φ, we have for every i ≤ k that (Ei/Ei−1,Φi) and

(E⊥Θ
i−1/E

⊥Θ
i ,Φ

′
i) are stable Higgs bundles and Θ induces an isomorphism

θi : (Ei/Ei−1,Φi)
∼=−→ ((E⊥Θ

i−1/E
⊥Θ
i )∗,−(Φ

′
i)

t). If E⊥Θ

k /Ek is non-zero and Φ̃
is the Higgs field on it induced by Φ, Θ induces a non-degenerate symplectic or

symmetric form Θ̃ anticommuting with Φ̃, in such a way that (E⊥Θ

k /Ek, Θ̃, Φ̃)
is a stable Sp(2m′,C) or O(n′,C)-Higgs bundle.

We define the associated graded object of a semistable Sp(2m,C) or O(n,C)-
Higgs bundle (E,Θ,Φ) in terms of a Jordan–Hölder filtration,

gr(E,Θ,Φ) :=
(
E⊥Θ

k /Ek, Θ̃, Φ̃
)

⊕
k⊕

i=1

(
(Ei/Ei−1)⊕

(
E⊥Θ

i−1/E
⊥Θ
i

)
,

(
0 bθti
θi 0

)
,

(
Φi

Φ
′
i

))
,
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where b=−1 for Sp(2m,C)-Higgs bundles and b= 1 for O(n,C)-Higgs bun-
dles. As in the previous cases, the Jordan–Hölder filtration may not be unique,
but gr(E,Θ,Φ) is unique up to isomorphism.

For n > 2, a SO(n,C)-Higgs bundle is semistable, stable or polystable if it is
semistable, stable or polystable as an O(n,C)-Higgs bundle. The graded ob-
ject of a SO(n,C)-Higgs bundle is given by the graded object of the underlying
O(n,C)-Higgs bundle.

We define stability and S-equivalence of families pointwise, as we did
for families of Higgs bundles. S-equivalence between families of stable ob-
jects implies isomorphism pointwise. The moduli functors are defined by
associating to every scheme Y the set of S-equivalence classes of fami-
lies parametrized by Y . In [Si3] it is proved that there exist moduli
spaces associated to these moduli functors; we denote them respectively by
M(Sp(2m,C)), M(O(n,C))k,a and M(SO(n,C))w2 . We denote the stable
loci by Mst(Sp(2m,C)), Mst(O(n,C)) and Mst(SO(n,C)).

3.4. Normality of the moduli spaces. Normality is an important local
property of some algebraic varieties whose study is simplified by the following
result (see, for example, [Ha, Chapter II.8]).

Proposition 3.1 (Serre’s criterion of normality). The algebraic variety Y
is normal if and only if the following properties are satisfied:

(R1) the codimension of the singular locus Sing(Y ) is strictly greater than 1;
(S2) for every y ∈ Y we have

depth(OY,y)≥min
{
2,dim(OY,y)

}
.

Recall that ΓR = R×Z Γ, where Γ denotes the universal central extension
by Z of the fundamental group π1(X). To study the normality of the moduli
space M(G)d of G-Higgs bundles it is enough, by the Isosingularity Theorem
of [Si3], to study the normality of the moduli space R(G)d of central repre-
sentations of ΓR into G. Recall that the latter is a GIT quotient of the space
Homc(ΓR,G)d of central representations of ΓR in G with topological invariant
d ∈ π1(G) by the adjoint action of G.

Proposition 3.2 ([MFK, Section 0.2]). Suppose that Y is a categorical
quotient of Z by the complex reductive Lie group G. If Z is normal and
locally integral, then Y is normal and locally integral.

We focus our study on the normality of Homc(ΓR,G)d. If ρ is a central
representation of topological type 0, one has ρ(R) = 1. Therefore the space
Homc(ΓR,G)0 is identified with the space Hom(π1(X),G)0 of representations
of the fundamental group of the curve with topologically trivial invariant.
Since π1(X)∼= Z×Z, we have that Hom(π1(X),G) is the commuting variety
of the group G,

C(G) :=
{(

g, g′
)
∈G×G|

[
g, g′

]
= id

}
.
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Also the commuting variety of a Lie algebra g, defined by

C(g) :=
{(

A,A′) ∈ g× g|
[
A,A′] = 0

}
,

will be important for us. Commuting varieties have been extensively studied.
For example, one can check that they are reduced algebraic varieties and, by
the following result of [Ri], C(g) is irreducible and therefore integral. When
G is semisimple and simply connected, so is C(G).

Proposition 3.3 ([Ri, Corollary 2.5 and Theorem C]). Let G be a semisim-
ple simply connected complex Lie group and let g be a reductive Lie algebra.
Then C(G) and C(g) are irreducible algebraic varieties.

The property of C(G) and C(g) being normal has not been determined in
general but there is a long-standing conjecture stating that the commuting
variety C(g) is always normal (see [Po] and [Pr]). The following result states
that C(g) satisfies Serre’s condition (R1).

Proposition 3.4 ([Po, Corollary 1.9]). Let g be a non-commutative com-
plex reductive Lie algebra. The singular locus Sing(C(g)) has codimension
greater than or equal to 2.

If C(g) were Cohen–Macaulay, then it would automatically satisfy Serre’s
condition (S2) and would therefore be a normal variety. Up to now, this
has only been determined for gl(n,C) and lower rank using computations
performed by the computer program Macaulay.

Proposition 3.5 ([Hr]). Let n≤ 4. Then the commuting variety C(gl(n,
C)) is Cohen–Macaulay.

Note that C(GL(n,C)) is an open subset of C(gl(n,C)) given by the non-
vanishing of the determinant.

Corollary 3.6. The commuting varieties C(GL(n,C)) and C(gl(n,C))
are normal for n≤ 4.

Theorem 3.7. Let n ≤ 4. Then the moduli spaces M(GL(n,C))0,
M(SL(n,C)) and M(PGL(n,C))0 are normal.

Proof. By Proposition 3.3 and Corollary 3.6, the variety Hom(π1(X),
GL(n,C)) is normal and integral. By Proposition 3.2, the moduli space of
representations R(GL(n,C))0 is normal. This implies that M(GL(n,C))0 is
normal by the Isosingularity Theorem [Si3, Theorem 10.6].

For M(SL(n,C)), in view of (24) and the fact that Pic0(X)×H0(X,O) is
smooth, it follows that M(SL(n,C)) is a complete intersection in some open
set in M(GL(n,C))0, so (S2) holds. It is easy to check that (R1) also holds
(or see Theorem 4.27).

Finally, for M(PSL(n,C))0, use the result for M(SL(n,C)) and (25). �
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4. Description of the moduli spaces

4.1. Stability in terms of the underlying bundle. The triviality of the
canonical line bundle simplifies the study of the semistability of Higgs bundles
over elliptic curves.

Proposition 4.1. The Higgs bundle (E,Φ) is semistable if and only if E
is semistable.

Proof. If the vector bundle E is semistable, every subbundle F satisfies
μ(F )≤ μ(E), so the Higgs bundle (E,Φ) is semistable too.

Suppose E is not semistable and take its Harder–Narasimhan filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fs−1 ⊂ Fs =E,

where the Ei = Fi/Fi−1 are semistable with μ(Ei)> μ(Ej) if i < j. In partic-
ular, we have H0(X,Hom(Ei,Ej)) = 0 if i < j.

The subbundle F1 =E1 has μ(F1)> μ(E). Suppose Φ(F1) is non-zero and
take F� such that Φ(F1) ⊆ F� but Φ(F1) � F�−1. Thus, Φ induces a non-
zero morphism from E1 = F1 to E� = F�/F�−1, but there are no non-zero
morphisms unless 
= 1. Then F1 is Φ-invariant and (E,Φ) is not semistable.

�

Corollary 4.2. If gcd(n,d) = 1, then (E,Φ) is stable if and only if E is
stable.

We need to extend Corollary 4.2 to the non-coprime case.

Proposition 4.3. (E,Φ) is stable if and only if E is stable.

Proof. Take first E strictly semistable and indecomposable, so E ∼=E′⊗Fh,
where h = gcd(n,d) > 1 and E′ is stable of rank n′ = n

h and degree d′ = d
h .

The endomorphism bundle satisfies

H0(X,EndE)∼=H0(X,EndE′ ⊗EndFh)

∼=
⊕

Li∈Pic0(X)[n′]

H0(X,Li ⊗EndFh).

We have EndFh
∼= F1 ⊕ · · · ⊕F2h−1, and H0(X,Li ⊗Fj) = 0 for every Fj and

every non-trivial Li ∈ Pic0(X)[n], so H0(X,Li ⊗EndFh) = 0 if Li �O. This
implies that H0(X,EndE) ∼=H0(X,EndFh) and every endomorphism of E
has the form Φ= idE′ ⊗φ for some φ ∈ EndFh.

The vector bundle Fh has a unique subbundle isomorphic to O. Let φ ∈
EndFh. If φ is non-zero, φ(O) is either zero or a subbundle of Fh with a non-
zero section, so φ(O) ⊆O. If φ= 0, O is again φ-invariant. The subbundle
E′ ⊗O contradicts the stability of (E,Φ).
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Now consider E strictly semistable and decomposable. One can write

E ∼=
s⊕

j=1

Ej
∼=

s⊕
j=1

(
E′

j ⊗ (Fhj,1 ⊕ · · · ⊕ Fhj,kj
)
)
,

where the E′
j are stable vector bundles of rank n′ and degree d′ such that

E′
j �E′

k if j �= k. For j �= k,

Hom(E′
j ⊗ Fhj ,E

′
k ⊗ Fhk

) = 0,

so Φ(Ej)⊂Ej and then the Higgs bundle (E,Φ) decomposes in a direct sum
of (Ej ,Φj) where Φj is the restriction to Ej . This contradicts stability of
(E,Φ) when s �= 1.

Now consider E ∼=E′ ⊗ (Fh1 ⊕ · · · ⊕ Fhk
) with E′ stable, so

EndE ∼=End

(
k⊕

j=1

Fhj

)
, Φ= idE′ ⊗φ, φ ∈H0

(
X,End

(
k⊕

j=1

Fhj

))
.

Now
⊕k

j=1Fhj has a unique subbundle Ok and H0(Ok)
∼=
↪→ H0(

⊕k
j=1Fhj ).

So Ok is φ-invariant and E′ ⊗ Ok is Φ-invariant. This implies that (E,Φ)
is strictly semistable unless all hj = 1 and E ∼= E′ ⊗ Oh. In this case, φ ∈
EndOk = {k × k matrices}. Choose an eigenvector v for φ. Then E′ ⊗ v
contradicts stability of (E,Φ) and (E,Φ) is strictly semistable. �

Corollary 4.4. Let (E,Φ) be polystable of rank n and degree d, and
h= gcd(n,d). Then

(E,Φ) =

h⊕
i=1

(Ei,Φi),

where Ei is a stable bundle of rank n′ = n
h and degree d′ = d

h and

Φi ∈H0(X,EndEi)∼=H0(X,O)⊗ idEi .

Furthermore (E,Φ) is polystable only if E is polystable.

Remark 4.5. Although the polystability of the underlying vector bundle
is a necessary condition for the polystability of the Higgs bundle, it is not
sufficient.

To illustrate this fact, take (E,Φ) such that E ∼=O⊕O and Φ =A⊗ 1X ,
where A is non-diagonalizable. It follows that (E,Φ) is an indecomposable
Higgs bundle. Since E is a strictly polystable vector bundle, (E,Φ) is not
stable. Also, (E,Φ) is indecomposable so it is not possible to express (E,Φ)
as a direct sum of stable Higgs bundles.

The following result is well known for Sp(2m,C), O(n,C) or SO(n,C) over
smooth projective curves of arbitrary genus. We give here a proof specific for
g = 1.
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Proposition 4.6. If (E,Θ,Φ) is a semistable Sp(2m,C) or O(n,C)-Higgs
bundle, then (E,Φ) is semistable. If n > 2 and (E,Q,Φ, τ) is a semistable
SO(n,C)-Higgs bundle, then (E,Φ) is semistable.

Proof. Suppose that (E,Φ) is not semistable and take the first term of its
Harder–Narasimhan filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn =E.

The subbundle F1 is Φ-invariant, μ(F1) > μ(E) = 0 and (F1,ΦF1) is
semistable; by Proposition 4.1 so is F1. By [AB, Lemma 10.1] F ∗

1 ⊗ F ∗
1

is semistable of negative degree. If the bundle F1 is not isotropic, then
ΘF1,F1 ∈H0(X,F ∗

1 ⊗F ∗
1 ) must be non-zero and there exists a line subbundle

of F ∗
1 ⊗ F ∗

1 of degree ≥ 0, contradicting the semistability of F ∗
1 ⊗ F ∗

1 . So F1

is isotropic and contradicts the semistability of (E,Θ,Φ).
The statement for SO(n,C)-Higgs bundles follows from the fact that (when

n > 2) a SO(n,C)-Higgs bundle (E,Q,Φ, τ) is semistable if and only if the
underlying O(n,C)-Higgs bundle (E,Q,Φ) is semistable. �

Combining Proposition 4.6 with Proposition 4.1 gives us the following corol-
lary.

Corollary 4.7. If (E,Θ,Φ) is a semistable O(n,C) or Sp(2m,C)-Higgs
bundle, then (E,Θ) is semistable. If (E,Q,Φ, τ) is a semistable SO(n,C)-
Higgs bundle, then (E,Q, τ) is a semistable SO(n,C)-bundle.

Proposition 4.8. Let (E,Θ,Φ) be a stable O(n,C) or Sp(2m,C)-Higgs
bundle. Then Φ= 0 and (E,Θ) is a stable O(n,C) or Sp(2m,C)-bundle.

Let (E,Q,Φ, τ) be a stable SO(n,C)-Higgs bundle. Then Φ = 0 and
(E,Q, τ) is a stable SO(n,C)-bundle.

Proof. By Proposition 4.6 (E,Φ) is semistable. If (E,Φ) is stable, then E
is stable by Proposition 4.3; since degE = 0, it follows that E has rank 1.
Since Φ anticommutes with Θ, this implies that Φ = 0.

Assume now that (E,Φ) is not stable and take (F1,Φ1) to be the first
term of a Jordan–Hölder filtration; since Φ anticommutes with Θ, one infers
that F⊥Θ

1 is Φ-invariant. Following [R], we define the Φ-invariant subbundles

W and V generated by F1 ∩ F⊥Θ
1 and F1 + F⊥Θ

1 , respectively. Note that
V =W⊥Θ and then the exact sequence

0−→W −→ F1 ⊕ F⊥Θ
1 −→ V −→ 0

implies that deg(W ) + deg(W⊥Θ) = deg(F1) + deg(F⊥Θ
1 ). Recalling (17), one

has that deg(W ) = deg(F1) = 0. This implies that W = 0 by the stability of
(E,Θ,Φ) and the fact that W is isotropic and Φ-invariant. Then V = E =

F1 ⊕ F⊥Θ
1 and

(E,Φ) = (F1,Φ1)⊕
(
F⊥Θ
1 ,Φ2

)
,
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where Φ2 is the restriction of Φ to F⊥Θ
1 . Note that (F1,Φ1) is a stable Higgs

bundle and (F⊥Θ
1 ,Φ2) is semistable. By induction, we decompose (F⊥Θ

1 ,Φ2)
into stable factors proving that (E,Φ) is polystable. Since deg(E) = 0, by
Corollary 4.4 (E,Φ) decomposes as a direct sum of Higgs line bundles of
degree 0,

(E,Φ)∼=
⊕

(Li, φi).

No Li is isotropic, otherwise it would contradict the stability of (E,Θ,Φ) since
Li is Φ-invariant. Thus Θ restricts to Li and since Θ anticommutes with the
Higgs field we have φi =−φi. Therefore, Φ = 0. �

Corollary 4.9. The only stable O(k,C)-Higgs bundles are (Est
k,a,Q

st
k ,0),

where the underlying O(k,C)-bundles (Est
k,a,Q

st
k ) are the stable O(k,C)-

bundles appearing in Theorem 2.5.

Corollary 4.10. Let (E,Θ,Φ) be a polystable O(n,C) or Sp(2m,C)-Higgs
bundle. Then (E,Θ) is a polystable O(n,C) or Sp(2m,C)-bundle.

Let (E,Q,Φ, τ) be a polystable SO(n,C)-Higgs bundle. Then (E,Q, τ) is a
polystable SO(n,C)-bundle.

Proof. This follows from Proposition 4.8 and the definition of polystability.
�

Corollary 4.11. A Sp(2m,C)-Higgs bundle over an elliptic curve is
polystable if and only if it is isomorphic to a direct sum of polystable Sp(2,C)-
Higgs bundles.

An O(n,C)-Higgs bundle is polystable if and only if it is isomorphic to a
direct sum of polystable O(2,C)-Higgs bundles or it is isomorphic to a direct
sum of polystable O(2,C)-Higgs bundles and a stable O(m,C)-Higgs bundle
(where m= 1,3 or 4).

Let n > 2. Let (E,Q,Φ, τ) be a polystable SO(n,C)-Higgs bundle with
Stiefel–Whitney class w2,

(1) if n = 2n′ and w2 = 0, it is a direct sum of mn,w2 = n′ stable SO(2,C)-
Higgs bundles of trivial degree,

(2) if n= 2n′+1 and w2 = 0, it is a direct sum of (Est
1,0,Q

st
1 ,0,1) and mn,w2 =

n′ stable SO(2,C)-Higgs bundles of trivial degree,
(3) if n= 2n′+1 and w2 = 1, it is a direct sum of (Est

3,0,Q
st
3 ,0,1) and mn,w2 =

n′ − 1 stable SO(2,C)-Higgs bundles of trivial degree,
(4) if n= 2n′ and w2 = 1, it is a direct sum of (Est

4,0,Q
st
4 ,0,1) and mn,w2 =

n′ − 2 stable SO(2,C)-Higgs bundles of trivial degree.

Proof. This follows from Propositions 4.8 and 2.8. �
Proposition 4.12. Let G be GL(n,C), SL(n,C), PGL(n,C), Sp(2m,C),

O(n,C) or SO(n,C). Then we have a morphism between moduli spaces

aG : M(G)d −→M(G)d
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defined by the underlying principal bundle of a Higgs bundle for these structure
groups. The fibres of this map are connected.

Proof. The existence of this map follows from Proposition 4.1 and Corol-
lary 4.7.

For any Higgs bundle (E,Φ) in the fibre of E there exists a path connecting
(E,Φ) to (E,0). So the fibre is connected. �

Corollary 4.13. For any topological type d, M(G)d is connected.

Proof. This follows since M(G)d is connected by (11), (13), (16) and The-
orem 2.17. �

4.2. The moduli space of Higgs bundles. The Abelian group structure
defined on X induces naturally an Abelian group structure on T ∗X . Recall
here that the canonical bundle is trivial, so

T ∗X ∼=X ×C.

The moduli space M(GL(1,C))0 is naturally identified with T ∗Pic0(X), so

the isomorphism ςx0

1,d : X → Picd(X) of (6) gives an isomorphism

ηx0

1,d : T ∗X
∼=−→M

(
GL(1,C)

)
d

for every d.

Theorem 4.14. Let n and d be two integers and write h = gcd(n,d). If
h > 1, we have

Mst
(
GL(n,C)

)
d
= ∅.

Proof. This follows from Proposition 4.3 and Atiyah’s results. �

Proposition 4.15. If gcd(n,d) = 1, then Mst(GL(n,C))d = M(GL(n,
C))d and the morphism

(det, tr) : M
(
GL(n,C)

)
d

∼=−→M
(
GL(1,C)

)
d

is an isomorphism.

Proof. When gcd(n,d) = 1 there are no strictly semistable vector bun-
dles nor strictly semistable Higgs bundles. As a consequence one has
that M st(GL(n,C))d =M(GL(n,C))d and Mst(GL(n,C))d =M(GL(n,C))d.
Moreover, the determinant gives an isomorphism

det : M
(
GL(n,C)

)
d

∼=−→M
(
GL(1,C)

)
d
.

Taking differentials we obtain the isomorphism

(det, tr) : T ∗M
(
GL(n,C)

)
d

∼=−→ T ∗M
(
GL(1,C)

)
d
.

Now, for any (n,d), T ∗M st(GL(n,C))d is an open subscheme of Mst(GL(n,
C))d. Due to Proposition 4.3, every stable Higgs bundle has a stable
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underlying vector bundle, so T ∗M st(GL(n,C))d = Mst(GL(n,C))d. Since
T ∗M(GL(n,C))d =M(GL(n,C))d, the result follows. �

If gcd(n,d) = 1, we set ηx0

n,d = (det, tr)−1 ◦ ηx0

1,d.

Theorem 4.16. If gcd(n,d) = 1, then

(26) ηx0

n,d : T ∗X
∼=−→M

(
GL(n,C)

)
d

is an isomorphism.

Proof. This follows from Proposition 4.15 and the definition of the isomor-
phism ηx0

1,d. �

Proposition 4.17. Let gcd(n,d) = 1. There exists a universal family
Ex0

n,d = (Vx0

n,d,Φn,d) of stable Higgs bundles of rank n and degree d parametrized
by T ∗X .

Proof. Consider the family of Higgs bundles over X ×C∼= T ∗X such that
the restriction to X × (x, t) is given by the pair ((Vx0

n,d)x, λ⊗ id(Vx0
n,d)x

) where

λ= 1
n t. We can check that for any (x, t) ∈ T ∗X one has

ηx0

n,d

(
(x, t)

)
=

[(
Ex0

n,d

)
(x,t)

]
S
.

Any family F →X × Y induces canonically a morphism to the moduli space
νF : Y → Mst(GL(n,C))d. Clearly, the composition f = (ηx0

n,d)
−1 ◦ νF is a

morphism f : Y → T ∗X such that F is S-equivalent to f∗Ex0

n,d. �

If gcd(n,d) = h > 1, n′ = n
h and d′ = d

h , we take the fibre product of h copies
of Ex0

n′,d′ to define the family Ex0

n,d of polystable Higgs bundles parametrized

by T ∗Zh = T ∗X × h· · · × T ∗X .

Remark 4.18. The action of Sh on Zh induces an action of Sh on T ∗Zh.
If w1 and w2 are two points of T ∗Zh, the Higgs bundles (Ex0

n,d)w1 and (Ex0

n,d)w2

are S-equivalent if and only if for some γ ∈Sh one has w2 = γ ·w1 (i.e., w1 is
a permutation of w2).

Theorem 4.19. Let h = gcd(n,d). Consider the moduli space M(GL(n,
C))d associated to the usual moduli problem.

(i) There exists a bijective morphism

ηx0

n,d : Symh T ∗X −→M
(
GL(n,C)

)
d
.

(ii) Symh T ∗X is the normalization of M(GL(n,C))d.
(iii) M(GL(n,C))d is irreducible.
(iv) If n≤ 4, then ηx0

n,0 is an isomorphism.
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Proof. (i) The family Ex0

n,d induces a morphism

νEx0
n,d

: T ∗Zh = T ∗X × h· · · × T ∗X −→M
(
GL(n,C)

)
d
,

and by Remark 4.18 it factors through Symh T ∗X giving the required bijective
morphism.

Since Symh T ∗X is normal, (ii) follows from Zariski’s Main Theorem. The

continuity of ηx0

n,d and the irreducibility of Symh T ∗X imply (iii). (iv) follows
from Theorem 3.7. �

Although we cannot prove normality except when n ≤ 4, d = 0, or
gcd(n,d) = 1, we can identify the singular set of M(GL(n,C))d in all cases.

Theorem 4.20. The singular set Sing(M(GL(n,C)d)) coincides with the
set S of points represented by polystable Higgs bundles for which at least two
of the direct summands are isomorphic. In particular, if h = gcd(n,d) ≥ 2,
this set has codimension 2.

Proof. Note first that S is the image under νEx0
n,d

of the union Δ of the diag-

onals in T ∗Zh = T ∗X× h· · ·×T ∗X . This union coincides with the union of the
fixed point sets of the elements of Sh acting on T ∗Zh. Since codimΔ= 2, the
image of Δ in T ∗Zh/Sh is Sing(T ∗Zh/Sh). Since S = ηx0

n,d(Sing(T
∗Zh/Sh))

and ηx0

n,d is bijective, it follows that S is contained in Sing(M(GL(n,C)d)).
To see that the points outside S are smooth, we consider the deformation

complex of a Higgs bundle (E,Φ). This gives rise to an exact sequence

H0(X,EndE)
e0(Φ)−→ H0(X,EndE)−→ T

−→H1(X,EndE)
e1(Φ)−→ H1(X,EndE),

where T is the infinitesimal deformation space of (E,Φ), the maps ei(Φ) are
given by ei(Φ)(Ψ) = [Ψ,Φ] and e1(Φ) is the Serre dual of e0(Φ). (For this,
see [Ni] and note that in our case the canonical bundle is trivial.) If (E,Φ)
is polystable with non-isomorphic summands (Ei,Φi) (1 ≤ i ≤ h), we have
Φi = λi idEi ; moreover, if Ei

∼=Ej with i �= j, then λi �= λj . It follows that

Ψ ∈ ker e0(Φ) ⇐⇒ Ψ=
⊕

μi idEi

for some μi ∈C. Hence, codim(ime0(Φ)) = h. By duality dim(kere1(Φ)) = h,
so

dim(T ) = 2h.

On the other hand, we have a family of polystable Higgs bundles parametrized
by T ∗Zh, which has dimension 2h. It follows that the local deformation space
of (E,Φ) is a complete family and is smooth. So the point of the moduli space
represented by (E,Φ) is smooth. �
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Remark 4.21. Note that this gives a direct proof that Sing(M(GL(n,C)d))
has codimension 2 without using Proposition 3.4. Moreover, we have shown
that a small deformation of a polystable Higgs bundle with non-isomorphic
direct summands is polystable. In fact, one can show directly, without using
deformation theory, that, if (E,Φ) is a semistable Higgs bundle such that
gr(E,Φ) has non-isomorphic direct summands, then (E,Φ) is polystable. To
see this, it is sufficient to show that, if E1 and E2 are stable bundles of the
same slope and (E1,Φ1)� (E2,Φ2), then any extension

0−→ (E1,Φ1)−→ (E,Φ)−→ (E2,Φ2)−→ 0

splits. If E1 � E2, this is clear since then H1(E∗
2 ⊗ E1) = 0 and H0(E∗

i ⊗
Ej) = 0 when i �= j. If E1 = E2 but E � E1 ⊕ E2, then E ∼= E1 ⊗ F2 and
any endomorphism of E has the form idE1 ⊗φ for some endomorphism φ
of F2. Now φ= λ idF2 +ν where ν2 = 0, which implies that Φ1 =Φ2 = λ idE1 ,
contradicting the hypothesis that (E1,Φ1)� (E2,Φ2). Finally, if E ∼=E1⊕E1

but Φ1 �=Φ2, then Φ can be written as a diagonalisable 2× 2 matrix, giving
the required splitting of (E,Φ).

4.3. A new moduli problem. In view of the fact that the normality of
the moduli space is in general an open question, we shall now define a moduli
functor whose associated moduli space is the normalization of M(GL(n,C))d.
To do so, we modify the definition of family.

We say that a family of semistable Higgs bundles F → X × Y is locally
graded if for every point y of Y there exists an open subset U ⊂ Y containing
y and a set of families E1, . . . ,E� where each Ei is a family of stable Higgs
bundles parametrized by U such that for every point y′ of U we have

grF|X×{y′} ∼=
�⊕

i=1

Ei|X×{y′},

and therefore F|X×U ∼S

⊕
i Ei. The new moduli functor associates to

a scheme Y the set of S-equivalence classes of locally graded families of
semistable Higgs bundles of rank n and degree d parametrized by Y .

A family E parametrized by Z is said to have the local universal property
if, for any family F parametrized by Y and any point y ∈ Y , there exists
a neighbourhood U containing y and a (not necessarily unique) morphism
f : U → Z such that F|U ∼ f∗E . Families with the local universal property
are very useful for describing moduli spaces as we can see in the following
result.

Proposition 4.22 (Proposition 2.13 of [Ne]). Let us suppose that there
exists a family E parametrized by Z with the local universal property. Suppose
that there exists a group Γ acting on Z such that Ez1 ∼ Ez2 if and only if z1
and z2 lie in the same orbit of this action. Then a categorical quotient of Z
by Γ is a coarse moduli space if and only if it is an orbit space.
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The definition of locally graded families is justified thanks to the next
result.

Proposition 4.23. The family Ex0

n,d has the local universal property among
locally graded families of semistable Higgs bundles.

Proof. Take F to be any locally graded family of semistable Higgs bundles
of rank n and degree d parametrized by Y . Set h= gcd(n,d), n′ = n/h and
d′ = d/h. Since F is locally graded, for every y ∈ Y there exists an open
neighborhood U and a set of families E1, . . . ,Eh of stable Higgs bundles of
rank n′ and degree d′ parametrized by U and such that

F|X×U ∼S

h⊕
i=1

Ei.

Since Ex0

n′,d′ is a universal family, for every Ei there exists fi : U → T ∗X such

that Ei ∼S f∗
i Ex0

n′,d′ . Setting f = (f1, . . . , fh), we have

F|X×U ∼S f∗Ex0

n,d. �

Theorem 4.24. There exists a coarse moduli space N (GL(n,C))d of S-
equivalence classes of semistable Higgs bundles of rank n and degree d. Fur-
thermore, there is a morphism T ∗Zh →M(GL(n,C))d which induces an iso-
morphism

ξx0

n,d : Symh T ∗X
∼=−→N

(
GL(n,C)

)
d
.

Moreover N (GL(n,C))d is the normalization of M(GL(n,C))d.

Proof. Since Symh T ∗X = T ∗Zh/Sh is an orbit space, by Propositions 4.22
and 4.23 and Remark 4.18, the coarse moduli space N (GL(n,C))d exists and

is isomorphic to Symh T ∗X . The isomorphism is given by

ξx0

n,d : Symh T ∗X −→N
(
GL(n,C)

)
d
,[

(x1, t1), . . . , (xh, th)
]
Sh


−→
[
Ex0

n′,d′ |X×(x1,t1) ⊕ · · · ⊕ Ex0

n′,d′ |X×(xh,th)

]
S
.

The last statement follows from Theorem 4.19. �

4.4. Moduli spaces of special linear and projective Higgs bundles.

Theorem 4.25.

Mst
(
SL(1,C)

)
= {pt},

and for n > 1

Mst
(
SL(n,C)

)
= ∅.

Proof. When the determinant is trivial the vector bundle has degree 0.
The only stable Higgs bundles with degree 0 are the Higgs line bundles and
therefore (O,0) is the only stable SL(n,C)-Higgs bundle. �
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Theorem 4.26.

Mst
(
PGL(n,C)

)
d̃
= ∅

unless n ∈ Z+ and d̃ ∈ Zn are coprime. In that case

M
(
PGL(n,C)

)
d̃
=Mst

(
PGL(n,C)

)
d̃
∼= {pt}.

Proof. We recall from Theorems 4.14 and 4.16 that there exist stable Higgs
bundles of rank n and degree d if and only if gcd(n,d) = 1. Recall that

a stable PGL(n,C)-Higgs bundle of degree d̃ can be represented by a pair
(P(E),Φ), where E is a stable vector bundle of degree d and trΦ = 0. When
gcd(n,d) = 1, E is determined up to tensoring by a line bundle L, so P(E)
is uniquely determined. Since E is stable, the endomorphism Φ is a scalar
multiple of the identity; so Φ = 0. Thus (P(E),Φ) is uniquely determined. �

We now study the preimage of (det, tr). We have a morphism

sumh
T∗X : Symh T ∗X −→ T ∗X,[

(x1, t1), . . . , (xh, th)
]
Sh


−→
h∑

i=1

(xi, ti).

Take the bijective morphism given in Theorem 4.19 to construct the diagram

(27) Symh T ∗X

sumh
T∗X

η
x0
n,d

1:1
M(GL(n,C))d

(det,tr)

T ∗X
∼=

η
x0
1,d

Pic(X)d ×H0(X,O).

One can easily check that this diagram commutes.

Theorem 4.27. Consider the moduli space M(SL(n,C)) associated to the
usual moduli problem.

(i) There exists a bijective morphism

η̂x0
n :

(
T ∗X × n−1· · · × T ∗X

)
/Sn −→M

(
SL(n,C)

)
,

where the action of Sn on T ∗Zn−1 = T ∗X × n−1· · · × T ∗X is induced by

the action on Zn−1 =X × n−1· · · ×X used in (13).
(ii) M(SL(n,C)) is irreducible.
(iii) Sing(M(SL(n,C))) coincides with the set of points represented by

polystable Higgs bundles for which at least two of the direct summands
are isomorphic.

(iv) If n≥ 2, Sing(M(SL(n,C))) has codimension 2.
(v) If n≤ 4, the morphism of (i) is an isomorphism.
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Proof. (i) By (24) and (27), we have a bijective morphism

η̂n :
(
sumn

T∗X

)−1(
(x0,0)

)
−→M

(
SL(n,C)

)
.

The action of Sn on T ∗Zn−1 induced by the action of Sn on Zn−1 used in
(13) gives us an isomorphism between T ∗Zn−1/Sn and (sumn

T∗X)−1((x0,0)).
(ii) follows from the continuity of η̂x0

n and the irreducibility of the source.
(iii) and (iv) are proved in the same way as Theorem 4.20. The only

changes are to replace EndE by End0E and note that h = n. This gives
dim(T ) = 2(n− 1) = dim(T ∗Zn−1).

(v) follows by Zariski’s Main Theorem from Theorem 3.7. �

Let h= gcd(n,d), n′ = n
h and d′ = d

h . Recall the action of X on SymhX

defined in (14); we extend it to an action of X on Symh T ∗X . The commuta-
tivity of (15) implies the commutativity of

(28) X × Symh T ∗X

ς
x0
1,0×η

x0
n,d 1:1

Symh T ∗X

η
x0
n,d

∼=

Pic0(X)×M(GL(n,C))d
−⊗− M(GL(n,C))d,

where the right arrow is the bijective morphism of Theorem 4.19. Recall
that the action of X[n] with weight n′ corresponds to the action of X[h]
with weight 1 and that the action of X[h] commutes with the action of the
symmetric group Sh.

Note that h= gcd(n,d) is equal to n when d= 0.

Theorem 4.28. Consider the moduli space M(PGL(n,C))d̃ associated to
the usual moduli problem.

(i) There exists a bijective morphism

η̌x0

n,d̃
:
(
T ∗X × h−1· · · × T ∗X

)
/Sh×X[n]−→M

(
PGL(n,C)d̃

)
,

where the action of Sh×X[h] on T ∗Zh−1 = T ∗X×h−1· · · ×T ∗X is induced

by the action on Zh−1 =X × h−1· · · ×X used in (16).
(ii) M(PGL(n,C))d̃ is irreducible.
(iii) Sing(M(PGL(n,C))d̃) coincides with the set of points represented by

polystable Higgs bundles for which at least two of the direct summands
are isomorphic.

(iv) If h≥ 2, Sing(M(PGL(n,C))d̃) has codimension 2.

(v) If n≤ 4 and d̃= 0, the morphism of (i) is an isomorphism.

Proof. The proof is similar to that of Theorem 4.27.
(i) By (25), (27) and (28), we have a bijective morphism((

sumh
T∗X

)−1(
(x0,0)

))
/X[h]−→M

(
PGL(n,C)

)
d̃
.
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One has an action of Sh×X[h] on T ∗Zh−1 induced by the action of
Sh on Zh−1 used in (16). This action gives an isomorphism between
T ∗Zh−1/(Sh×X[h]) and ((sumh

T∗X)−1((x0,0)))/X[h].
(ii) follows from the continuity of η̌x0

n,d̃
and the irreducibility of the source.

To prove (iii) we again modify the proof of Theorem 4.20 by replacing
EndE by End0E, giving dim(T ) = 2(h− 1) = dim(M(PGL(n,C))d̃).

(iv) follows from Theorem 4.27 when we note that, by Atiyah’s results,
X[h] acts freely on ((sumh

T∗X)−1((x0,0))).
(v) follows by Zariski’s Main Theorem from Theorem 3.7. �

In order to obtain normal moduli spaces in the cases not covered by Theo-
rems 4.27(iv) and 4.28(iv), we again need to restrict ourselves to locally graded
families.

A locally graded family of semistable SL(n,C)-Higgs bundles is a family of
SL(n,C)-Higgs bundles which is locally graded as a family of semistable Higgs
bundles. The existence of a moduli space N (SL(n,C)) for the corresponding
moduli functor follows from the existence of N (GL(n,C))0 and

N
(
SL(n,C)

) ∼= (det, tr)−1
(
(O,0)

)
⊂N

(
GL(n,C)

)
0
.

A locally graded family of semistable PGL(n,C)-Higgs bundles is a fam-
ily of PGL(n,C)-Higgs bundles (P(V),Φ) which is the projectivization of a
locally graded family of semistable Higgs bundles (V ,Φ). The existence of
N (GL(n,C))d implies the existence of N (PGL(n,C))d̃ and furthermore

N
(
PGL(n,C)

)
d̃
∼= (det, tr)−1

((
O(x0)

⊗d,0
))
/Pic0(X)[n].

As in the case of (27) and (28), one can easily check that the diagrams

(29) Symh T ∗X

sumh
T∗X

ξ
x0
n,d

∼=
N (GL(n,C))d

(det,tr)

T ∗X
∼=

ξ
x0
1,d

Pic(X)d ×H0(X,O)

and

(30) X × Symh T ∗X

ς
x0
1,0×ξ

x0
n,d

∼=

Symh T ∗X

ξ
x0
n,d

∼=

Pic0(X)×N (GL(n,C))d
−⊗− N (GL(n,C))d

commute.
Note that in the commuting diagrams (29) and (30) we have an isomor-

phism ξx0

n,d for any value of n and d, while in the case of (27) and (28) the

bijection ηx0

n,d is proved to be an isomorphism only in lower rank.
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Theorem 4.29. Consider the action of Sn on T ∗Zn−1 = T ∗X × n−1· · · ×
T ∗X induced by the action on Zn−1 =X × n−1· · · ×X used in (13). We have
isomorphisms

(31) ξ̂x0
n :

(
T ∗X × n−1· · · × T ∗X

)
/Sn

∼= N
(
SL(n,C)

)
and

(32) ξ̌x0

n,d̃
:
(
T ∗X × h−1· · · × T ∗X

)
/Sh×X[h]

∼= N
(
PGL(n,C)

)
d̃
.

Moreover, there are natural bijective morphisms

N
(
SL(n,C)

)
−→M

(
SL(n,C)

)
and

N
(
PGL(n,C)

)
d̃
−→M

(
PGL(n,C)

)
d̃
.

Hence, N (SL(n,C)) is the normalization of M(SL(n,C)) and N (PGL(n,C))d̃
the normalization of M(PGL(n,C))d̃.

Proof. The proofs of (31) and (32) follow the proofs of Theorems 4.27
and 4.28.

The remaining statements follow from the universal property of M(SL(n,

C)) and M(PGL(n,C))d̃, the normality of the quotients of T ∗X× n−1· · · ×T ∗X
by the finite groups Sn and Sn×X[n] and Zariski’s Main Theorem. �

Remark 4.30. By Lemma A.2, we have that Zh−1/X[h] ∼= Zh−1. Since
T ∗X ∼=X ×C we have that T ∗Zh−1/X[h]∼= T ∗Zh−1. Thus

N
(
PGL(n,C)

)
d̃
∼= T ∗Zh−1/Sh = T ∗X × h−1· · · × T ∗X/Sh,

where the action of Sh of T ∗Zh−1 is induced by the action of Sh on Zh−1

used in Remark 2.2 and is different from the action used in (31).

4.5. Moduli spaces of symplectic and orthogonal Higgs bundles.

Theorem 4.31.

Mst
(
Sp(2m,C)

) ∼=M st
(
Sp(2m,C)

)
= ∅,

Mst
(
O(n,C)

) ∼=M st
(
O(n,C)

)
,

Mst
(
SO(n,C)

) ∼=M st
(
SO(n,C)

)
.

Proof. This follows from Proposition 4.8. �

Recall the universal family of Higgs line bundles Ex0
1,0 = (Vx0

1,0,Φ1,0) with

degree 0 and the family of Sp(2,C)-bundles Ṽx0
2 = (Vx0

1,0 ⊕ (Vx0
1,0)

∗,Ω). We can

check that Ω anticommutes with Φ1,0 ⊕ (−Φ1,0) and then

Ẽx0
2 =

(
Vx0
1,0 ⊕ (Vx0

1,0)
∗,Ω,Φ1,0 ⊕ (−Φ1,0)

)
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is a family of polystable Sp(2,C)-Higgs bundles parametrized by T ∗X .
Similarly, we can construct a family of polystable O(2,C)-Higgs bundles
parametrized by T ∗X ,

E̊x0
2 =

(
Vx0
1,0 ⊕

(
Vx0
1,0

)∗
,Q,Φ1,0 ⊕ (−Φ1,0)

)
,

and a family of stable SO(2,C)-Higgs bundles of degree 0,

Ex0

2 =
(
Vx0
1,0 ⊕

(
Vx0
1,0

)∗
,Q,Φ1,0 ⊕ (−Φ1,0),

√
−1

)
.

Remark 4.32. The restrictions of Ẽx0
2 and E̊x0

2 to two different points
of T ∗X , z1 = (x1, t1) and z2 = (x2, t2), give S-equivalent (isomorphic) Higgs

bundles (Ẽx0
2 )z1 ∼S (Ẽx0

2 )z2 and (E̊x0
2 )z1 ∼S (E̊x0

2 )z2 if and only if z1 = −z2.
Two points z1 �= z2 of T ∗X give non-S-equivalent SO(2,C)-Higgs bundles,

(Ex0

2 )x1 �S (Ex0

2 )x1 .

Now we define Ẽx0
2m to be the family of polystable Sp(2m,C)-Higgs bundles

induced by taking the fibre product of m copies of Ẽ2. Note that Ẽx0
2m is

parametrized by T ∗Zm = T ∗X × m· · · × T ∗X .
We define E̊x0

n,k,a to be the family of polystable O(n,C)-Higgs bundles given

by the direct sum of (Est
k,a,Q

st
k ,0) and mk =

n−k
2 copies of E̊2. This family is

parametrized by T ∗Zmk
= T ∗X ×mk· · · × T ∗X .

Analogously, for all values of (n,w2), we define families of polystable

SO(n,C)-Higgs bundles Ex0

n,w2
as follows:

• Ex0

2m,0 is given by m copies of Ex0

2 and therefore it is parametrized by

T ∗Zm = T ∗X × m· · · × T ∗X ,
• Ex0

2m+1,0 is given by the direct sum of (Est
1,0,Q

st
1 ,0,1) and m copies of Ex0

2

and therefore it is parametrized by T ∗Zm = T ∗X × m· · · × T ∗X ,
• Ex0

2m+1,1 is given by the direct sum of (Est
3,0,Q

st
3 ,0,1) and m− 1 copies of

Ex0

2 and therefore it is parametrized by T ∗Zm−1 = T ∗X ×m−1· · · × T ∗X ,

• Ex0

2m,1 is given by the direct sum of (Est
4,0,Q

st
4 ,0,1) and m− 2 copies of Ex0

2

and therefore it is parametrized by T ∗Zm−2 = T ∗X ×m−2· · · × T ∗X .

Remark 4.33. Consider the action of Γm′ on T ∗Zm′ induced by the action
of Γm′ on Zm′ used in Remark 2.14 (i.e., the action induced by Z2 acting on

T ∗X as −1 · (x, t) = (−x,−t)). Take the families Ẽx0
2m, E̊x0

n,k,a and Ex0

n,w2
when

(n,w2) is (2m,1), (2m+1,0) or (2m+1,1). These families are parametrized

by T ∗Zm′ = T ∗X × m′

· · · × T ∗X for some m′. By Remarks 4.32 and 2.14, two
points z1, z2 ∈ T ∗Zm′ parametrize isomorphic (S-equivalent) Higgs bundles
on these families if and only if z1 = γ · z2 for some γ ∈ Γm. By Remarks 4.32
and 2.15, (Ex0

2m,0)z1 is isomorphic (S-equivalent) to (Ex0

2m,0)z2 if and only if
there exists γ ∈Δm such that γ · z1 = z2.
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Recall Corollary 4.13.

Theorem 4.34. Let G be Sp(2m,C), O(n,C) or SO(n,C). Consider the
moduli spaces M(G)d associated to the usual moduli problems.

(i) We have bijective morphisms

η̃x0
m : Symm

(
T ∗X/Z2

)
−→M

(
Sp(2m,C)

)
,

η̊x0

n,k,a : Sym(n−k)/2
(
T ∗X/Z2

)
−→M

(
O(n,C)

)
k,a

,

ηx0
2m,0 : T

∗X × m· · · × T ∗X/Δm −→M
(
SO(2m,C)

)
0
,

ηx0
n,w2

: Symm′(
T ∗X/Z2

)
−→M

(
SO(n,C)

)
w2

,

where m′ =m if (n,w2) = (2m+1,0), m′ =m−1 if (n,w2) = (2m+1,1)
and m′ =m− 2 if (n,w2) = (2m,1).

(ii) M(G)d is irreducible.
(iii) The normalization of M(G)d is isomorphic to the source of the bijection.
(iv) Sing(M(G)d) coincides with the set of points represented by polystable

G-Higgs bundles for which at least two of the direct summands of the
underlying polystable Higgs bundle are isomorphic.

(v) If dim(M(G)d)≥ 2, Sing(M(G)d) has codimension 2.

Proof. (i) The corresponding families Ẽx0
2m, E̊x0

n,k,a or Ex0

n,w2
induce mor-

phisms

νG,d : T ∗ZG,d = T ∗X × m′

· · · × T ∗X −→M(G)d,

where m′ depends on G and d. By Remark 4.33 when ΓG,d is the correspond-
ing finite group, this map factors through T ∗ZG,d/ΓG,d giving the required
bijective morphism.

(ii) follows from the continuity of the morphisms and the irreducibility of
the sources.

(iii) follows from Zariski’s Main Theorem.
For the proof of (iv) and (v) take a G-Higgs bundle (E,Θ,Φ) (resp.

(E,Θ,Φ, τ)) and denote by P the principal G-bundle associated to (E,Θ)
(resp. (E,Θ, τ)) and by ϕ the section of the adjoint bundle P (g) associ-
ated to Φ. If T is the infinitesimal deformation space of (E,Θ,Φ) (resp.
(E,Θ,Φ, τ)), by [BR] one has the exact sequence

H0
(
X,P (g)

) e0(ϕ)−→ H0
(
X,P (g)

)
−→ T −→H1

(
X,P (g)

) e1(ϕ)−→ H1
(
X,P (g)

)
,

where ei(ϕ)(ψ) = [ψ,ϕ] and e1(ϕ) is the Serre dual of e0(ϕ). Recall that
the canonical bundle is trivial in our case. The standard representation of
G gives us an isomorphism between Hi(X,P (g)) and Hi(X,EndE)Θ, where
the latter is given by the elements Ψ of Hi(X,EndE) such that Θ(u,Ψ(v)) =
−Θ(Ψ(u), v) for u, v in Ex and every point x ∈X . The maps ei(ϕ) correspond
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to

ei(Φ) : H
i(X,EndE)Θ −→Hi(X,EndE)Θ,

Ψ 
−→ [Ψ,Φ].

From this point, the proof is similar to that of Theorem 4.20, replacing
H0(X,EndE) by H0(X,EndE)Θ and taking into account in each case the
same dimension of dim(M(G)d). �

Remark 4.35. The bijection ηx0

G,d is an isomorphism if and only if M(G)d
is normal, but the normality of the moduli space of Higgs bundles over a
smooth projective curve of genus g = 1 is an open question.

As in Section 4.3, we modify the moduli problem in such a way that the
associated moduli space will be isomorphic to the normalization of M(G)d.

We say that a family of semistable Sp(2m,C)-Higgs bundles E →X × Y is
locally graded if for every y ∈ Y there exists an open subset U ⊂ Y containing
y and a set of families of Higgs bundles (V1,Φ1), . . . , (Vm,Φm) of rank 1 and
degree 0 parametrized by U , such that

E|X×U ∼S

m⊕
i=1

(
Vi ⊕V∗

i ,

(
0 −1
1 0

)
,

(
Φi

−Φi

))
.

We define locally graded families of semistable O(n,C)-Higgs bundles in
similar terms; the only change is that there might exist a stable O(k,C)-Higgs
bundle (Est

k,a,Q
st
k ,0) such that

E|X×U ∼S

(
Est

k,a,Q
st
k ,0

)
⊕

n−k
2⊕

i=1

(
Vi ⊕V∗

i ,

(
0 1
1 0

)
,

(
Φi

−Φi

))
.

Analogously, we say that a family of semistable SO(n,C)-Higgs bundles
E →X×Y is locally graded if for every y ∈ Y there exists an open subset U ⊂
Y containing y, families (Vi,Φi) parametrized by U and (if (n,w2) �= (2m,0))
a stable SO(k,C)-Higgs bundle (Est

k,0,Q
st
k ,0,1) such that

E|X×U ∼S

(
Est

k,0,Q
st
k ,0,1

)
⊕

n−k
2⊕

i=1

(
Vi ⊕V∗

i ,

(
0 1
1 0

)
,

(
Φi

−Φi

)
,
√
−1

)
.

For G= Sp(2m,C), O(n,C) and SO(n,C), we define a new moduli functor
associating to any scheme Y the set of S-equivalence classes of locally graded
families of semistable G-Higgs bundles parametrized by Y .

Proposition 4.36. The families Ẽx0
2m, E̊x0

n,k,a and Ex0

n,w2
have the local

universal property among, respectively, locally graded families of semistable
Sp(2m,C), O(n,C) and SO(n,C)-Higgs bundles of the appropiate topological
type.
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Proof. Take any locally graded family E →X×Y of semistable Sp(2m,C),
O(n,C) or SO(n,C)-Higgs bundles. By definition of locally graded for every
y ∈ Y we have an open subset U ⊂ Y containing y and families (Vi,Φi) of
Higgs bundles of rank 1 and degree 0 parametrized by U . Take the universal
family Ex0

1,0 = (Vx0
1,0,Φ1,0); for every (Vi,Φi) there exists fi : U → T ∗X such

that (Vi,Φi) ∼S f∗Ex0
1,0. With the fi we can construct f : U → T ∗X × · · · ×

T ∗X such that the restriction E|X×U is S-equivalent to f∗Ẽx0
2m, f∗E̊x0

n,k,a or

f∗Ex0

n,w2
. �

Theorem 4.37. There exist coarse moduli spaces N (Sp(2m,C)), N (O(n,
C))(k,a) and N (SO(n,C))w2 . Furthermore, there are isomorphisms

ξ̃x0
m : Symm

(
T ∗X/Z2

) ∼=−→N
(
Sp(2m,C)

)
,

ξ̊x0

n,k,a : Sym(n−k)/2
(
T ∗X/Z2

) ∼=−→N
(
O(n,C)

)
k,a

,

ξ
x0

m,0 : T
∗X × m· · · × T ∗X/Δm

∼=−→N
(
SO(2m,C)

)
0
,

ξ
x0

n,w2
: Symm′(

T ∗X/Z2

) ∼=−→N
(
SO(n,C)

)
w2

,

where m′ =m if (n,w2) = (2m+1,0), m′ =m− 1 if (n,w2) = (2m+1,1) and
m′ =m− 2 if (n,w2) = (2m,1).

Proof. Since T ∗ZG,d/ΓG,d is an orbit space, the theorem follows from
Proposition 4.36 and Remark 4.33. Note that the isomorphisms are defined
as follows

ξx0

G,d : T ∗ZG,d/ΓG,d −→N (G)d,

[z]ΓG,d

−→

[
Ex0

G,d|X×z

]
S
,

where we write ξx0

G,d for ξ̃x0
m , ξ̊x0

n,k,a or ξ
x0

m,0 for the groups considered in the
statement and the corresponding topological invariant. �

Remark 4.38. If an orbifold is defined as a global quotient Z/Γ, its cotan-
gent orbifold bundle is the orbifold given by T ∗Z/Γ, where the action of Γ on
T ∗Z is the action induced by the action of Γ on Z.

Let G be GL(n,C), SL(n,C), PGL(n,C), Sp(2m,C), O(n,C) or SO(n,C).
Denote by M̃(G)d and Ñ (G)d the orbifolds given by the quotients ZG,d/ΓG,d

and T ∗ZG,d/ΓG,d. Then Ñ (G)d is the cotangent orbifold bundle of M̃(G)d.

5. The Hitchin map

5.1. Description of the Hitchin map. Let qn,1, . . . , qn,n be the standard
basis for the invariant polynomials of a rank n matrix. The Hitchin map is
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defined in [Hi2] by evaluating this basis on the Higgs field:

bn,d : N
(
GL(n,C)

)
d
−→Bn =

n⊕
i=1

H0(X,O),[
(E,Φ)

]
S

−→

(
qn,1(Φ), . . . , qn,n(Φ)

)
.

(33)

Since H0(X,O)∼= C we have that Bn
∼= Cn. Take h= gcd(n,d) and set n′ =

n/h and d′ = d/h. If (E,Φ) is a polystable Higgs bundle of rank n and degree

d, we have (E,Φ) ∼=
⊕h

i=1(Ei,Φi) where the Ei are stable and Φi = λi idEi ;
moreover ξx0

n′,d′((xi, ti)) = [(Ei,Φi)]S , where ti = n′ · λi. When we apply qn,i
to Φ we obtain polynomials in t1, . . . , th

qn,1(Φ) =

h∑
i=1

ti,

...

qn,n(Φ) =

(
1

n′ t1

)n′

. . .

(
1

n′ th

)n′

.

The image of the Hitchin map is always contained in a subvariety of dimension
h which we denote by Bn,d. If Dλ is the diagonal matrix with eigenvalues

λ= (λ1, . . . , λh) we can construct the following bijective morphism

βn,d : SymhC−→Bn,d,

[t]
Sh

= [t1, . . . , th]Sh

−→

(
qn,1(D 1

n′ t
), . . . , qn,n(D 1

n′ t
)
)
.

(34)

Let us define the projection

πh : Symh
(
T ∗X

)
−→ Symh(C),[

(x1, t1), . . . , (xh, th)
]
Sh


−→ [t1, . . . , th]Sh
.

(35)

It is immediate from the definitions of (33), (34) and (35) that the diagram

(36) Symh(T ∗X)
πh

∼=ξ
x0
n,d

Symh(C)

βn,d1:1

N (GL(n,C))d
bn,d

Bn,d

commutes.
The Hitchin map for a classical structure group G is defined in [Hi2] by

evaluating the invariant polynomials for the adjoint representation of G on its
Lie algebra on the Higgs field:

bG,d : N (Gd)−→B(G,d).
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Let CG,d ⊂ T ∗ZG,d be the subset ({x0}×C)×· · ·×({x0}×C), and consider
the induced action of ΓG,d on CG,d. Consider also the projection

πG,d : T ∗ZG,d/ΓG,d −→CG,d/ΓG,d,[
(x1, t1), . . . , (x�, t�)

]
ΓG,d


−→ [t1, . . . , t�]ΓG,d
.

In each case, the invariant polynomials for the adjoint representation of G on
its Lie algebra allow us to construct a bijective morphism

(37) βG,d : CG,d/ΓG,d
1:1−→B(G)d,

and we can extend (36) to the rest of the classical complex Lie groups covered
in this article:

(38) T ∗ZG,d/ΓG,d

πG,d

∼=ξ
x0
G,d

CG,d/ΓG,d

βG,d1:1

N (G)d
bG,d

B(G)d.

5.2. The Hitchin fibres for the general linear case. The set of tuples
of the form

(39) tg = (t1, . . . , th),

where ti �= tj if i �= j, form a dense open subset of Ch. We call a point of Bn,d

generic if it is the image under βn,d of the Sh-orbit of some tg . An arbitrary
point of Bn,d is the image under βn,d of a h-tuple of the form

(40) ta = (t1,m1. . ., t1, . . . , t�,m�. . ., t�),

where h=m1 + · · ·+m�.

Proposition 5.1.

π−1
h

(
[tg]Sh

) ∼=X × h· · · ×X

and

π−1
h

(
[ta]Sh

)
= Symm1 X × �· · · × Symm� X.

Proof. The centralizer ZSh
(tg) of tg in Sh is trivial. Hence, the centralizer

of any element of T ∗X × · · · × T ∗X of the form(
(x1, t1), . . . , (xh, th)

)
is also trivial. If two tuples ((x1, t1), . . . , (xh, th)) and ((x′

1, t1), . . . , (x
′
h, th)) lie

in the same Sh-orbit, then they are related by the action of an element of
ZSh

(tg). Since this group is trivial, it follows that π−1
h ([tg]Sh

) is given by the

subset of T ∗X × h· · · × T ∗X which projects to (t1, . . . , th), which is isomorphic

to X × h· · · ×X .
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On the other hand, the centralizer of ta in Sh is

ZSh
(ta) =Sm1 ×· · · ×Sm�

,

where the factor Smi acts only on the entries of ta equal to ti. Two tuples
of T ∗X × · · · × T ∗X that project to ta lie in the same Sh-orbit if and only if
some element of ZSh

(ta) sends one tuple to the other. Let us write (T ∗X ×
· · · × T ∗X)ta for the set of tuples as above that project to ta. We have

π−1
h

(
[ta]Sh

) ∼= (
T ∗X × h· · · × T ∗X

)
ta
/ZSm(ta),

where the action of Smi permutes the entries of a tuple that are pairs of the
form (xij , ti).

We can easily see that (T ∗X × · · · × T ∗X)ta
∼=X × · · · ×X and then

π−1
h

(
[ta]Sh

) ∼= (X × h· · · ×X)/Sm1 ×· · · ×Sm�

∼= Symm1 X × �· · · × Symm� X. �

Note from (4) and (6) that SymhX is a fibration over X with fibre Ph−1.

Corollary 5.2. The generic Hitchin fibre of N (GL(n,C))d →Bn,d is the

self-dual Abelian variety X × h· · · ×X . The fibre over an arbitrary point of

the base is Symm1 X × �· · · × Symm� X which is a fibration over the self-dual

Abelian variety X × �· · · ×X with fibre Pm1−1 × �· · · × Pml−1.

5.3. The Hitchin fibres for the special linear and projective cases.
The Hitchin maps

b̂n : N
(
SL(n,C)

)
−→ B̂n

and

b̌n,d̃ : N
(
PGL(n,C)

)
d̃
−→ B̌n,d̃

are induced by the Hitchin map for Higgs bundles (33). The Hitchin base B̂n

is equal to the subvariety Btr=0
n =

⊕n
i=2H

0(X,O) of Bn, while B̌n,d̃ =Btr=0
n ∩

Bn,d, where d̃ = (d mod n). Note that the groups SL(n,C) and PGL(n,C)
are Langlands dual groups and that B̂n = B̌n,0.

Lemma 5.3. Let e be any element of B̂n and e′ be any element of B̌n,d̃.

Then

b̂−1
n (e)∼= b−1

n,0(e)∩
(
(det, tr)−1(O,0)

)
and

b̌−1

n,d̃

(
e′

) ∼= (
b−1
n,d

(
e′

)
∩

(
(det, tr)−1

(
O(x0)

⊗d,0
)))

/Pic0(X)[n].
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Proof. Since b̂n and b̌n,d̃ are induced by bn,0 and bn,d, this follows from the

fact that

N
(
SL(n,C)

) ∼= (det, tr)−1(O,0)⊂N
(
GL(n,C)

)
and

N
(
PGL(n,C)

) ∼= (det, tr)−1
(
O(x0)

⊗d,0
)
/Pic0(X)[n]. �

The generic elements eg and e′g of B̂n and B̌n,d̃ come from a tuple tg of the

form (39) such that
∑

ti = 0. Analogously, the arbitrary elements ea and e′a
of B̂n and B̌n,d̃ come from a tuple ta of the form (40) such that

∑h
i=1 ti = 0.

Recall the definition of A� given in (12) and the isomorphism u� : Z�−1

∼=−→
A�. Since SymmX →X is a fibration over X , we can consider the restric-

tion of Symm1 X × · · · × Symm� X to A� ⊂ X × �· · · × X and the pull-back
u∗
� (Sym

m1 X × · · · × Symm� X)|A�
.

Proposition 5.4. Let eg ∈ B̂n and e′g ∈ B̌n,d̃ be generic elements. Then

b̂−1
n (eg)∼=An

and

b̌−1

n,d̃

(
e′g

) ∼=Ah/X[h].

Let ea ∈ B̂n and e′a ∈ B̌n,d̃ be arbitrary elements. Then

b̂−1
n (ea)∼= u∗

�

(
Symm1 X × · · · × Symm� X

)
|A�

and

b̌−1

n,d̃

(
e′a

) ∼= u∗
�

(
Symm1 X × · · · × Symm� X

)
|A�

/X[h].

Proof. This follows from Lemma 5.3 and Corollary 5.2. �

Corollary 5.5. The generic Hitchin fibre of N (SL(n,C)) → B̂n is the

Abelian variety X × n−1· · · ×X . The arbitrary Hitchin fibre is a fibration over

the Abelian variety X × �−1· · · ×X with fibre Pm1−1 × �· · · × Pml−1.

Proposition 5.6. The generic fibre of the Hitchin fibration N (PGL(n,

C))d̃ → B̌n,d̃ is the Abelian variety X × h−1· · · ×X .

The arbitrary fibre of the Hitchin fibration N (PGL(n,C))d̃ → B̌n,d̃ is a

fibration over X× �−1· · · ×X with fibre (Pm1−1 × · · · × Pm�−1)/X[r], where r =
gcd(h,m1, . . . ,m�).

Proof. The action of X[h] on the fibration Symm1 X× �· · · ×Symm� X gives

a weighted (m1, . . . ,m�)-action of X[h] on X × �· · · ×X , the base of the fibra-
tion. Let us set r = gcd(h,m1, . . . ,m�). The subgroup X[r] ⊂X[h] acts on

Symm1 X× �· · · ×Symm� X and it acts trivially on the base X × �· · · ×X . The
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quotient of Symm1 X× �· · ·×Symm� X by the action of X[r] is a fibration over

X × �· · · ×X with fibre (Pm1−1 × · · · × Pm�−1)/X[r], where the action of X[r]

is described in Remark 2.3.

The quotient of Symm1 X × �· · · × Symm� X by X[h] is equivalent to

the quotient of (Symm1 X × �· · · × Symm� X)/X[r] by X[h]/X[r]. Since

X[h]/X[r]∼=X[h/r] and the weighted action of X[r] is trivial, the weighted

(m1, . . . ,m�)-action of X[h]/X[r] on X× �· · ·×X is equivalent to the weighted

(m1/r, . . . ,m�/r)-action of X[h/r] on X × �· · · ×X . Since gcd(h/r,m1/r, . . . ,

m�/r) = 1, this action is free by Lemma A.1. As a consequence, (Symm1 X ×
· · ·×Symm� X)/X[h] is a fibration with fibre (Pm1−1×· · ·×Pm�−1)/X[r] over

(X× �· · · ×X)/X[h/r].

The weighted (m1/r, . . . ,m�/r)-action of X[h/r] restricted to A� is equi-

variant under u� to the weighted (m1/r, . . . ,m�−1/r)-action of X[h/r] on

X× �−1· · · ×X , so the pull-back u∗
� (Sym

m1 X × · · · × Symm� X)|A�
/X[h] is a

fibration with fibre (Pm1−1 × · · · × Pm�−1)/X[r] over (X × �−1· · · ×X)/X[h/r].

Finally, by Lemma A.2, the quotient (X× �−1· · · ×X)/X[h/r] is isomorphic

to X × �−1· · · ×X . �

Remark 5.7. The generic fibre of the Hitchin fibration N (PGL(n,C))0 →
B̌n,0 = B̂n and the corresponding fibre of the Hitchin fibration N (SL(n,C))→
B̂n are isomorphic to X × n−1· · · ×X , which is a self-dual Abelian variety.

The arbitrary fibre of the Hitchin fibration N (PGL(n,C))0 → B̌n,0 and the

corresponding fibre of the Hitchin fibration N (SL(n,C))→ B̂n are fibrations

over X × �−1· · · ×X , which is a self-dual Abelian variety.

5.4. The Hitchin fibres for the symplectic and orthogonal cases.

Consider the following projection induced by the natural projection T ∗X ∼=
X ×C→C,

π[m′] : Sym
m′(

T ∗X/Z2

)
−→ Symm′

(C/Z2).

We set:

• m′ =m if G= Sp(2m,C),
• m′ = (n− k)/2 if G=O(n,C) and the topological invariant is (k, a),

• m′ =m if G= SO(2m+ 1,C) and w2 = 0,

• m′ =m− 1 if G= SO(2m+ 1,C) and w2 = 1,

• m′ =m− 2 if G= SO(2m,C) and w2 = 1.
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By (38), we have the following commuting diagram for the cases considered
above:

ZG,d/ΓG,d

∼=ξ
x0
G,d

π[m′]
CG,d/ΓG,d

βG,d1:1

N (G)d
bG,d

B(G)d.

The elements of C× m′

· · · ×C of the form

tg = (t1, . . . , tm′),

where ti �= ±tj if i �= j and for every i we have ti �= 0, form a dense open
subset. For each (G,d), we call a point of B(G)d generic if it is the image
under βG,d of [tg]Sm′ . An arbitrary element of B(G)d is the image under βG,d

of the Γm-orbit of the following tuple

ta = (0,m0. . .,0, t1,m1. . ., t1, . . . , t�,m�. . ., t�),

where ti �= 0, ti �=±tj if i �= j and m′ =m0 +m1 + · · ·+m�.
The following proposition applies to all the situations listed above.

Proposition 5.8.

π−1
[m′]

(
[tg]Γm′

) ∼=X × m′

· · · ×X

and

π−1
[m′]

(
[ta]Γm′

) ∼= Pm0 × Symm1 X × · · · × Symm� X.

Proof. Since ti �= −ti and ti �= ±tj for every i, j such that i �= j, the sta-
bilizer in Γm′ of tg is trivial and then the stabilizer of every tuple of the
form (

(x1, t1), . . . , (xm′ , tm′)
)

is trivial too. This implies that every such tuple is uniquely determined by the

choice of (x1, . . . , xm′), and then π−1
[m′]([tg]Γm′ ) is isomorphic to X × m′

· · · ×X .

Since the stabilizer in Γm′ of ta is

ZΓm′ (ta) = Γm0 ×Sm1 ×· · · ×Sm�
,

we have

π−1
[m′]

(
[ta]Γm′

) ∼= (X × m′

· · · ×X)/ZΓm′ (ta)

∼= Symm0(X/Z2)× Symm1 X × · · · × Symm� X.

Note that Symm0(X/Z2)∼= Symm0 P1 ∼= Pm0 . �

Recall that SymmX is a projective bundle over X .
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Corollary 5.9. The generic fibre of the Hitchin map for N (Sp(2m,C)) is
the Abelian variety X × m· · · ×X . The Hitchin fibre over an arbitrary element

is a fibration over X × �· · · ×X with fibre Pm0 × Pm1−1 × · · · × Pm�−1.

Corollary 5.10. The generic fibre of the Hitchin fibration for N (SO(2m+

1,C))0 is isomorphic to X × m· · · ×X . The Hitchin fibre over an arbitrary ele-

ment is a fibration over X × �· · · ×X with fibre Pm0 × Pm1−1 × · · · × Pm�−1.

Remark 5.11. Note that the groups Sp(2m,C) and SO(2m + 1,C)
are Langlands dual groups and the Hitchin bases for N (Sp(2m,C)) and
N (SO(2m + 1,C))0 are the same. The generic fibre of the Hitchin fibra-
tion for N (Sp(2m,C)) and the corresponding fibre of the Hitchin fibration

for N (SO(2m + 1,C))0 are isomorphic to X × m· · · ×X , which is a self-dual
Abelian variety.

The fibre of the Hitchin fibration for N (Sp(2m,C)) over an arbitrary point
of the Hitchin base and the fibre of the Hitchin fibration forN (SO(2m+1,C))0

over the same point are fibrations overX× �· · ·×X , which is a self-dual Abelian
variety. The fibres are isomorphic to Pm0 × Pm1−1 × · · · × Pm�−1.

Recall the finite group Δm defined in (23). Thanks to the natural projection
T ∗X ∼=X ×C→C we define

πm : T ∗X × m· · · × T ∗X/Δm −→C× m· · · ×C/Δm.

Let us denote bG,d, BG,d and βG,d by b2m,0, B2m,0 and β2m,0 when G =
SO(2m,C) and w2 = 0. By (38) and Theorem 4.37, we have the following
commuting diagram for the Hitchin fibration associated to N (SO(2m,C))0

T ∗X × m· · · × T ∗X/Δm
πm

∼=ξ
x0
2m,0

C× m· · · ×C/Δm

β2m,01:1

N (SO(2m,C))0
b2m,0

B2m,0.

Using the map

r : X × m· · · ×X −→X × m· · · ×X,

(x1, x2, . . . , xm) 
−→ (−x1, x2, . . . , xm),

we define the r-action of Sm on X × m· · · ×X as follows. Suppose that for

σ ∈Sm we denote by fσ the permutation of X × m· · · ×X associated to σ. We
define the r-action of σ to be the morphism r ◦ fσ ◦ r.

Consider the elements of Cm of the form

tg = (t1, . . . , tm),
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where ti �= 0 and ti �=±tj . We call a point of B2m,0 generic if it is the image

under β2m,0 of some Δm-orbit of tg . There is a special set of points of B2m,0

that come from tuples of the form

ts1 = (−t1, t1,m1−1. . . , t1, t2,m2. . ., t2, . . . , t�,m�. . ., t�),

where ti �= ±tj if i �= j, and for every i we have ti �= 0 and mi even. If our

point of B2m,0 is given by a tuple different from tg and ts1 we can always find
a representative of the Δm-orbit with the form

ts2 = (0,m0. . .,0, t1,m1. . ., t1, . . . , t�,m�. . ., t�),

where ti �=±tj if i �= j and for every i > 0 we have ti �= 0.

Proposition 5.12.

π−1
m

(
[tg]Δm

)
=X × m· · · ×X,

π−1
m

(
[ts1 ]Δm

)
= Symm1 X × Symm2 X × · · · × Symm� X

and

π−1
m

(
[ts2 ]Δm

)
=

(
(X × · · · ×X)/Δm0

)
× Symm1 X × · · · × Symm� X.

Proof. The first result follows from the observation that the stabilizer of tg
is trivial.

The stabilizer of ts1 is

ZΔm(ts1) = ZΔm1

(
(−t1, t1,m1−1. . . , t1)

)
×Sm2 ×· · · ×Sm�

.

We can check that ZΔm1
((−t1, t1,m1−1. . . , t1)) is given by the elements cσ of

Δmi such that σ sends the first entry of (−t1, t1,m1−1. . . , t1) to the ith en-
try and c inverts the first and the ith entry. This shows that the action of
ZΔm1

((−t1, t1,m1−1. . . , t1)) on X × · · · ×X is equivalent to the r-action of the
symmetric group. One can check that the quotient of X × · · · ×X under this
action is isomorphic to the symmetric product of the curve, so

X × · · · ×X/ZΔm(ts1)
∼= Symm1 X × Symm2 X × · · · × Symm� X.

The last statement follows from the fact that the stabilizer of ts2 is

ZΔm(ta) =Δm0 ×Sm1 ×· · · ×Sm�
. �

Corollary 5.13. The generic fibre of the Hitchin fibration N (SO(2m,

C))0 → B2m,0 is the self-dual Abelian variety X × m· · · × X . The fibre over

an arbitrary point of B2m,0 is a fibration over the self-dual Abelian variety
X × · · · ×X with fibre

Pm1−1 × · · · × Pm�−1,

or

(X ×m0· · · ×X)/Δm0 × Pm1−1 × · · · × Pm�−1.
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Remark 5.14. We observe that (X × m0· · · ×X)/Δm0 is isomorphic to the
moduli space M(SO(2m0,C))0. By [FM1] and [Lo], this variety is isomorphic
to the quotient of the weighted projective space WP(1,1,1,2,m0−2. . . ,2) by a
finite group.

Appendix: Some results on Abelian varieties

In this appendix, we prove two lemmas; the first is certainly well known, the
second presumably so, but we have been unable to find a suitable reference.

Let A be an Abelian variety and let a0 ∈A be the trivial element. For any
integers m1, . . . ,m�, the formula

a′ · (a1, . . . , a�) = (a1 +m1a
′, . . . , a� +m�a

′)

defines the weighted (m1, . . . ,m�)-action of A on A× �· · · ×A.

Lemma A.1. Let m1, . . . ,m� be integers and let h be a positive integer.
Write r for gcd(h,m1, . . . ,m�). The weighted (m1, . . . ,m�)-action of A[h] on

A× �· · · ×A is free if and only if r = 1.

Proof. Suppose a′ ∈A[h] and a′ ·(a0, . . . , a0) = (a0, . . . , a0). Then mia
′ = a0

for every i. This implies that a′ is a mi-torsion element for every i. On
the other hand, if there exists a′ ∈ A[h] ∩

⋂
iA[mi] different from a0, the

(m1, . . . ,m�)-weighted action of a′ is trivial and therefore the action of A[h] is
not free. Thus, the action is free if and only if the subgroup A[h] ∩

⋂
iA[mi]

is trivial.
It is easy to see that A[n1]∩A[n2] =A[r′] where r′ = gcd(n1, n2). It follows

by induction that A[h]∩
⋂

iA[mi] =A[r]. The result follows. �

For every positive integer h, we have an exact sequence

0 A[h] A
mulh

A 0,

where mulh(a) = ha= a+
h· · ·+ a. This induces an isomorphism

(41) m̃ulh : A/A[h]
∼=−→A.

Lemma A.2. Consider the weighted (m1, . . . ,m�)-action of A[h] on (A×
�· · · ×A). Then

(A× �· · · ×A)/A[h]∼=A× �· · · ×A.

Proof. First, we treat the case where gcd(m1, h) = 1. Let p, q be integers
such that pm1 + qh = 1. Since gcd(p,h) = 1, the action is equivalent to the
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action of A[h] with weights (1, pm2, . . . , pm�). For this action, consider the
morphism

(A× �· · · ×A)/A[h]−→A/A[h]×A× �−1· · · ×A,[
(a1, . . . , a�)

]
A[h]


−→
(
[a1]A[h], a2 − pm2a1, . . . , a� − pm�a1

)
.

This is in fact an isomorphism of Abelian varieties since it has an inverse

A/A[h]×A× �−1· · · ×A−→ (A× �· · · ×A)/A[h],(
[a′1]A[h], a

′
2, . . . , a

′
�

)

−→

[
(a′1, pm2a

′
1 + a′2, . . . , pm�a

′
1 + a′�)

]
A[h]

.

It follows from (41) that the lemma is true when gcd(m1, h) = 1.
For the general case, let r1 := gcd(m1, h) and write

(42) (A×A× �−1· · · ×A)/A[h] =
(
(A×A× �−1· · · ×A)/A[r1]

)
/A[h/r1].

Since r1 divides m1, the action of A[r1] on the first factor is trivial, so

(A×A× �−1· · · ×A)/A[r1]∼=A× (A× �−1· · · ×A)/A[r1].

When 
= 1 the result follows from (41), so we can suppose inductively that

the lemma is true for A× �−1· · · ×A. Then

A× (A× �−1· · · ×A)/A[r1]∼=A×A× �−1· · · ×A.

This implies by (42) that the original quotient is isomorphic to the quotient by
an action of A[h/r1] whose first weight is m1/r1. Since gcd(m1/r1, h/r1) =
1, the first part of the proof completes the induction and hence the entire
proof. �
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